Integrating System Dynamics, Land Change Models, and Machine Learning to Simulate and Predict Ecosystem Carbon Sequestration Under RCP-SSP Scenarios: Fusing Land and Climate Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. General Procedure
2.3.2. Construction and Simulation of Land Use SD Model
2.3.3. The PLUS Model
2.3.4. Sampling
2.3.5. Random Forest Model for NPP Prediction
3. Results
3.1. Prediction of Land Use Structure in Different Scenarios
3.1.1. Evaluation of the SD Model
3.1.2. Prediction of Quantity Structure of Land Use Under Different Scenarios
3.2. Simulation of Land Use Structure Under Different Scenarios
3.2.1. Performance Evaluation of the PLUS Model
3.2.2. LUCC Simulation Under Different Scenarios
3.3. Simulation of NPP Under Different Scenarios
3.3.1. Evaluation of Random Forest Model
3.3.2. NPP Simulation Under Different Scenarios
4. Discussion
4.1. Feasibility of Predicting Future Spatial Distribution of Carbon Sinks Using Correlation Models
4.2. Regional LUCC Changes Under Different SSP-RCP Scenarios
4.3. Variation Trends of NPP Under Different SSP-RCP Scenarios
4.4. Developing Scientifically Sound Land Use Management Policies Is Crucial for Achieving Effective Carbon Neutrality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bamminger, C.; Poll, C.; Marhan, S. Offsetting global warming-induced elevated greenhouse gae emission from an arable soil by biochar application. Glob. Chang. Biol. 2018, 24, 318–334. [Google Scholar] [CrossRef] [PubMed]
- Guemas, V.; Doblas-Reyes, F.J.; Andreu-Burillo, I.; Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Chang. 2013, 3, 649–653. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, H.; Fu, Y.; Chen, J.M.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; An, H.; Gao, X. Adjusting the global industrial structure for minimizing global carbon emissions: A network-based multi-objective optimization approach. Sci. Total Environ. 2022, 829, 154653. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, X.; Chen, S. Global value chains and carbon emission reduction in developing countries: Does industrial upgrading matter? Environ. Impact Assess. Rev. 2022, 97, 106895. [Google Scholar] [CrossRef]
- Fankhauser, S.; Smith, S.M.; Allen, M.; Axelsson, K.; Hale, T.; Hepburn, C.; Kendall, J.M.; Khosla, R.; Lezaun, J.; Mitchell-Larson, E.; et al. The meaning of net zero and how to get it right. Nat. Clim. Chang. 2022, 12, 15–21. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, Y.; Wu, J. Assessment of carbon balance attribution and carbon storage potential in China’s terrestrial ecosystem. Resour. Conserv. Recycl. 2023, 189, 106748. [Google Scholar] [CrossRef]
- Bureau, C.M.E.A. Chongqing’s Response to Climate Change “Fourteenth Five-Year Plan” (2021–2025); Chongqing Municipal Ecology and Environment Bureau: Chongqing, China, 2022. [Google Scholar]
- Tan, F.; Yang, J.; Zhou, C. Historical review and synthesis of global carbon neutrality research: A bibliometric analysis based on R-tool. J. Clean. Prod. 2024, 449, 141574. [Google Scholar] [CrossRef]
- Ernst Ebermayer. Die Gesammte Lehre der Waldstreu mit Rücksicht auf die Chemische Statik des Waldbaues: Unter Zugrundlegung der in den Königl. Staatsforsten Bayerns Angestellten Untersuchungen; Springer: Berlin/Heidelberg, Germany, 1876. [Google Scholar]
- Lindner, M.; Karjalainen, T. Carbon inventory methods and carbon mitigation potentials of forests in Europe: A short review of recent progress. Eur. J. For. Res. 2007, 126, 149–156. [Google Scholar] [CrossRef]
- Ruimy, A.; Saugier, B.; Dedieu, G. Methodology for the estimation of terrestrial net primary production from remotely sensed data. J. Geophys. Res. Atmos. 1994, 99, 193–200. [Google Scholar] [CrossRef]
