Comparison of Electromagnetic Induction and Electrical Resistivity Tomography in Assessing Soil Salinity: Insights from Four Plots with Distinct Soil Salinity Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Electromagnetic Induction
2.3. Electrical Resistivity Tomography
2.4. Soil Salinity
2.5. Agreement Analysis
3. Results and Discussion
3.1. Soil Electrical Conductivity Obtained from EMI vs. ERT
3.2. Soil Salinity Obtained from EMI vs. ERT
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corwin, D.L.; Scudiero, E. Chapter One—Review of Soil Salinity Assessment for Agriculture across Multiple Scales Using Proximal and/or Remote Sensors. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 158, pp. 1–130. [Google Scholar]
- Corwin, D.L.; Lesch, S.M. Apparent Soil Electrical Conductivity Measurements in Agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Corwin, D.L.; Lesch, S.M. Geospatial Measurements of Soil Electrical Conductivity to Assess Soil Salinity and Diffuse Salt Loading from Irrigation. In Assessment of Non-Point Source Pollution in the Vadose Zone; American Geophysical Union (AGU): Washington, DC, USA, 1999; pp. 197–215. ISBN 9781118664698. [Google Scholar]
- Paz, M.C.; Farzamian, M.; Paz, A.M.; Castanheira, N.L.; Gonçalves, M.C.; Santos, F.M. Assessing Soil Salinity Dynamics Using Time-Lapse Electromagnetic Conductivity Imaging. SOIL 2020, 6, 499–511. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Germer, J.; Duong, V.N.; Asch, F. Soil Resistivity Measurements to Evaluate Subsoil Salinity in Rice Production Systems in the Vietnam Mekong Delta. Near Surf. Geophys. 2023, 21, 288–299. [Google Scholar] [CrossRef]
- Innocenti, A.; Pazzi, V.; Napoli, M.; Fanti, R.; Orlandini, S. Application of Electrical Resistivity Tomography (ERT) to Study to Soil Water and Salt Movement under Drip Irrigation in a Saline Soil Cultivated with Melon. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 3–8 April 2022; pp. EGU22–4469. [Google Scholar]
- Paz, A.M.; Castanheira, N.; Farzamian, M.; Paz, M.C.; Gonçalves, M.C.; Monteiro Santos, F.A.; Triantafilis, J. Prediction of Soil Salinity and Sodicity Using Electromagnetic Conductivity Imaging. Geoderma 2020, 361, 114086. [Google Scholar] [CrossRef]
- da Silva, L.D.C.M.; Peixoto, D.S.; Azevedo, R.P.; Avanzi, J.C.; Junior, M.D.S.D.; Vanella, D.; Consoli, S.; Acuña-Guzman, S.F.; Borghi, E.; de Resende, Á.V.; et al. Assessment of Soil Water Content Variability Using Electrical Resistivity Imaging in an Oxisol under Conservation Cropping Systems. Geoderma Reg. 2023, 33, e00624. [Google Scholar] [CrossRef]
- Beff, L.; G ¨ Unther, T.; Vandoorne, B.; Couvreur, V.; Javaux, M. Three-Dimensional Monitoring of Soil Water Content in a Maize Field Using Electrical Resistivity Tomography. Hydrol. Earth Syst. Sci 2013, 17, 595–609. [Google Scholar] [CrossRef]
