Insight into Carbon Emissions in Economically Developed Regions Based on Land Use Transitions: A Case Study of the Yangtze River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methods
2.3.1. Carbon Emission Calculation for Land Use
2.3.2. STIRPAT Model
- (1)
- Indicator Selection
- (2)
- Construction of STIRPAT Model
- (3)
- Ridge Regression
2.3.3. Scenario Simulation
Parameter Setting
- (1)
- Population size
- (2)
- Affluence
- (3)
- Energy intensity
- (4)
- Urbanization level
- (5)
- Industrial structure
- (6)
- Energy consumption structure
3. Results
3.1. Land Use Structure Characteristics
3.2. Land Use Change Characteristics
3.3. Composition and Trend of LUCEs
3.4. Peak CO2 Emission Forecast
3.4.1. Impact Mechanism of Carbon Emissions
3.4.2. Estimated Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, J.; Sato, M.; Russell, G.; Kharecha, P. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. A Math. Phys. Eng. Sci. 2013, 371, 20120294. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Kelley, D.I.; Burton, C.A.; Di Giuseppe, F.; Barbosa, M.L.F.; Brambleby, E.; Hartley, A.J.; Lombardi, A.; Mataveli, G.; McNorton, J.R.; et al. State of wildfires 2023–2024. Earth Syst. Sci. Data 2024, 16, 3601–3685. [Google Scholar] [CrossRef]
- McKay, D.I.A.; Staal, A.; Abrams, J.F.; Winkelmann, R.; Sakschewski, B.; Loriani, S.; Fetzer, I.; Cornell, S.E.; Rockström, J.; Lenton, T.M. Exceeding 1.5 C global warming could trigger multiple climate tipping points. Science 2022, 377, eabn7950. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, M.; Tabak, C.; Höglund-Isaksson, L.; Humpenöder, F.; Purohit, P.; Van Vuuren, D. Uncertainty in non-CO2 greenhouse gas mitigation contributes to ambiguity in global climate policy feasibility. Nat. Commun. 2023, 14, 2949. [Google Scholar] [CrossRef]
- International Energy Agency. CO2 Emissions in 2023. Available online: https://www.iea.org/reports/co2-emissions-in-2023 (accessed on 25 October 2024).
- Campbell, C.; Zentner, R.; Liang, B.C.; Roloff, G.; Gregorich, E.; Blomert, B. Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan–effect of crop rotations and fertilizers. Can. J. Soil Sci. 2000, 80, 179–192. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Houghton, R.; Hackler, J. Sources and sinks of carbon from land-use change in China. Glob. Biogeochem. Cycles 2003, 17, 1034. [Google Scholar] [CrossRef]
- Houghton, R.A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B Chem. Phys. Meteorol. 1999, 51, 298–313. [Google Scholar] [CrossRef]
- Houghton, R.A.; House, J.I.; Pongratz, J.; Van Der Werf, G.R.; Defries, R.S.; Hansen, M.C.; Le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Hua, H. Research on influences of land use structure change on carbon emissions. Ecol. Econ. 2018, 34, 14–19. [Google Scholar]
- Hung, L.Q.; Asaeda, T.; Thao, V.T.P. Carbon emissions in the field of land use, land use change, and forestry in the Vietnam mainland. Wetl. Ecol. Manag. 2021, 29, 315–329. [Google Scholar] [CrossRef]
- Zhang, P.; He, J.; Hong, X.; Zhang, W.; Qin, C.; Pang, B.; Li, Y.; Liu, Y. Carbon sources/sinks analysis of land use changes in China based on data envelopment analysis. J. Clean. Prod. 2018, 204, 702–711. [Google Scholar] [CrossRef]
- Zheng, X.; Cheng, J.M.; Zheng, S. Research on carbon emissions and influence factors in Wuhu City based on the change of land use structure. Res. Soil Water Conserv. 2012, 19, 259–262. [Google Scholar]
- Zhao, R.; Huang, X.; Liu, Y.; Zhong, T.; Ding, M.; Chuai, X. Carbon emission of regional land use and its decomposition analysis: Case study of Nanjing City, China. Chin. Geogr. Sci. 2015, 25, 198–212. [Google Scholar] [CrossRef]
- Zhao, J.; Kou, L.; Wang, H.; He, X.; Xiong, Z.; Liu, C.; Cui, H. Carbon emission prediction model and analysis in the Yellow River basin based on a machine learning method. Sustainability 2022, 14, 6153. [Google Scholar] [CrossRef]