- Forkel, M.; Drüke, M.; Thurner, M.; Dorigo, W.; Schaphoff, S.; Thonicke, K.; von Bloh, W.; Carvalhais, N. Constraining modelled global vegetation dynamics and carbon turnover using multiple satellite observations. Sci. Rep. 2019, 9, 18757. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, J.M.; Cihlar, J.; Chen, W. Net primary productivity mapped for Canada at 1-km resolution. Glob. Ecol. Biogeogr. 2002, 11, 115–129. [Google Scholar] [CrossRef]
- Lei, T.; Feng, J.; Lv, J.; Wang, J.; Song, H.; Song, W.; Gao, X. Net Primary Productivity Loss under different drought levels in different grassland ecosystems. J. Environ. Manag. 2020, 274, 111144. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.; Zeng, L.; Hu, W.; Wang, P.; Yan, Z.; He, W.; Zhang, Y.; Huang, Z.; Xiao, W. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China. Sci. Total Environ. 2020, 714, 136691. [Google Scholar] [CrossRef]
- Zhou, Z.; Qin, D.; Chen, L.; Jia, H.; Yang, L.; Dai, T. Novel model for NPP prediction based on temperature and land use changes: A case in Sichuan and Chongqing, China. Ecol. Indic. 2022, 145, 109724. [Google Scholar] [CrossRef]
- Ghosh, S.; Dinda, S.; Das Chatterjee, N.; Dutta, S.; Bera, D. Spatial-explicit carbon emission-sequestration balance estimation and evaluation of emission susceptible zones in an Eastern Himalayan city using Pressure-Sensitivity-Resilience framework: An approach towards achieving low carbon cities. J. Clean. Prod. 2022, 336, 130417. [Google Scholar] [CrossRef]
- Piyathilake, I.D.U.H.; Udayakumara, E.P.N.; Ranaweera, L.V.; Gunatilake, S.K. Modeling predictive assessment of carbon storage using InVEST model in Uva province, Sri Lanka. Model. Earth Syst. Environ. 2022, 8, 2213–2223. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Hati, J.P.; Acharyya, R.; Pal, I.; Tuladhar, N.; Habel, M. Global trends in using the InVEST model suite and related research: A systematic review. Ecohydrol. Hydrobiol. 2024; in press. [Google Scholar]
- Chen, T.; Tang, G.; Yuan, Y.; Guo, H.; Xu, Z.; Jiang, G.; Chen, X. Unraveling the relative impacts of climate change and human activities on grassland productivity inCentral Asia over last three decades. Sci. Total Environ. 2020, 743, 140649. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Tong, L.; Khalifa, M.; Wang, Q.; Gang, C.; Wang, Z.; Li, J.; Sun, Z. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecol. Indic. 2019, 106, 105504. [Google Scholar] [CrossRef]
- Xiao, X.; Fan, M.; Wang, E.; Chen, W.; Wei, G. Interactions of plant growth-promoting rhizobacteria and soil factors in two leguminous plants. Appl. Microbiol. Biotechnol. 2017, 101, 8485–8497. [Google Scholar] [CrossRef]
- Miao, L.; Wang, X.; Yu, C.; Ye, C.; Yan, Y.; Wang, H. What factors control plant height? J. Integr. Agric. 2024, 23, 1803–1824. [Google Scholar] [CrossRef]
- Taelman, S.E.; Schaubroeck, T.; De Meester, S.; Boone, L.; Dewulf, J. Accounting for land use in life cycle assessment: The value of NPP as a proxy indicator to assess land use impacts on ecosystems. Sci. Total Environ. 2016, 550, 143–156. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.; Krausmann, F.; Loibl, W.; Schulz, N.; Weisz, H. Changes in ecosystem processes induced by land use: Human appropriation of aboveground NPP and its influence on standing crop in Austria. Glob. Biogeochem. Cycles 2001, 15, 929–942. [Google Scholar] [CrossRef]
- Gong, H.; Cao, L.; Duan, Y.; Jiao, F.; Xu, X.; Zhang, M.; Wang, K.; Liu, H. Multiple effects of climate changes and human activities on NPP increase in the Three-north Shelter Forest Program area. For. Ecol. Manag. 2023, 529, 120732. [Google Scholar] [CrossRef]
- Wondzell, S.M.; Cunningham, G.L.; Bachelet, D. Relationships between landforms, geomorphic processes, and plant communities on a watershed in the northern Chihuahuan Desert. Landsc. Ecol. 1996, 11, 351–362. [Google Scholar] [CrossRef]
