Identifying the Climatic and Anthropogenic Impact on Vegetation Surrounding the Natural Springs of the Arava Valley Using Remote Sensing Methods
Abstract
:1. Introduction
- Do changes in the vegetation cover near natural springs in the Arava Valley correspond to the fluctuations in natural rainfall patterns?
- Can discrepancies between the expected vegetation trends in response to climatic variability be attributed to human activities, such as groundwater extraction or irrigation surplus from agricultural areas?
Our Hypotheses
- Vegetation cover around the springs corresponds with prevailing rainfall trends;
- Water extraction from local aquifers decreases the aquifer’s water table, negatively impacting the vegetation cover around the natural springs;
- Surplus water leaching from agricultural plots increases vegetation cover around the natural springs downstream.
2. Methodology
2.1. Study Area
2.1.1. Hydrogeology of the Arava Valley
- The Quaternary aquifers are geographically divided into three units: north, center, and south (Qan/Qac/Qas). Due to complex sedimentary interbedding and high hydraulic connectivity, it is reasonable to consider the Neogene aquifer and the Quaternary aquifers as one hydrogeological aquifer [31]. The Quaternary aquifer is an alluvial aquifer that is constructed from gravel and some finer material of the Dead Sea group of the Pliocene–Quaternary age [32]. The aquifers recharge from transmission loss during flash flood events from the Negev and the Edom Mountains (Figure 1) [24,33,34]. The aquifer’s thickness is unknown as it varies spatially from hundreds to thousands of meters [31,35]. Springs discharge from these aquifers, emerging at exposed fault lines and formation contacts.
- The Senonian aquifer (Sa) of the Negev Highlands extends to the west of the Arava Valley; it is fed by two hydrological sources: flash flood transmission losses from the Negev Highlands via the Senonian formation outcrops, and lateral flow from the neighboring regional aquifers, it is constructed from fractured chert alternating with phosphorite and chalk of the Mount Scopus group of the Upper Cretaceous era [36]. The hydrological watershed of the Senonian aquifer overlaps some of the watersheds of the Quaternary aquifers (Figure 1). About 12 springs are related to this aquifer; they all emerge in the western part of the Arava lowlands, where the aquifer’s structure is confined.
# | Spring Name | Elevation [m] | Meeting the Threshold for Analysis | Country | Aquifer | Sub- Aquifer | Representative Rain Stations | Average Distance between the Cluster of Springs and the Rain Station |
---|---|---|---|---|---|---|---|---|
1 | Ein Zach N | −70 | Yes | Israel | Senonian | Mishash | Mitzpe Ramon Hatzeva * | ~40 km upstream from the springs ~8 km downstream from the springs |
2 | Ein Zach S | −70 | Yes | Israel | ||||
3 | Ein Yahav | −24 | Yes | Israel | ||||
4 | Ein Tamid | −62 | Yes | Israel | ||||
5 | Ein Mashak | −63 | Yes | Israel | ||||
6 | Ein Rachel | 21 | Yes | Israel | ||||
7 | Ein Shachak | −55 | Yes | Israel | ||||
8 | Ein Moa | 39 | No | Israel | ||||
9 | Shabaya Well | 42 | No | Israel | ||||
10 | Ein Erga | −11 | Yes | Israel | ||||
11 | Ein Plutit | −370 | Yes | Israel | Quaternary North | Lisan | Hatzeva Sdom * | ~25 km upstream from the springs ~3 km downstream from the springs |
12 | Sdom 1 | −350 | Yes | Jordan | ||||
13 | Sdom 2 | −350 | Yes | Jordan | ||||
14 | Sdom 3 | −350 | Yes | Jordan | ||||
15 | Sdom 4 | −350 | Yes | Jordan | ||||
16 | Sdom 5 | −350 | Yes | Jordan | ||||
17 | Sdom 6 | −350 | Yes | Jordan | ||||
18 | Sdom 7 | −350 | Yes | Jordan | ||||
19 | Ein Tamar | −370 | No | Israel | ||||
20 | Fish ponds N | −370 | No | Israel | ||||
21 | Fish ponds S | −370 | No | Israel | ||||
22 | Ein Gidron West | −183 | Yes | Israel | Quaternary Center | Hatzeva | Sde Boker Hatzeva * | ~45 upstream from the springs ~12 km downstream from the springs |
23 | Ein Gidron East | −154 | Yes | Israel | ||||
24 | Ein Layka | −170 | Yes | Israel | ||||
25 | Ein Yamluch (Sayf) | −109 | Yes | Israel | ||||
26 | Ein Amatzia | −196 | Yes | Israel | Samara | |||
27 | Ein Ofarim | −176 | Yes | Israel | ||||
28 | Ein Hufira | −124 | Yes | Israel | ||||
29 | Ein Marzeva | −121 | Yes | Israel | ||||
30 | Ein Yotveta | 67 | Yes | Israel | Quaternary South | Samara | Yotveta * | ~2 km downstream from the springs |