- Yang, F.; He, F.; Li, S.; Li, M.; Wu, P. A new estimation of carbon emissions from land use and land cover change in China over the past 300 years. Sci. Total Environ. 2023, 863, 160963. [Google Scholar] [CrossRef]
- Jin, Y.; Sharifi, A.; Li, Z.; Chen, S.; Zeng, S.; Zhao, S. Carbon emission prediction models: A review. Sci. Total Environ. 2024, 927, 172319. [Google Scholar] [CrossRef]
- Yue, T.; Long, R.; Chen, H.; Zhao, X. The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach. Appl. Energy 2013, 112, 1510–1517. [Google Scholar] [CrossRef]
- Wang, Y.G.; Wang, X.; Sun, C.H.; Lu, X.Y. Research progress on the application of IPAT model and its variants. Chin. J. Appl. Ecol. 2015, 26, 949–957. [Google Scholar] [CrossRef]
- Fang, K.; Tang, Y.; Zhang, Q.; Song, J.; Wen, Q.; Sun, H.; Ji, C.; Xu, A. Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces. Appl. Energy 2019, 255, 113852. [Google Scholar] [CrossRef]
- Zhang, P.; He, J.; Hong, X.; Zhang, W.; Qin, C.; Pang, B.; Li, Y.; Liu, Y. Regional-level carbon emissions modelling and scenario analysis: A STIRPAT case study in Henan province, China. Sustainability 2017, 9, 2342. [Google Scholar] [CrossRef]
- Su, K.; Lee, C.M. When will China achieve its carbon emission peak? A scenario analysis based on optimal control and the STIRPAT model. Ecol. Indic. 2020, 112, 106138. [Google Scholar] [CrossRef]
- Ye, C.; Ming, T. Land use carbon emissions estimation and carbon emissions control strategy effect scenario simulation in Zhejiang province. Heliyon 2023, 9, e20783. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xu, Z.; Ma, H. Can China achieve its CO2 emissions peak by 2030? Ecol. Indic. 2018, 84, 337–344. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, W. Impact of FDI and R&D on China’s industrial CO2 emissions reduction and trend prediction. Atmos. Pollut. Res. 2019, 10, 1627–1635. [Google Scholar] [CrossRef]
- Tong, X.; Chen, K.; Li, G. Influencing Factors Analysis and Trend Forecasting of China’s Carbon Emissions—Empirical Study Based on STIRPAT and GM(1,1) Models. J. Northeast. Univ. Nat. Sci. 2015, 36, 297–300. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Y.; Dong, Z. Will China achieve its ambitious goal?—Forecasting the CO2 emission intensity of China towards 2030. Energies 2020, 13, 2924. [Google Scholar] [CrossRef]
- Malik, A.; Hussain, E.; Baig, S.; Khokhar, M.F. Forecasting CO2 emissions from energy consumption in Pakistan under different scenarios: The China–Pakistan economic corridor. Greenh. Gases Sci. Technol. 2020, 10, 380–389. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, L.; Liu, H. Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China. J. Clean. Prod. 2019, 209, 415–423. [Google Scholar] [CrossRef]
- He, X.; Song, Y.; Yu, F.; Duan, H. Applications of fractional order logistic grey models for carbon emission forecasting. Fractal Fract. 2024, 8, 145. [Google Scholar] [CrossRef]
- Wang, L.; Xue, W. A study of the pathway to peak carbon in China. Environ. Prot. Eng. 2024, 50, 71–89. [Google Scholar] [CrossRef]
- Cui, L.B.; Li, X.; Duan, H.B. Synergistic effects of reducing pollution and carbon emissions in the Yangtze River Delta. China Popul. Resour. Environ. 2024, 34, 21–32. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Yangtze River Delta Integration Development Index Report. 2022. Available online: https://www.ndrc.gov.cn/xwdt/ztzl/cjsjyth1/xwzx/202212/t20221229_1344571.html (accessed on 15 October 2024).
- The State Council. State Council on the Issuance of the 13th Five-Year Plan Notification of the Work Programme for Controlling Greenhouse Gas Emissions. Available online: https://www.gov.cn/zhengce/content/2016-11/04/content_5128619.htm (accessed on 25 October 2024).