- Guan, Y.; Grote, K.; Schott, J.; Leverett, K. Prediction of Soil Water Content and Electrical Conductivity Using Random Forest Methods with UAV Multispectral and Ground-Coupled Geophysical Data. Remote Sens. 2022, 14, 1023. [Google Scholar] [CrossRef]
- Ratshiedana, P.E.; Abd Elbasit, M.A.M.; Adam, E.; Chirima, J.G.; Liu, G.; Economon, E.B. Determination of Soil Electrical Conductivity and Moisture on Different Soil Layers Using Electromagnetic Techniques in Irrigated Arid Environments in South Africa. Water 2023, 15, 1911. [Google Scholar] [CrossRef]
- de Jong, S.M.; Heijenk, R.A.; Nijland, W.; van der Meijde, M. Monitoring Soil Moisture Dynamics Using Electrical Resistivity Tomography under Homogeneous Field Conditions. Sensors 2020, 20, 5313. [Google Scholar] [CrossRef]
- Acosta, J.A.; Gabarrón, M.; Martínez-Segura, M.; Martínez-Martínez, S.; Faz, Á.; Pérez-Pastor, A.; Gómez-López, M.D.; Zornoza, R. Soil Water Content Prediction Using Electrical Resistivity Tomography (ERT) in Mediterranean Tree Orchard Soils. Sensors 2022, 22, 1365. [Google Scholar] [CrossRef]
- Shanahan, P.W.; Binley, A.; Whalley, W.R.; Watts, C.W. The Use of Electromagnetic Induction to Monitor Changes in Soil Moisture Profiles beneath Different Wheat Genotypes. Soil Sci. Soc. Am. J. 2015, 79, 459–466. [Google Scholar] [CrossRef]
- Whalley, W.R.; Binley, A.; Watts, C.W.; Shanahan, P.; Dodd, I.C.; Ober, E.S.; Ashton, R.W.; Webster, C.P.; White, R.P.; Hawkesford, M.J. Methods to Estimate Changes in Soil Water for Phenotyping Root Activity in the Field. Plant Soil 2017, 415, 407–422. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Zhao, D.; Li, N.; Zare, E.; Triantafilis, J. Digital Regolith Mapping of Clay across the Ashley Irrigation Area Using Electromagnetic Induction Data and Inversion Modelling. Geoderma 2019, 346, 18–29. [Google Scholar] [CrossRef]
- Triantafilis, J.; Lesch, S.M. Mapping Clay Content Variation Using Electromagnetic Induction Techniques. Comput. Electron. Agric. 2005, 46, 203–237. [Google Scholar] [CrossRef]
- Huang, J.; Lark, R.M.; Robinson, D.A.; Lebron, I.; Keith, A.M.; Rawlins, B.; Tye, A.; Kuras, O.; Raines, M.; Triantafilis, J. Scope to Predict Soil Properties at Within-Field Scale from Small Samples Using Proximally Sensed γ-Ray Spectrometer and EM Induction Data. Geoderma 2014, 232–234, 69–80. [Google Scholar] [CrossRef]
- Zare, E.; Li, N.; Khongnawang, T.; Farzamian, M.; Triantafilis, J. Identifying Potential Leakage Zones in an Irrigation Supply Channel by Mapping Soil Properties Using Electromagnetic Induction, Inversion Modelling and a Support Vector Machine. Soil Syst. 2020, 4, 25. [Google Scholar] [CrossRef]
- Triantafilis, J.; Lesch, S.M.; La Lau, K.; Buchanan, S.M. Field Level Digital Soil Mapping of Cation Exchange Capacity Using Electromagnetic Induction and a Hierarchical Spatial Regression Model. Soil Res. 2009, 47, 651–663. [Google Scholar] [CrossRef]
- Koganti, T.; Narjary, B.; Zare, E.; Pathan, A.L.; Huang, J.; Triantafilis, J. Quantitative Mapping of Soil Salinity Using the DUALEM-21S Instrument and EM Inversion Software. Land Degrad. Dev. 2018, 29, 1768–1781. [Google Scholar] [CrossRef]