- Baartman, J.E.; Temme, A.J.; Saco, P.M. The effect of landform variation on vegetation patterning and related sediment dynamics. Earth Surf. Process. Landf. 2018, 43, 2121–2135. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Alzubi, J.; Nayyar, A.; Kumar, A. Machine Learning from Theory to Algorithms: An Overview. J. Phys. Conf. Ser. 2018, 1142, 12012. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, C.; Work, T.; Candau, J.-N.; DesRochers, A.; Kneeshaw, D. Application of machine-learning methods in forest ecology: Recent progress and future challenges. Environ. Rev. 2018, 4, 994–1016. [Google Scholar] [CrossRef]
- Olden, J.D.; Lawler, J.J.; Poff, N.L. Machine learning methods without tears: A primer for ecologists. Q. Rev. Biol. 2008, 83, 171–193. [Google Scholar] [CrossRef]
- Randers, J. Elements of the System Dynamics Method. J. Oper. Res. Soc. 2017, 11, 1144–1145. [Google Scholar] [CrossRef]
- Ravar, Z.; Zahraie, B.; Sharifinejad, A.; Gozini, H.; Jafari, S. System dynamics modeling for assessment of water–food–energy resources security and nexus in Gavkhuni basin in Iran. Ecol. Indic. 2020, 108, 105682. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, J.; Cuan, Y.; Zhou, Z. The Evolution Response of Ecosystem Cultural Services under Different Scenarios Based on System Dynamics. Remote Sens. 2020, 12, 418. [Google Scholar] [CrossRef]
- Arbault, D.; Rivière, M.; Rugani, B.; Benetto, E.; Tiruta-Barna, L. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Sci. Total Environ. 2014, 472, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating simulation (PLUS) model: A case study in Wuhan. Computers 2021, 85, 101569. [Google Scholar] [CrossRef]
- Huang, H.; Liang, Z.; Li, B.; Wang, D.; Hu, Y.; Li, Y. Combination of multiple data-driven models for long-term monthlyrunoff predictions based on Bayesian model averaging. Water Resour. Manag. 2019, 33, 3321–3338. [Google Scholar] [CrossRef]
- Kucherenko, S.; Albrecht, D.; Saltelli, A. Exploring multi-dimensional spaces: A Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques. arXiv 2015, arXiv:1505.02350. [Google Scholar] [CrossRef]
- Viana, F.A.C. A Tutorial on Latin Hypercube Design of Experiments. Qual. Reliab. Eng. Int. 2016, 32, 1975–1985. [Google Scholar] [CrossRef]
- Rousselet, G.; Pernet, C.R.; Wilcox, R.R. An introduction to the bootstrap: A versatile method to make inferences by using data-driven simulations. Meta-Psychol. 2023, 7. [Google Scholar] [CrossRef]
- Ali, J.; Khan, R.; Ahmad, N. Random Forests and Decision Trees. Int. J. Comput. Sci. Issues 2012, 9, 272–278. [Google Scholar]
- Xia, J.; Ma, M.; Liang, T. Estimates of grassland biomass and turnover time on the TibetanPlateau. Environ. Res. Lett. 2018, 13, 014020. [Google Scholar] [CrossRef]
- Yu, B.; Chen, F.; Chen, H. NPP estimation using random forest and impact feature variable importance analysis. J. Spat. Sci. 2019, 64, 173–192. [Google Scholar] [CrossRef]
Subsystem | Variable Name | Units | Variable Types | |
---|---|---|---|---|
1 | Population subsystem | Population | 10,000 people | SV |
2 | Urban population | 10,000 people | AV | |
3 | Rural population | 10,000 people | AV | |
4 | Population change | 10,000 people/year | AV | |
5 | Urban population rate | % | RV | |
6 | Population change rate | % | DV | |
7 | Economic subsystem | GDP | One hundred million dollars | SV |
8 | Agricultural production | One hundred million dollars | AV | |
9 | industrial production | One hundred million dollars | AV | |
10 | Tertiary industry | One hundred million dollars | AV | |
11 | Fixed investments | One hundred million dollars | AV | |
12 | Residential investment | One hundred million dollars | AV | |
13 | Investment in secondary and tertiary industries | One hundred million dollars | AV | |
14 | GDP change rate | % | DV | |
15 | Climatic subsystem | Annual temperature | °C | SV |
16 | Annual temperature change | °C/year | AV | |
17 | Annual temperature change rate | % | DV | |
18 | Annual precipitation | mm | SV | |
19 | Annual precipitation change | mm/year | AV | |
20 | Annual precipitation change rate | % | DV | |
21 | Land subsystem | Unused land | km2 | AV |
22 | Proportion Unused land rate | % | RV | |