31 | Ein Evrona | 51 | No | Israel |
2.1.2. Water Dynamics and Human Settlements
2.2. Datasets and Preprocessing
2.2.1. Rainfall Dataset
Computing the Standardized Precipitation Index (SPI)
Relating the Rain Stations to Springs
2.2.2. Identifying the Springs’ Location and Vegetation Coverage
- We used historical Corona satellite imagery (3 m) taken on 7 May 1968 [48] to delineate the area of spring-dependent vegetation around each spring. Although the Corona satellite used a panchromatic sensor, the high contrast in the albedo between the bright soil and the vegetation cover of springs in the desert environment creates a distinguishable feature that can be mapped [49] (Figure 2a,c). The imagery was taken before water was extracted from Arava aquifers; thus, the conditions are considered to have been relatively natural.
- We evaluated the extent of vegetation cover in May 2022 (late spring), using the NDVI images calculated from Planet satellites (3 m resolution) [50] (Figure 2b,d). Comparing the recent and historical imagery can reveal the anthropogenic effect on the local water cycle as reflected by changes in vegetation cover.
- Additionally, we incorporated data on the extent of vegetation cover surrounding each spring between 2009 and 2010, as reported by [24].
2.2.3. Estimating Yearly Perennial Vegetation Activity
Spring Vegetation Activity Time Series Grouped According to Aquifer
Threshold for Analysis of the Vegetation Cover
- Land use mapping: we excluded springs whose current land use definition was not defined as “natural” according to ESRI 2020 land use maps (https://livingatlas.arcgis.com/landcover/, accessed on 10 March 2024.) (i.e., built up and agricultural areas).
- NDVI threshold: Given our limited ability to identify vegetation around the spring, we set a threshold limit of NDVI > 0.2 using the first three years of the Landsat time series (1984–1987). Our spatial analysis indicated that natural vegetation within ephemeral channels during May and June does not exceed an NDVI of 0.2. Therefore, pixels with NDVI values higher than this threshold are most likely supported by underground water sources. We chose the first three years of the time series as they reflect natural vegetation conditions.
- Altogether, we mapped 31 springs; 25 of them met both of our requirements and were statistically analyzed.
2.2.4. Aquifer Water Extraction Dataset
2.3. Data Analysis
2.3.1. Identifying Wet and Dry Sub-Periods
2.3.2. Evaluating the Response of the Spring Vegetation to the Wet and Dry Sub-Periods
2.3.3. Evaluating the Anthropogenic Effect on the Springs’ Perennial Vegetation
Water Extraction from Each Aquifer (per Year)
- Correlations between annual water extraction from the aquifers and the yearly values of the cover around the springs were evaluated using Spearman’s correlation test. We considered p-values below 0.05 to be statistically significant.
- We assumed that water extraction from the aquifer negatively impacts vegetation cover. Positive correlations, indicating that increased water extraction led to increased vegetation cover, were disregarded, as they likely represent statistical artifacts.
Effect of the Agricultural Plots Upstream of the Springs
- We calculated the distance between each spring to the closest agricultural field using the ESRI 2020 land use map [57].
- We assumed that the springs that benefit from irrigation seepage share a hydrological connection with the plot. A spring that is downstream of an agricultural plot, not farther than 20 km, was considered to be connected to the plot. Springs that did not meet this criterion were omitted.
- To estimate the annual area of cultivated plots, we generated a time series using the yearly minimum of the NDVI from Landsat imagery (similar to the production of the perennial vegetation time series) and created a yearly mosaic of the minimum NDVI values, i.e., .
- At the end of the summer, the NDVI values of the natural vegetation are very low, whereas irrigated areas maintain significantly higher NDVI values, enabling to distinguish between natural and irrigated vegetation.
- We set a threshold limit of > 0.2 to differentiate between irrigated and non-irrigated areas and calculated the size of agricultural areas (pixels exceeding this threshold).