- Yang, J.; Huang, X. 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, L.; Qiu, B.; Zhao, Y.; Wei, C. Spatiotemporal analysis of land use patterns on carbon emissions in China. Land 2021, 10, 141. [Google Scholar] [CrossRef]
- Strassmann, K.; Joos, F.; Fischer, G. Simulating effects of land use changes on carbon fluxes: Past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B Chem. Phys. Meteorol. 2008, 60, 583–603. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Sun, W.; Chang, J.; Zhu, J.; Chen, L.; Wang, X.; Guo, Y.; Zhang, H.; Yu, L.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Fan, J.; Yu, X.; Zhou, L. Carbon emission efficiency growth of land use structure and its spatial correlation: A case study of Nanjing City. Geogr. Res. 2018, 37, 2177–2192. [Google Scholar] [CrossRef]
- Yuan, S.F.; Tang, Y.Y. Spatial differentiation of land use carbon emission in the Yangtze River economic belt based on low carbon perspective. Econ. Geogr. 2019, 39, 190–198. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, J. Study on the spatial and temporal differentiation pattern of carbon emission and carbon compensation in China’s provincial areas. Sustainability 2022, 14, 7627. [Google Scholar] [CrossRef]
- Rong, T.; Zhang, P.; Zhu, H.; Jiang, L.; Li, Y.; Liu, Z. Spatial correlation evolution and prediction scenario of land use carbon emissions in China. Ecol. Inf. 2022, 71, 101802. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Lao, Y.L.; Zhao, N.J.; Wei, J.H.; Hu, B.Q. Decoupling Relationship of Landuse Carbon Emission Reduction and Economic Growth in Guangdong Province. Bull. Soil Water Conserv. 2022, 42, 250–258, 266. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, Y.; Chen, Y.; Ke, X. The study on spatial correlation of recessive land use transformation and land use carbon emission. China Land Sci. 2022, 36, 100–112. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of Population Growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Rethinking the environmental impacts of population, affluence and technology. Hum. Ecol. Rev. 1994, 1, 277–300. [Google Scholar]
- Zou, X.Q.; Sun, X.C.; Ge, T.Y.; Xing, S. Carbon emission differences, influence mechanisms and carbon peak projections in Yangtze river delta region. Resour. Environ. Yangtze Basin 2023, 32, 548–557. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, L.; Dong, M.N.; Jiang, L.L.; Wang, Y.; Zang, S.Y. Carbon Emissions Intensity Change Analysis Based on Land Use in Harbin City from 2004 to 2012. Sci. Geogr. Sin. 2015, 35, 322–327. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Huang, X.J.; Chuai, X.W. Misunderstandings and Future Trends of Researches on Land Use Carbon Emissions in China. China Land Sci. 2016, 30, 83–92. [Google Scholar] [CrossRef]
- Lv, T.; Hu, H.; Zhang, X.; Wang, L.; Fu, S. Impact of multidimensional urbanization on carbon emissions in an ecological civilization experimental area of China. Phys. Chem. Earth 2022, 126, 103120. [Google Scholar] [CrossRef]
- Chen, Y.Q. Prediction of Peak Carbon Emissions in Jiangsu Province Based on STIRPAT Model. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2017. [Google Scholar]
- Li, X.J.; Zhu, Q.X.; Qi, Z.Q.; Wang, T.B.; Zhang, Y.J. Prediction of carbon emission peak based on STIRPAT model: A case study of Gansu Province. Environ. Prot. Technol. 2022, 28, 38–44. [Google Scholar] [CrossRef]
- Sun, L.L.; Cui, H.J.; Ge, Q.S. Will China achieve its 2060 carbon neutral commitment from the provincial perspective? Adv. Clim. Chang. Res. 2022, 13, 169–178. [Google Scholar] [CrossRef]
- Liu, D.; Xiao, B. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model. Ecol. Indic. 2018, 93, 647–657. [Google Scholar] [CrossRef]
- Jiang, H.Q.; Li, Y.X.; Chen, M.M.; Shao, X.X. Prediction and Realization Strategy of the Carbon Peak of the Industrial Sector in Zhejiang Province under the Vision of Carbon Neutrality. Areal Res. Dev. 2022, 41, 157–161, 168. [Google Scholar] [CrossRef]
- Qin, L. Research on Influencing Factors and Prediction of Land Use Carbon Emissions in Jiangsu Province. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2022. [Google Scholar]
- Wang, C.; Cai, W.J. China Provincial and High Spatial Accuracy Population Change Scenario Dataset (2010–2100). Available online: https://bbs.pinggu.org/thread-11382030-1-1.html (accessed on 25 October 2024).