23 | Grassland | km2 | AV | |
24 | Woodland | km2 | SV | |
25 | Woodland change | km2/year | RV | |
26 | Water | km2 | SV | |
27 | Water change | km2/year | RV | |
28 | Construction land | km2 | SV | |
29 | Construction land change | km2/year | AV | |
30 | Demand for urban construction land | km2 | AV | |
31 | Village construction land demand | km2 | AV | |
32 | Cultivated land | km2 | SV | |
33 | Cultivated land change | km2/year | AV |
Subsystem | Variable Name | Units |
---|---|---|
Climatic | Mean annual temperature | °C |
Mean annual precipitation | ml | |
Maximum surface temperature | °C | |
Minimum surface temperature | °C | |
Mean annual wind speed | m/s | |
Average annual relative humidity | % | |
Landform | Altitude | m |
Slope | ° | |
Location | Latitude | ° |
Longitude | ° | |
LUCC | LUCC | |
Last NPP | Last NPP | gC/(m2 × a) |
Year | 2000 | 2005 | 2010 | 2015 | 2020 | |
---|---|---|---|---|---|---|
Cultivated land | Deviation area | 0.00 | 263.18 | −467.5 | 101.74 | −183.82 |
Relative error | 0.00% | 0.39% | −0.70% | 0.15% | −0.28% | |
Woodland | Deviation area | 0.00 | 309.27 | 235.03 | −123.16 | −382.08 |
Relative error | 0.00% | 0.33% | 0.25% | −0.13% | −0.42% | |
Grassland | Deviation area | 0.00 | 28.61 | 581.65 | 153.88 | 397.46 |
Relative error | 0.00% | 0.41% | 8.38% | 2.23% | 5.72% | |
Water | Deviation area | 0.00 | 61.65 | −229.89 | 122.03 | −54.61 |
Relative error | 0.00% | 0.47% | −1.86% | 0.99% | −0.41% | |
Construction land | Deviation area | 0.00 | −251.11 | −115.7 | −245.65 | 229.19 |
Relative error | 0.00% | −4.67% | −1.70% | −3.08% | 2.95% | |
Unused land | Deviation area | 0.00 | −13.06 | −6.55 | −9.82 | −2.77 |
Deviation area | 0.00% | −3.86% | −1.70% | −2.57% | −0.84% |
Year | Climate Scenarios | Cultivate Land | Woodland | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
2030 | SSP1-1.9 | 64291.40 | 91,742.70 | 5534.16 | 12,836.00 | 11,256.81 | 348.06 |
SSP2-4.5 | 64,328.60 | 92,238.00 | 4853.00 | 12,861.40 | 11,380.07 | 348.06 | |
SSP5-8.5 | 64,093.30 | 92,590.40 | 4784.16 | 12,700.70 | 11,492.51 | 348.06 | |
2060 | SSP1-1.9 | 60,600.50 | 86,012.10 | 9995.58 | 12,540.90 | 16,475.97 | 384.08 |
SSP2-4.5 | 60,597.20 | 89,727.50 | 5907.55 | 12,538.60 | 16,854.20 | 384.08 | |
SSP5-8.5 | 59,794.70 | 84,273.90 | 124,12.80 | 11,990.50 | 17,153.15 | 384.08 |
Folds | Mean Squared Error | R2 | Folds | Mean Squared Error | R2 |
---|---|---|---|---|---|
1 | 1454.76 | 0.9570 | 7 | 1406.97 | 0.9579 |
2 | 1425.71 | 0.9572 | 8 | 1446.69 | 0.9563 |
3 | 1438.60 | 0.9567 | 9 | 1423.14 | 0.9570 |
4 | 1399.83 | 0.9576 | 10 | 1472.63 | 0.9554 |
5 | 1436.41 | 0.9567 | Mean | 1435.10 | 0.9568 |
6 | 1446.33 | 0.9568 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, Y.; Yang, J.; Wu, W.; Tao, R. Integrating System Dynamics, Land Change Models, and Machine Learning to Simulate and Predict Ecosystem Carbon Sequestration Under RCP-SSP Scenarios: Fusing Land and Climate Changes. Land 2024, 13, 1967. https://doi.org/10.3390/land13111967
Zhang Y, Zhang Y, Yang J, Wu W, Tao R. Integrating System Dynamics, Land Change Models, and Machine Learning to Simulate and Predict Ecosystem Carbon Sequestration Under RCP-SSP Scenarios: Fusing Land and Climate Changes. Land. 2024; 13(11):1967. https://doi.org/10.3390/land13111967
Chicago/Turabian StyleZhang, Yuzhou, Yiyang Zhang, Jianxin Yang, Weilong Wu, and Rong Tao. 2024. "Integrating System Dynamics, Land Change Models, and Machine Learning to Simulate and Predict Ecosystem Carbon Sequestration Under RCP-SSP Scenarios: Fusing Land and Climate Changes" Land 13, no. 11: 1967. https://doi.org/10.3390/land13111967
APA StyleZhang, Y., Zhang, Y., Yang, J., Wu, W., & Tao, R. (2024). Integrating System Dynamics, Land Change Models, and Machine Learning to Simulate and Predict Ecosystem Carbon Sequestration Under RCP-SSP Scenarios: Fusing Land and Climate Changes. Land, 13(11), 1967. https://doi.org/10.3390/land13111967