- We used Spearman’s correlation test (at p < 0.05) to assess the relationship between the values of the springs throughout the time series and the size of each agricultural area for each year.
3. Results
3.1. Wet and Dry Sub-Periods in the Arava Valley
3.2. Vegetation Cover Trends around the Natural Springs
3.2.1. Springs of the Senonian Aquifer
Correlation between the Yearly Water Extraction and the Vegetation Cover
3.2.2. Springs of the Quaternary Aquifer (Center)
Correlation between the Agricultural Area and the Perennial Vegetation Cover
3.2.3. The Quaternary Aquifer (South)
3.2.4. Springs of the Quaternary Aquifer (North)
4. Discussion
4.1. Identifying Climatic Sub-Periods in the Arava Valley
4.2. The Response of the Springs’ Vegetation to the Climatic Sub-Periods
Response of Vegetation Cover to the Prevailing Rainfall Conditions and the Anthropogenic Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Although the Arava Valley also receives water from the Jordanian side, we do not have access to these data and thus had to ignore its possible contribution. |
References
- Morin, E. To Know What We Cannot Know: Global Mapping of Minimal Detectable Absolute Trends in Annual Precipitation: Minimal Detectable Precipitation Trends. Water Resour. Res. 2011, 47, 9. [Google Scholar] [CrossRef]
- Spinoni, J.; Micale, F.; Carrao, H.; Naumann, G.; Barbosa, P.; Vogt, J. Global and Continental Changes of Arid Areas Using the FAO Aridity Index over the Periods 1951–1980 and 1981–2010; EGU General Assembly: Vienna, Austria, 2013. [Google Scholar]
- Bogan, M.T.; Noriega-Felix, N.; Vidal-Aguilar, S.L.; Findley, L.T.; Lytle, D.A.; Gutiérrez-Ruacho, O.G.; Alvarado-Castro, J.A.; Varela-Romero, A. Biogeography and Conservation of Aquatic Fauna in Spring-Fed Tropical Canyons of the Southern Sonoran Desert, Mexico. Biodivers. Conserv. 2014, 23, 2705–2748. [Google Scholar] [CrossRef]
- Davis, J.A.; Kerezsy, A.; Nicol, S. Springs: Conserving Perennial Water Is Critical in Arid Landscapes. Biol. Conserv. 2017, 211, 30–35. [Google Scholar] [CrossRef]
- Stevens, L.E.; Ally, A.A.; Voldoire, O. The Ecological Integrity of Spring Ecosystems: A Global Review; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1016, pp. 00111–00112. [Google Scholar]
- Stevens, L.E. The Springs Biome, with an Emphasis on Arid Regions. In Encyclopedia of the World’s Biomes; Goldstein, M.I., DellaSala, D.A., Eds.; Elsevier: Oxford, UK, 2020; pp. 354–370. ISBN 978-0-12-816097-8. [Google Scholar]
- Cartwright, J.M.; Dwire, K.A.; Freed, Z.; Hammer, S.J.; McLaughlin, B.; Misztal, L.W.; Schenk, E.R.; Spence, J.R.; Springer, A.E.; Stevens, L.E. Oases of the Future? Springs as Potential Hydrologic Refugia in Drying Climates. Front. Ecol. Environ. 2020, 18, 245–253. [Google Scholar] [CrossRef]
- Hunter, M.L. Conserving Small Natural Features with Large Ecological Roles: An Introduction and Definition. Biol. Conserv. 2017, 211, 1–2. [Google Scholar] [CrossRef]
- Ramsar Convention on Wetlands. Ramsar Convention on Wetlands, State of the World’s Wetlands and Their Services to People; Ramsar Convention Secretariat: Gland, Switzerland, 2018; p. 88. [Google Scholar]
- Wu, Q.; Bi, X.; Grogan, K.A.; Borisova, T. Valuing the Recreation Benefits of Natural Springs in Florida. Water 2018, 10, 1379. [Google Scholar] [CrossRef]