- Zhao, D.; Li, N.; Zare, E.; Wang, J.; Triantafilis, J. Mapping Cation Exchange Capacity Using a Quasi-3d Joint Inversion of EM38 and EM31 Data. Soil Tillage Res. 2020, 200, 104618. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Zhao, D.; Sefton, M.; Triantafilis, J. Mapping Cation Exchange Capacity (CEC) Across Sugarcane Fields with Different Comparisons by Using DUALEM Data. J. Environ. Eng. Geophys. 2023, 27, 191–205. [Google Scholar] [CrossRef]
- Huang, J.; Pedrera-Parrilla, A.; Vanderlinden, K.; Taguas, E.V.; Gómez, J.A.; Triantafilis, J. Potential to Map Depth-Specific Soil Organic Matter Content across an Olive Grove Using Quasi-2d and Quasi-3d Inversion of DUALEM-21 Data. CATENA 2017, 152, 207–217. [Google Scholar] [CrossRef]
- Jupp, D.L.B.; Vozoff, K. Stable Iterative Methods for the Inversion of Geophysical Data. Geophys. J. R. Astron. Soc. 1975, 42, 957–976. [Google Scholar] [CrossRef]
- Monteiro Santos, F.A. 1-D Laterally Constrained Inversion of EM34 Profiling Data. J. Appl. Geophys. 2004, 56, 123–134. [Google Scholar] [CrossRef]
- Moghadas, D. Probabilistic Inversion of Multiconfiguration Electromagnetic Induction Data Using Dimensionality Reduction Technique: A Numerical Study. Vadose Zone J. 2019, 18, 180183. [Google Scholar] [CrossRef]
- Narciso, J.; Bobe, C.; Azevedo, L.; Van De Vijver, E. A Comparison between Kalman Ensemble Generator and Geostatistical Frequency-Domain Electromagnetic Inversion: The Impacts on near-Surface Characterization. Geophysics 2022, 87, E335–E346. [Google Scholar] [CrossRef]
- EMTOMO. Manual for EM4Soil: A Program for 1-D Laterally Constrained Inversion of EM Data; EMTOMO: Lisbon, Portugal, 2018. [Google Scholar]
- McLachlan, P.; Blanchy, G.; Binley, A. EMagPy: Open-Source Standalone Software for Processing, Forward Modeling and Inversion of Electromagnetic Induction Data. Comput. Geosci. 2021, 146, 104561.EM. [Google Scholar] [CrossRef]
- Loke, M.H. Rapid 2D Resistivity Forward Modeling Using the Finite Difference and Finite Element Methods. RES2DMOD Ver 2002, 3, 1996–2002. [Google Scholar]
- Rücker, C.; Günther, T.; Wagner, F.M. PyGIMLi: An Open-Source Library for Modelling and Inversion in Geophysics. Comput. Geosci. 2017, 109, 106–123. [Google Scholar] [CrossRef]
- Blanchy, G.; Saneiyan, S.; Boyd, J.; McLachlan, P.; Binley, A. ResIPy, an Intuitive Open Source Software for Complex Geoelectrical Inversion/Modeling. Comput. Geosci. 2020, 137, 104423. [Google Scholar] [CrossRef]
- Araújo, O.S.; Picotti, S.; Francese, R.G.; Bocchia, F.; Santos, F.M.; Giorgi, M.; Tessarollo, A. Frequency Domain Electromagnetic Calibration for Improved Detection of Sand Intrusions in River Embankments. Lead. Edge 2023, 42, 615–624. [Google Scholar] [CrossRef]
- FAO. Global Map of Salt-Affected Soils. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/ar/ (accessed on 21 February 2024).