- Jiang, T.; Zhao, J.; Cao, L.G.; Wang, Y.J.; Su, B.D.; Jing, C.; Wang, R.; Gao, C. Projection of national and provincial economy under the shared socioeconomic pathways in China. Adv. Clim. Chang. Res. 2018, 14, 50–58. [Google Scholar] [CrossRef]
- Pan, D.; Li, N.; Li, F.; Feng, K.S.; Peng, L.L.; Wang, Z. Mitigation strategy of Eastern China based on energy-source carbon emission estimation. J. Environ. Sci. 2021, 41, 1142–1152. [Google Scholar] [CrossRef]
- Lin, B.Q.; Liu, X.Y. China’s Carbon Dioxide Emissions under the Urbanization Process: Influence Factors and Abatement Policies. Econ. Res. J. 2010, 45, 66–78. [Google Scholar]
- Wang, S.J.; Mo, H.B.; Fang, C.L. Carbon emissions dynamic simulation and its peak of cities in the Pearl River Delta Urban Agglomeration. Chin. Sci. Bull. 2022, 67, 670–684. [Google Scholar] [CrossRef]
- Institute of Resources and Environmental Policy, Development Research Center of The State Council. China Energy Revolution Progress Report. 2020. Available online: https://www.coalchina.org.cn/uploadfile/2020/1109/20201109092028882.pdf (accessed on 25 October 2024).
- China National Petroleum Corporation. World and China Energy Outlook 2050. Available online: https://m.in-en.com/article/html/energy-2255134.shtml (accessed on 25 October 2024).
- Gu, W.W. Research on Policy Termination and Policy Renewal: A Case Study of the Policy of Returning Farmland to Forest. Master’s Thesis, Capital University of Economics and Business, Beijing, China, 2011. [Google Scholar]
- Dai, D.; Zhang, L.; Zhao, S.; Zhou, B. Forecast of carbon emission peak in Anhui Province under environmental regulation. Fresenius Environ. Bull. 2022, 31, 11202–11211. [Google Scholar]
- Li, J.B.; Huang, X.J.; Chuai, X.W.; Sun, S.C. Scenario Simulation of Carbon Emissions in the Yangtze River Delta under the Background of “Dual Carbon”. Ecol. Econ. 2022, 38, 13–18, 35. [Google Scholar]
- Cui, Y.F. Research on the Characteristics and Influencing Factors of Land Use Carbon Emissions in the Yangtze River Delta Urban Agglomeration. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2019. [Google Scholar]
Data Type | Data Name | Year | Data Sources URL (accessed on 25 October 2023) |
---|---|---|---|
LU data | LU | 2000–2020 | https://zenodo.org/records/12779975, (accessed on 25 October 2023) |
Dem | 2000–2020 | https://www.gscloud.cn/, (accessed on 25 October 2023) | |
socioeconomic development data | Shanghai Statistical Yearbook | 2000–2020 | https://tjj.sh.gov.cn/tjnj/index.html, (accessed on 25 October 2023) |
Zhejiang Statistical Yearbook | 2000–2020 | https://tjj.zj.gov.cn/col/col1525563/index.html, (accessed on 25 October 2023) | |
Jiangsu Statistical Yearbook | 2000–2020 | https://www.jiangsu.gov.cn/col/col84736/index.html, (accessed on 25 October 2023) | |
Anhui Statistical Yearbook | 2000–2020 | http://tjj.ah.gov.cn/ssah/qwfbjd/tjnj/index.html, (accessed on 25 October 2023) | |
Outline of the 14th FYP for National Economic and Social Development of Jiangsu Province | https://www.jiangsu.gov.cn/art/2021/3/2/art_46143_9684719.html, (accessed on 25 October 2023) | ||