- Abdullah, R.; Mahmuda, D.; Malik, E.; Pratiwi, E.T.; Azaluddin; Dja’wa, A.; Abdullah, L.O.D.; Jusni; Betaubun, K. Economic Value Analysis of the Use of Springs for Household Consumption Needs. IOP Conf. Ser. Earth Environ. Sci. 2019, 343, 012135. [Google Scholar] [CrossRef]
- Klempe, H. The Hydrogeological and Cultural Background for Two Sacred Springs, Bø, Telemark County, Norway. Quat. Int. 2015, 368, 31–42. [Google Scholar] [CrossRef]
- Biggs, J.; von Fumetti, S.; Kelly-Quinn, M. The Importance of Small Waterbodies for Biodiversity and Ecosystem Services: Implications for Policy Makers. Hydrobiologia 2017, 793, 3–39. [Google Scholar] [CrossRef]
- Danielopol, D.L.; Griebler, C.; Gunatilaka, A.; Notenboom, J. Present State and Future Prospects for Groundwater Ecosystems. Environ. Conserv. 2003, 30, 104–130. [Google Scholar] [CrossRef]
- Luo, Q.; Yang, Y.; Qian, J.; Wang, X.; Chang, X.; Ma, L.; Li, F.; Wu, J. Spring Protection and Sustainable Management of Groundwater Resources in a Spring Field. J. Hydrol. 2020, 582, 124498. [Google Scholar] [CrossRef]
- Parker, S.S.; Zdon, A.; Christian, W.T.; Cohen, B.S.; Palacios Mejia, M.; Fraga, N.S.; Curd, E.E.; Edalati, K.; Renshaw, M.A. Conservation of Mojave Desert Springs and Associated Biota: Status, Threats, and Policy Opportunities. Biodivers. Conserv. 2021, 30, 311–327. [Google Scholar] [CrossRef]
- Ponder, W.F. Mound Springs of the Great Artesian Basin. In Limnology in Australia; De Deckker, P., Williams, W.D., Eds.; Monographiae Biologicae; Springer: Dordrecht, The Netherlands, 1986; pp. 403–420. ISBN 978-94-009-4820-4. [Google Scholar]
- Stevens, L.E.; Meretsky, V.J. Aridland Springs in North America: Ecology and Conservation; University of Arizona Press: Tucson, AZ, USA, 2008; ISBN 978-0-8165-2645-1. [Google Scholar]
- Evenari, M.; Shanan, L.; Tadmor, N.; Aharoni, Y. Ancient Agriculture in the Negev. Science 1961, 133, 979–996. [Google Scholar] [CrossRef] [PubMed]
- Whitcomb, D. The Misr of Ayla: Settlement at al-‘Aqaba in the Early Islamic Period. Byzantine Early Islam. Near East 1994, 2, 155–170. [Google Scholar]
- Yechieli, Y.; Reich, R.; Galili, E.; Tsuk, T.; Dahari, U.; Avni, G.; Sivan, D. Hydrogeology in Archeological Perspective: What Did People in Ancient Times Know About Hydrogeology? In The Many Facets of Israel’s Hydrogeology; Kafri, U., Yechieli, Y., Eds.; Springer Hydrogeology; Springer International Publishing: Cham, Switzerland, 2021; pp. 417–443. ISBN 978-3-030-51148-7. [Google Scholar]
- Chaimi, Y. Ein Yahav—Final Report; Hadashot Arkheologiyot: Excavations and Surveys in Israel; Israel Antiquities Authority: Rockefeller, Israel, 2013. [Google Scholar]
- Meshel, Z. A Fort at Yotvata from the Time of Diocletian. Isr. Explor. J. 1989, 39, 228–238. [Google Scholar]
- Bruins, H.J.; Sherzer, Z.; Ginat, H.; Batarseh, S. Degradation of Springs in the Arava Valley: Anthropogenic and Climatic Factors: Degradation of Springs in the Arava Valley. Land Degrad. Develop. 2012, 23, 365–383. [Google Scholar] [CrossRef]
- Gutman, Y. The Center Arava Region Updating the Hydrological Situation and Recommendations for Further Development of Groundwater Sources; Mekorot-National Water Company: Lincoln, NE, USA, 2020; p. 88. [Google Scholar]