- Stavi, I.; Thevs, N.; Priori, S. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Front. Environ. Sci. 2021, 9, 330. [Google Scholar] [CrossRef]
- Paz, A.M.; Amezketa, E.; Canfora, L.; Castanheira, N.; Falsone, G.; Gonçalves, M.C.; Gould, I.; Hristov, B.; Mastrorilli, M.; Ramos, T.; et al. Salt-Affected Soils: Field-Scale Strategies for Prevention, Mitigation, and Adaptation to Salt Accumulation. Ital. J. Agron. 2023, 18, 2166. [Google Scholar] [CrossRef]
- Farzamian, M.; Paz, M.C.; Paz, A.M.; Castanheira, N.L.; Gonçalves, M.C.; Monteiro Santos, F.A.; Triantafilis, J. Mapping Soil Salinity Using Electromagnetic Conductivity Imaging—A Comparison of Regional and Location-Specific Calibrations. L. Degrad. Dev. 2019, 30, 1393–1406. [Google Scholar] [CrossRef]
- Khongnawang, T.; Zare, E.; Srihabun, P.; Khunthong, I.; Triantafilis, J. Digital Soil Mapping of Soil Salinity Using EM38 and Quasi-3d Modelling Software (EM4Soil). Soil Use Manag. 2022, 38, 277–291. [Google Scholar] [CrossRef]
- Lavoué, F.; van der Krak, J.; Rings, J.; André, F.; Moghadas, D.; Huisman, J.A.; Lambot, S.; Weiherrnüller, L.; Vanderborght, J.; Vereecken, H. Electromagnetic Induction Calibration Using Apparent Electrical Conductivity Modelling Based on Electrical Resistivity Tomography. Near Surf. Geophys. 2010, 8, 553–561. [Google Scholar] [CrossRef]
- Minsley, B.J.; Smith, B.D.; Hammack, R.; Sams, J.I.; Veloski, G. Calibration and Filtering Strategies for Frequency Domain Electromagnetic Data. J. Appl. Geophys. 2012, 80, 56–66. [Google Scholar] [CrossRef]
- Moghadas, D.; Jadoon, K.Z.; McCabe, M.F. Spatiotemporal Monitoring of Soil Water Content Profiles in an Irrigated Field Using Probabilistic Inversion of Time-Lapse EMI Data. Adv. Water Resour. 2017, 110, 238–248. [Google Scholar] [CrossRef]
- von Hebel, C.; Rudolph, S.; Mester, A.; Huisman, J.A.; Kumbhar, P.; Vereecken, H.; van der Kruk, J. Three-Dimensional Imaging of Subsurface Structural Patterns Using Quantitative Large-Scale Multiconfiguration Electromagnetic Induction Data. Water Resour. Res. 2014, 50, 2732–2748. [Google Scholar] [CrossRef]
- Von Hebel, C.; Van Der Kruk, J.; Huisman, J.A.; Mester, A.; Altdorff, D.; Endres, A.L.; Zimmermann, E.; Garré, S.; Vereecken, H. Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data. Sensors 2019, 19, 4753. [Google Scholar] [CrossRef] [PubMed]
- Dragonetti, G.; Comegna, A.; Ajeel, A.; Deidda, G.P.; Lamaddalena, N.; Rodriguez, G.; Vignoli, G.; Coppola, A. Calibrating Electromagnetic Induction Conductivities with Time-Domain Reflectometry Measurements. Hydrol. Earth Syst. Sci. 2018, 22, 1509–1523. [Google Scholar] [CrossRef]
- Dragonetti, G.; Farzamian, M.; Basile, A.; Monteiro Santos, F.; Coppola, A. In Situ Estimation of Soil Hydraulic and Hydrodispersive Properties by Inversion of Electromagnetic Induction Measurements and Soil Hydrological Modeling. Hydrol. Earth Syst. Sci. 2022, 26, 5119–5136. [Google Scholar] [CrossRef]
- Fischer, G.; Nachtergaele, F.O.; Prieler, S.; Teixeira, E.; Toth, G.; van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones (GAEZ v3.0)-Model Documentation 2012. Available online: https://www.gaez.iiasa.ac.at/docs/GAEZ_Model_Documentation.pdf (accessed on 21 February 2024).