The 14th FYP for Resource conservation and Circular Economy development in Shanghai | https://www.shanghai.gov.cn/nw12344/20220509/a00971c96ede444eade8000cb9c12766.html, (accessed on 25 October 2023) | ||
The 14th FYP for the Development of the Circular Economy in Jiangsu Province | https://fzggw.jiangsu.gov.cn/art/2021/9/16/art_83783_10124063.html, (accessed on 25 October 2023) | ||
energy consumption data | China Energy Statistical Yearbook | 2000–2020 | https://www.stats.gov.cn/, (accessed on 25 October 2023) |
The 14th FYP for Energy Saving and Emissions Reduction in Zhejiang Province | https://fzggw.zj.gov.cn/art/2022/9/6/art_1621019_58934758.html, (accessed on 25 October 2023) | ||
The 14th FYP for Energy Saving and Emissions Reduction in Anhui Province | https://wjw.ah.gov.cn/group4/M00/03/D1/wKg862LFNjWAesFoAAgU02_m3TU850.pdf, (accessed on 25 October 2023) |
Type of Energy | Standard Coal Reference Factor (kgce/kg) | Carbon Emission Factor (tC/tce) |
---|---|---|
Coal | 0.7143 | 0.7476 |
Coke | 0.9714 | 0.1128 |
Crude oil | 1.4286 | 0.5854 |
Gasoline | 1.4714 | 0.5532 |
Kerosene | 1.4571 | 0.3416 |
Diesel | 1.4571 | 0.5913 |
Fuel oil | 1.4286 | 0.6176 |
Natural gas | 0.13300 kgce/m3 | 0.4479 |
Electricity | 0.1229 kgce/kwh | |
Source | China Energy Statistical Yearbook | IPCC Guidelines for National Greenhouse Gas Emission Inventories |
Actual Variable | Symbol | Interpreted Variable | Unit |
---|---|---|---|
Population size | P | Residential population in the region | 10,000 persons |
Affluence | A | GDP per capita | 10,000 CNY/person |
Energy intensity | T | Energy consumption per unit of regional GDP | Ton of standard coal/CNY 10,000 |
Energy structure | Es | Coal consumption as a proportion of total energy consumption | % |
Industrial structure | Is | The ratio of the value of the secondary industry to the regional GDP | % |
Urbanization level | U | Urban population as a percentage of residential population | % |
Scenario | Year | P (%) | A (%) | T (%) | U (%) | IS (%) | ES (%) |
---|---|---|---|---|---|---|---|
low- carbon | 2020–2025 | 0.12 | 4.96 | −3.37 | 0.87 | −1.5 | −3.60 |
2025–2030 | −0.13 | 4.03 | −3.07 | 0.78 | −1.3 | −3.10 | |
2030–2035 | −0.28 | 2.68 | −2.87 | 0.78 | −0.9 | −3.10 | |
2035–2040 | −0.38 | 2.48 | −2.67 | - | −0.5 | −2.47 | |
normal- carbon | 2020–2025 | 0.17 | 5.42 | −2.97 | 0.87 | −1.4 | −3.40 |
2025–2030 | −0.12 | 4.00 | −2.67 | 0.78 | −1.2 | −2.90 | |
2030–2035 | −0.27 | 2.61 | −2.47 | 0.78 | −0.9 | −2.90 | |
2035–2040 | −0.34 | 2.17 | −2.27 | - | −0.5 | −2.27 | |
high- carbon | 2020–2025 | 0.13 | 4.60 | −2.57 | 1.41 | −1.2 | −3.20 |
2025–2030 | −0.12 | 3.86 | −2.27 | 0.76 | −0.9 | −2.70 | |
2030–2035 | −0.26 | 2.89 | −2.07 | 0.76 | −0.7 | −2.70 | |
2035–2040 | −0.35 | 2.58 | −1.87 | - | −0.3 | −2.07 |
Unit: Hectares | Cropland | Forest | Grassland | Water | Barren Land | Built-Up Area | Total Area |
---|---|---|---|---|---|---|---|