- Gutman, Y. Hydrological Service Report—Analysis of the Negev and Arava Basins; Israeli Hydrological Service: Jerusalem, Israel, 2013; p. 31. [Google Scholar]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An Extended AVHRR 8-km NDVI Dataset Compatible with MODIS and SPOT Vegetation NDVI Data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Groner, E.; Babad, A.; Berda Swiderski, N.; Shachak, M. Toward an Extreme World: The Hyper-Arid Ecosystem as a Natural Model. Ecosphere 2023, 14, e4586. [Google Scholar] [CrossRef]
- Kahana, R.; Ziv, B.; Enzel, Y.; Dayan, U. Synoptic Climatology of Major Floods in the Negev Desert, Israel. Int. J. Climatol. 2002, 22, 867–882. [Google Scholar] [CrossRef]
- Saaroni, H.; Halfon, N.; Ziv, B.; Alpert, P.; Kutiel, H. Links between the rainfall regime in Israel and location and intensity of Cyprus lows. Int. J. Climatol. 2010, 30, 1014–1025. [Google Scholar] [CrossRef]
- Gutman, Y.; Burg, A.; Lifshitz, S.; Zukerman, H. Hydrological Model for Estimation of Water Potential in the Arava Aquifers; Tahal Company: Amsterdam, The Netherlands, 2009; p. 52. [Google Scholar]
- Yechieli, Y.; Starinsky, A.; Rosenthal, E. Evolution of Brackish Groundater in a Typical Arid Region: Northern Arava Rift Valley, Southern Israel. Appl. Geochem. 1992, 7, 361–374. [Google Scholar] [CrossRef]
- Rosenthal, E.; Adar, E.; Issar, A.S.; Batelaan, O. Definition of Groundwater Flow Patterns by Environmental Tracers in the Multiple Aquifer System of Southern Arava Valley, Israel. J. Hydrol. 1990, 117, 339–368. [Google Scholar] [CrossRef]
- Shentsis, I.; Rosenthal, E. Recharge of Aquifers by Flood Events in an Arid Region. Hydrol. Process. 2003, 17, 695–712. [Google Scholar] [CrossRef]
- Yechieli, Y.; Bein, A.; Burg, A.; Yarom, I. The Impact of Flash Flood Interception on the Arava Shallow Groundwater: Characterization of the Interrelationships in the Natural and Disturbed Systems; Report TR-GSI/11/2001; Israel Geological Survey: Jerusalem, Israel, 2001; p. 15. (In Hebrew) [Google Scholar]
- Burg, A.; Zilberbrand, M.; Yechieli, Y. Radiocarbon Variability in Groundwater in an Extremely Arid Zone—The Arava Valley, Israel. Radiocarbon 2013, 55, 963–978. [Google Scholar] [CrossRef]
- Frantzman, S.J.; Levin, N.; Kark, R. Population, Space and Place; Hebrew University of Jerusalem: Jerusalem, Israel, 2013. [Google Scholar]
- Al-Taani, A.A.; Rashdan, M.; Nazzal, Y.; Howari, F.; Iqbal, J.; Al-Rawabdeh, A.; Al Bsoul, A.; Khashashneh, S. Evaluation of the Gulf of Aqaba Coastal Water, Jordan. Water 2020, 12, 2125. [Google Scholar] [CrossRef]
- Salman, M.; Abu Khalaf, M.; Moore, B. Assessment of the Water Harvesting Sector in Jordan. Final Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; p. 49. [Google Scholar]
- Albalawneh, A.; Al-Assaf, A.; Sweity, A.; Hammour, W.A.; Kloub, K.; Hjazin, A.; Kabariti, R.; Abu Nowar, L.; Tadros, M.J.; Aljaafreh, S.; et al. Mapping Cultural Ecosystem Services in the Hyper Arid Environment of South of Jordan. Front. Environ. Sci. 2022, 10, 866309. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Climate 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Kumar, M.N.; Murthy, C.S.; Sai, M.V.R.S.; Roy, P.S. On the Use of Standardized Precipitation Index (SPI) for Drought Intensity Assessment. Meteorol. Appl. 2009, 16, 381–389. [Google Scholar] [CrossRef]
- WMO. SPI: Standardized Precipitation Index; European Commission: Luxembourg, 2013. [Google Scholar]
- Aryee, J.N.A. Climate Indices/SPI Calculation. Available online: https://github.com/jeffjay88/Climate_Indices/blob/main/1D_spi_pandas.ipynb (accessed on 3 September 2023).