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The Threat of Soil Salinity: A European Scale Review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
- Barrett-Lennard, E.; Bennett, S.; Colmer, T. Standardising Terminology for Describing the Level of Salinity in Soils in Australia. In Proceedings of the 2nd International Salinity Forum. Salinity, Water and Society: Global Issues, Local Action, Adelaide, Australia, 30 March–3 April 2008; Future Farm Industries CRC: Perth, WA, Australia; University of Western Australia: Crawley, WA, Australia, 2008. [Google Scholar]
- Kaufman, A.; Keller, G.V. Frequency and Transient Sounding Methods in Geochemistry and Geophysics, Vol. 16 A, A. Kaufman and G. V. Keller, Elsevier, Amsterdam, 1983 686 pp. £85.55/$144.75. Geophys. J. Int. 1984, 77, 935–937. [Google Scholar] [CrossRef]
- deGroot-Hedlin, C.; Constable, S. Occam’s Inversion to Generate Smooth, Two-dimensional Models from Magnetotelluric Data. Geophysics 1990, 55, 1613–1624. [Google Scholar] [CrossRef]
- Allison, L.E.; Bernstein, L.; Bower, C.A.; Brown, J.W.; Fireman, M.; Hatcher, J.T.; Hayward, H.E.; Pearson, G.A.; Reeve, R.C.; Richards, L.A.; et al. Diagnosis and Improvement of Saline Alkali Soils, Agricultural Handbook; Richards, L.A., Ed.; United States Department of Agriculture: Washington, DC, USA, 1954.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Bland, J.M.; Altman, D.G. Measuring Agreement in Method Comparison Studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Guillemoteau, J.; Sailhac, P.; Boulanger, C.; Trules, J. Inversion of Ground Constant Offset Loop-Loop Electromagnetic Data for a Large Range of Induction Numbers. Geophysics 2015, 80, E11–E21. [Google Scholar] [CrossRef]
- De Smedt, P.; Delefortrie, S.; Wyffels, F. Identifying and Removing Micro-Drift in Ground-Based Electromagnetic Induction Data. J. Appl. Geophys. 2016, 131, 14–22. [Google Scholar] [CrossRef]
- Hanssens, D.; Delefortrie, S.; Bobe, C.; Hermans, T.; De Smedt, P. Improving the Reliability of Soil EC-Mapping: Robust Apparent Electrical Conductivity (RECa) Estimation in Ground-Based Frequency Domain Electromagnetics. Geoderma 2019, 337, 1155–1163. [Google Scholar] [CrossRef]
Unit | Location | Minimum | Maximum | Range | Amount of Data | |
---|---|---|---|---|---|---|
σERT | mS m−1 | 1 | 82.20 | 143.10 | 60.90 | 80 |
2 | 126.70 | 446.20 | 319.50 | 252 | ||
3 | 107.40 | 427.50 | 320.10 | 252 | ||
4 | 356.40 | 1640.00 | 1283.60 | 196 | ||
mECe | dS m−1 | all | 0.75 | 37.10 | 36.75 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paz, M.C.; Castanheira, N.L.; Paz, A.M.; Gonçalves, M.C.; Monteiro Santos, F.; Farzamian, M. Comparison of Electromagnetic Induction and Electrical Resistivity Tomography in Assessing Soil Salinity: Insights from Four Plots with Distinct Soil Salinity Levels. Land 2024, 13, 295. https://doi.org/10.3390/land13030295
Paz MC, Castanheira NL, Paz AM, Gonçalves MC, Monteiro Santos F, Farzamian M. Comparison of Electromagnetic Induction and Electrical Resistivity Tomography in Assessing Soil Salinity: Insights from Four Plots with Distinct Soil Salinity Levels. Land. 2024; 13(3):295. https://doi.org/10.3390/land13030295
Chicago/Turabian StylePaz, Maria Catarina, Nádia Luísa Castanheira, Ana Marta Paz, Maria Conceição Gonçalves, Fernando Monteiro Santos, and Mohammad Farzamian. 2024. "Comparison of Electromagnetic Induction and Electrical Resistivity Tomography in Assessing Soil Salinity: Insights from Four Plots with Distinct Soil Salinity Levels" Land 13, no. 3: 295. https://doi.org/10.3390/land13030295
APA StylePaz, M. C., Castanheira, N. L., Paz, A. M., Gonçalves, M. C., Monteiro Santos, F., & Farzamian, M. (2024). Comparison of Electromagnetic Induction and Electrical Resistivity Tomography in Assessing Soil Salinity: Insights from Four Plots with Distinct Soil Salinity Levels. Land, 13(3), 295. https://doi.org/10.3390/land13030295