2000 | 19,825,127.64 | 10,801,425.69 | 18,417.33 | 2,257,165.89 | 1980.00 | 2,425,394.70 | 35,329,511.70 |
56.11% | 30.57% | 0.05% | 6.39% | 0.01% | 6.87% | ||
2005 | 19,163,908.35 | 10,902,312.99 | 15,719.85 | 2,405,254.59 | 956.25 | 2,841,359.58 | 35,329,511.70 |
54.24% | 30.86% | 0.04% | 6.81% | 0.00% | 8.04% | ||
2010 | 18,593,248.14 | 10,923,399.90 | 16,518.60 | 2,414,010.51 | 676.71 | 3,381,657.84 | 35,329,511.70 |
52.63% | 30.92% | 0.05% | 6.83% | 0.00% | 9.57% | ||
2015 | 18,304,264.80 | 10,618,661.97 | 10,739.43 | 2,381,475.78 | 474.48 | 4,013,895.24 | 35,329,511.70 |
51.81% | 30.06% | 0.03% | 6.74% | 0.00% | 11.36% | ||
2020 | 18,247,108.14 | 10,506,782.43 | 5084.55 | 2,209,391.55 | 424.71 | 4,360,720.32 | 35,329,511.70 |
51.65% | 29.74% | 0.01% | 6.25% | 0.00% | 12.34% | ||
20-year area change | −1,578,019.5 | −294,643.26 | −13,332.78 | −47,774.34 | −1555.29 | 1,935,325.62 | |
Rate of area change | −7.96% | −2.73% | −72.39% | −2.12% | −78.55% | 79.79% |
Unit: Hectares | 2005 | |||||||
---|---|---|---|---|---|---|---|---|
LU Type | Cropland | Forest | Grassland | Water | Barren Land | Built-Up Area | Transfer-Out Area | |
2000 | Cropland | 18,887,908.14 | 263,699.73 | 2808.81 | 249,769.62 | 4.14 | 420,937.2 | 937,219.5 |
Forest | 155,996.73 | 10,635,583.59 | 70.65 | 152.46 | 0 | 9622.26 | 165,842.1 | |
Grassland | 3904.83 | 669.51 | 12,627.99 | 154.08 | 35.82 | 1025.1 | 5789.34 | |
Water | 114,509.61 | 2359.35 | 75.87 | 2,112,064.83 | 94.77 | 28,061.82 | 145,101.42 | |
Barren land | 175.77 | 0 | 136.53 | 357.12 | 820.71 | 489.87 | 1159.29 | |
Built-up area | 1413.27 | 0.81 | 0 | 42,756.48 | 0.81 | 2,381,223.33 | 44,171.37 | |
Transfer-in area | 276,000.21 | 266,729.4 | 3091.86 | 293,189.76 | 135.54 | 460,136.25 | 1,299,283.02 | |
2010 | ||||||||
2005 | Cropland | 18,249,230.34 | 222,782.67 | 5012.64 | 178,225.29 | 21.87 | 508,635.54 | 914,678.01 |
Forest | 191,744.28 | 10,698,219.9 | 168.57 | 182.79 | 0 | 11,997.45 | 204,093.09 | |
Grassland | 2433.6 | 596.61 | 11,168.46 | 81.36 | 177.66 | 1262.16 | 4551.39 | |
Water | 148,982.49 | 1795.14 | 139.77 | 2,204,361.27 | 138.78 | 49,837.14 | 200,893.32 | |
Barren land | 66.96 | 0 | 28.8 | 132.84 | 338.22 | 389.43 | 618.03 | |
Built-up area | 789.84 | 4.05 | 0.36 | 31,026.78 | 0.18 | 2,809,538.37 | 31,821.21 | |
Transfer-in area | 344,017.17 | 225,178.47 | 5350.14 | 209,649.06 | 338.49 | 572,121.72 | 1,356,655.05 | |
2015 | ||||||||
2010 | Cropland | 17,733,922.65 | 166,901.67 | 515.88 | 84,959.73 | 1.89 | 317,960.1 | 570,339.27 |
Forest | 273,837.33 | 10,338,709.95 | 104.85 | 122.94 | 0 | 5886.63 | 279,951.75 | |
Grassland | 4490.01 | 971.91 | 4446.18 | 27.27 | 69.21 | 734.94 | 6293.34 | |
Water | 234,345.96 | 198.36 | 6.48 | 2,109,282.57 | 137.16 | 37,504.62 | 272,192.58 | |
Barren land | 62.55 | 0.09 | 10.98 | 23.22 | 215.91 | 161.73 | 258.57 | |
Built-up area | 446.85 | 0.81 | 0.18 | 14,975.64 | 0.54 | 3,998,474.82 | 15,424.02 | |
Transfer-in area | 513,182.7 | 168,072.84 | 638.37 | 100,108.8 | 208.8 | 362,248.02 | 1,144,459.53 | |