- Ron, M.; Shalmon, B.; Alon, D.; Ramon, U. The Arava—Nature and Landscape Survey; Tel Aviv University: Deshe, Israel, 2003; p. 202. [Google Scholar]
- Dashora, A.; Lohani, B.; Malik, J.N. A Repository of Earth Resource Information—CORONA Satellite Programme. Curr. Sci. 2007, 92, 926–932. [Google Scholar]
- Isaacson, S.; Blumberg, D.G.; Rachmilevitch, S.; Ephrath, J.E.; Maman, S. Using Remote Sensing and Spatial Analysis of Trees Characteristics for Long-Term Monitoring in Arid Environments; EGU General Assembly: Vienna, Austria, 2016. [Google Scholar]
- Houborg, R.; Mccabe, M. High-Resolution NDVI from Planet’s Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture. Remote Sens. 2016, 8, 768. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat Surface Reflectance Dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- El Fellah, S.; Rziza, M.; El Haziti, M. An Efficient Approach for Filling Gaps in Landsat 7 Satellite Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 62–66. [Google Scholar] [CrossRef]
- Schmidt, H.; Karnieli, A. Remote Sensing of the Seasonal Variability of Vegetation in a Semi-Arid Environment. J. Arid. Environ. 2000, 45, 43–59. [Google Scholar] [CrossRef]
- Siegal, Z.; Tsoar, H.; Karnieli, A. Effects of Prolonged Drought on the Vegetation Cover of Sand Dunes in the NW Negev Desert: Field Survey, Remote Sensing and Conceptual Modeling. Aeolian Res. 2013, 9, 161–173. [Google Scholar] [CrossRef]
- Neeti, N.; Eastman, J.R. A Contextual Mann-Kendall Approach for the Assessment of Trend Significance in Image Time Series. Trans. GIS 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- Unmack, P.J.; Minckley, W.L. Minckley the Demise of Desert Springs; University of Arizona Press: Tucson, NE, USA, 2008. [Google Scholar]
- Peleg, N.; Morin, E.; Gvirtzman, H.; Enzel, Y. Rainfall, Spring Discharge and Past Human Occupancy in the Eastern Mediterranean. Clim. Chang. 2012, 112, 769–789. [Google Scholar] [CrossRef]
- Enzel, Y.; Bookman (Ken Tor), R.; Sharon, D.; Gvirtzman, H.; Dayan, U.; Ziv, B.; Stein, M. Late Holocene Climates of the Near East Deduced from Dead Sea Level Variations and Modern Regional Winter Rainfall. Quat. Res. 2003, 60, 263–273. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; Li, X.; Ciais, P.; Babst, F.; Guo, W.; Zhang, C.; Magliulo, V.; Pavelka, M.; Liu, S.; et al. Differentiating Drought Legacy Effects on Vegetation Growth over the Temperate Northern Hemisphere. Glob. Chang. Biol. 2018, 24, 504–516. [Google Scholar] [CrossRef]
- Zhao, A.; Yu, Q.; Feng, L.; Zhang, A.; Pei, T. Evaluating the Cumulative and Time-Lag Effects of Drought on Grassland Vegetation: A Case Study in the Chinese Loess Plateau. J. Environ. Manag. 2020, 261, 110214. [Google Scholar] [CrossRef] [PubMed]
- Krichak, S.O.; Alpert, P.; Krishnamurti, T.N. Interaction of Topography and Tropospheric Flow—A Possible Generator for the Red Sea Trough? Meteorl. Atmos. Phys. 1997, 63, 149–158. [Google Scholar] [CrossRef]
- Drori, R.; Ziv, B.; Saaroni, H.; Etkin, A.; Sheffer, E. Recent Changes in the Rain Regime over the Mediterranean Climate Region of Israel. Clim. Chang. 2021, 167, 15. [Google Scholar] [CrossRef]
- Enmar, L. The Travertines in the Northern and Central Arava: Stratigraphy, Petrography and Geochemistry; Geological Survey of Israel: Jerusalem, Israel, 1999. [Google Scholar]