2020 | ||||||||
2015 | Cropland | 17,733,922.65 | 166,901.67 | 515.88 | 84,959.73 | 1.89 | 317,960.1 | 570,339.27 |
Forest | 273,837.33 | 10,338,709.95 | 104.85 | 122.94 | 0 | 5886.63 | 279,951.75 | |
Grassland | 4490.01 | 971.91 | 4446.18 | 27.27 | 69.21 | 734.94 | 6293.34 | |
Water | 234,345.96 | 198.36 | 6.48 | 2,109,282.57 | 137.16 | 37,504.62 | 272,192.58 | |
Barren land | 62.55 | 0.09 | 10.98 | 23.22 | 215.91 | 161.73 | 258.57 | |
Built-up area | 446.85 | 0.81 | 0.18 | 14,975.64 | 0.54 | 3,998,474.82 | 15,424.02 | |
Transfer-in area | 513,182.7 | 168,072.84 | 638.37 | 100,108.8 | 208.8 | 362,248.02 | 1,144,459.53 | |
2020 | ||||||||
2000 | Cropland | 17,327,525.04 | 347,408.64 | 535.50 | 340,071.48 | 122.85 | 1,809,464.13 | 2,497,602.60 |
Forest | 586,735.38 | 10,152,806.04 | 925.38 | 3231.81 | 20.52 | 57,706.56 | 648,619.65 | |
Grassland | 9195.21 | 2854.35 | 3593.97 | 337.59 | 48.51 | 2387.70 | 14,823.36 | |
Water | 302,284.89 | 3795.12 | 18.90 | 1,810,406.52 | 140,660.82 | 280,618.20 | 727,377.93 | |
Barren land | 365.67 | 0.27 | 8.28 | 742.77 | 8207.10 | 4898.70 | 6015.69 | |
Built-up area | 20,999.16 | 69.84 | 2.52 | 54,601.20 | 63.18 | 799.83 | 75,735.90 | |
Transfer-in area | 919,580.31 | 354,128.22 | 1490.58 | 398,984.85 | 140,915.88 | 2,155,075.29 | 3,970,175.13 |
Year | LUCEs/Carbon Sequestration (t) | Net CEs | |||||||
---|---|---|---|---|---|---|---|---|---|
Carbon Source | Built-Up Area | Cropland | Carbon Sink | Forest | Grassland | Water | Barren Land | ||
2000 | 270,122,768.2 | 261,756,564.3 | 8,366,203.9 | −7,527,577.8 | −6,956,118.1 | −386.8 | −571,063.0 | −9.9 | 262,595,190.4 |
96.903% | 3.097% | 92.41% | 0.005% | 7.586% | 0.000% | ||||
2005 | 467,593,483.8 | 459,506,314.5 | 8,087,169.3 | −7,629,953.9 | −7,021,089.6 | −330.1 | −608,529.4 | −4.8 | 459,963,529.9 |
98.270% | 1.730% | 92.02% | 0.004% | 7.976% | 0.000% | ||||
2010 | 682,774,771.4 | 674,928,420.7 | 7,846,350.7 | −7,645,764.5 | −7,034,669.5 | −346.9 | −610,744.7 | 3.4 | 675,129,006.9 |
98.851% | 1.149% | 92.01% | 0.005% | 7.988% | 0.000% | ||||
2015 | 804,606,581.1 | 796,882,181.4 | 7,724,399.7 | −7,441,159.6 | −6,838,418.3 | −225.5 | −602,513.4 | −2.4 | 797,165,421.5 |
99.040% | 0.960% | 91.90% | 0.003% | 8.097% | 0.000% | ||||
2020 | 910,036,908.1 | 902,336,628.5 | 7,700,279.6 | −7,325,452.8 | −6,766,367.9 | −106.8 | −558,976.1 | −2.1 | 902,711,455.3 |
99.154% | 0.846% | 92.37% | 0.001% | 7.631% | 0.000% |
Coefficient a | |||||||
---|---|---|---|---|---|---|---|
Model | Unstandardized Coefficient | Standardized Coefficient | t | Significance | Collinearity Statistics | ||
B | Standard Error | Beta | Tolerance | VIF | |||
(Constant) | −7.257 | 5.030 | −1.443 | 0.171 | |||
lnP | 1.853 | 0.506 | 0.263 | 3.662 | 0.003 | 0.003 | 373.481 |
lnA | 0.692 | 0.081 | 1.102 | 8.530 | 0.000 | 0.001 | 1207.704 |
lnT | 0.615 | 0.090 | 0.621 | 6.827 | 0.000 | 0.002 | 599.258 |
lnEs | 0.355 | 0.071 | 0.076 | 5.015 | 0.000 | 0.061 | 16.499 |
lnIs | 0.456 | 0.142 | 0.100 | 3.269 | 0.00 6 | 0.015 | 67.377 |
lnU | 0.921 | 0.201 | 0.367 | 4.578 | 0.000 | 0.002 | 465.864 |
K = 0.02 | Unstandardized Coefficient | Standardized Coefficient | t | P | R2 | Adjusted R2 | F | |
---|---|---|---|---|---|---|---|---|
B | Standard Error | Beta | ||||||
lne | −7.055 | 1.457 | - | −4.841 | 0.000 ** | 0.998 | 0.997 | 1312.596 (0.000 ***) |
lnP | 1.932 | 0.147 | 0.274 | 13.171 | 0.000 ** | |||
lnA | 0.241 | 0.008 | 0.384 | 28.429 | 0.000 ** | |||
lnT | −0.141 | 0.021 | −0.143 | −6.700 | 0.000 ** | |||
lnEs | 0.043 | 0.123 | 0.009 | 0.350 | 0.731 | |||
lnIs | 1.440 | 0.107 | 0.309 | 13.460 | 0.000 ** | |||
lnU | 1.045 | 0.053 | 0.417 | 19.599 | 0.000 ** |
Year | Estimated Value (10,000 t) | Actual Value (10,000 t) | Error (10,000 t) | Error Rate |
---|---|---|---|---|
2000 | 26,708.27682 | 26,259.51904 | 448.757783 | 1.71% |
2001 | 28,049.94751 | 27,552.99544 | 496.9520668 | 1.80% |
2002 | 30,388.69287 | 30,325.19704 | 63.49583408 | 0.21% |
2003 | 35,207.96022 | 34,725.96306 | 481.9971626 | 1.39% |
2004 | 39,987.67096 | 39,698.80429 | 288.8666693 | 0.73% |
2005 | 44,608.30471 | 45,996.35299 | −1388.048287 | 3.02% |
2006 | 49,190.87637 | 50,234.03399 | −1043.157616 | 2.08% |
2007 | 53,857.97537 | 55,305.93724 | −1447.961871 | 2.62% |
2008 | 57,855.52602 | 58,118.93629 | −263.4102744 | 0.45% |
2009 | 58,969.61993 | 60,949.58582 | −1979.96589 | 3.25% |
2010 | 67,178.07468 | 67,512.90069 | −334.8260093 | 0.50% |
2011 | 73,138.92969 | 73,735.02692 | −596.097226 | 0.81% |
2012 | 75,047.18413 | 75,403.41951 | −356.2353785 | 0.47% |
2013 | 77,245.17226 | 78,938.74086 | −1693.568593 | 2.15% |
2014 | 80,152.61260 | 78,487.29450 | 1665.3181040 | 2.12% |
2015 | 80,109.09632 | 79,716.54215 | 392.5541658 | 0.49% |
2016 | 80,425.21205 | 82,763.35098 | −2338.13893 | 2.83% |
2017 | 84,981.86767 | 85,339.10985 | −357.2421739 | 0.42% |
2018 | 88,627.34692 | 87,183.61181 | 1443.735117 | 1.66% |
2019 | 88,835.10881 | 88,758.82526 | 76.28355544 | 0.09% |
2020 | 88,862.12205 | 90,271.14553 | −1409.023474 | 1.56% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, Y.; Li, X. Insight into Carbon Emissions in Economically Developed Regions Based on Land Use Transitions: A Case Study of the Yangtze River Delta, China. Land 2024, 13, 1968. https://doi.org/10.3390/land13111968
Li Y, Zhang Y, Li X. Insight into Carbon Emissions in Economically Developed Regions Based on Land Use Transitions: A Case Study of the Yangtze River Delta, China. Land. 2024; 13(11):1968. https://doi.org/10.3390/land13111968
Chicago/Turabian StyleLi, Yu, Yanjun Zhang, and Xiaoyan Li. 2024. "Insight into Carbon Emissions in Economically Developed Regions Based on Land Use Transitions: A Case Study of the Yangtze River Delta, China" Land 13, no. 11: 1968. https://doi.org/10.3390/land13111968
APA StyleLi, Y., Zhang, Y., & Li, X. (2024). Insight into Carbon Emissions in Economically Developed Regions Based on Land Use Transitions: A Case Study of the Yangtze River Delta, China. Land, 13(11), 1968. https://doi.org/10.3390/land13111968