- Oren, O.; Yechieli, Y.; Böhlke, J.K.; Dody, A. Contamination of Groundwater under Cultivated Fields in an Arid Environment, Central Arava Valley, Israel. J. Hydrol. 2004, 290, 312–328. [Google Scholar] [CrossRef]
- Shalev, N.; Burg, A.; Gavrieli, I.; Lazar, B. Nitrate Contamination Sources in Aquifers Underlying Cultivated Fields in an Arid Region—The Arava Valley, Israel. Appl. Geochem. 2015, 63, 322–332. [Google Scholar] [CrossRef]
- Zurieli, A. Current Hydrogeological Situation to the Northern Prairie Area and Sodom Square; The Hydrological Service: Jerusalem, Israel, 2016. [Google Scholar]
- Alcamo, J.; Bennett, E.M.; Millennium Ecosystem Assessment (Program) (Eds.) Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003; ISBN 978-1-55963-402-1. [Google Scholar]
- Huang, J.; Wang, W.; Cui, X.; Wang, D.; Liu, W.; Liu, X.; Wang, S. Environmental Risk-Based Hydroeconomic Evaluation for Alluvial Aquifer Management in Arid River Basin. Sci. Total Environ. 2020, 711, 134655. [Google Scholar] [CrossRef]
- Zhang, Y.; Tariq, A.; Hughes, A.C.; Hong, D.; Wei, F.; Sun, H.; Sardans, J.; Peñuelas, J.; Perry, G.; Qiao, J.; et al. Challenges and Solutions to Biodiversity Conservation in Arid Lands. Sci. Total Environ. 2023, 857, 159695. [Google Scholar] [CrossRef]
SPI Values | Drought and Humid Category |
---|---|
(+) 2 | Extremely wet |
(+) 1.5 to (+) 1.99 | Very wet |
(+) 1 to (+) 1.49 | Moderate wet |
0 to (+) 0.99 | Mild wet |
0 to (−) 0.99 | Mild drought |
(−) 1 to (−) 1.49 | Moderate drought |
(−) 1.5 to (−) 1.99 | Severe drought |
(−) 2 | Extreme drought |
Rain Station | Rainfall Sub-Periods; 1980–2022 | ||
---|---|---|---|
Yotveta | Wet 1985–1997 | Dry 2003–2014 | Wet 2015–2023 |
Hatzeva | Wet 1987–1993 | Dry 1998–2005, 2008–2014 | Wet 2015–2022 |
Sdom | Dry 1978–1986 | Dry 1997–2004 | Wet 2005–2013, 2015–2021 |
Sde Boker | Wet 1980–1984 1986–1995 | Dry 1998–2007, 2010–2015, 2017–2020, 2021–2022 | |
Mitzpe Ramon | None Identified |
# | Spring Name | Aquifer | Sub Aquifer | around Each Spring | Perennial Vegetation Response to Climatic Shifts, Based on Yearly Maximum NDVI Values in May–June from Landsat Time Series | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1968 | 2009–2010 | 2022 | C1% | C2% | Shift 1 (Wet to Dry) | Shift 2 (Dry to Wet) | Mann–Kendall Trend (1984–2022) | ||||
1 | Ein Zach N | Senonian | Mishash | 13,000 | 7500 | 7100 | 58 | 55 | 🡾 | 🡺 | ⮯ |
2 | Ein Zach S | 5100 | No data | 3400 | 67 | 🡾 | 🡽 | 🡺 | |||
3 | Ein Yahav | 15,000 | 44,200 | 3200 | 295 | 21 | 🡾 | 🡺 | ⮯ | ||
4 | Ein Tamid | 22,100 | 13,500 | 10,000 | 61 | 45 | 🡾 | 🡽 | 🡺 | ||
5 | Ein Mashak | 8900 | 4750 | X | 53 | ~0 | 🡾 | 🡽 | ⮯ | ||
6 | Ein Rachel | 52,200 | 48,000 | X | 92 | ~0 | 🡾 | 🡺 | ⮯ | ||
7 | Ein Shachak | 3750 | 1400 | 770 | 37 | 21 | 🡾 | 🡺 | ⮯ | ||
10 | Ein Erga | 10,400 | 4280 | X | 41 | ~0 | 🡾 | 🡺 | ⮯ | ||
11 | Ein Plutit | Quaternary North | Lisan | 29,000 | 25,300 | 28,000 | 87 | 97 | 🡽 | ⮭ | |
12 | Sdom 1 | 5700 | No data | 50,000 | 877 | 🡽 | ⮭ | ||||
13 | Sdom 2 | 2000 | No data | 10,000 | 500 | 🡽 | ⮭ | ||||
14 | Sdom 3 | 800 | No data | 2400 | 300 | 🡽 | ⮭ | ||||
15 | Sdom 4 | 780 | No data | 2800 | 359 | 🡽 | ⮭ | ||||
16 | Sdom 5 | 10,900 | No data | 20,000 | 183 | 🡽 | ⮭ | ||||
17 | Sdom 6 | 10,300 | No data | 25,000 | 243 | 🡽 | ⮭ | ||||
18 | Sdom 7 | 9500 | No data | 20,000 | 211 | 🡽 | ⮭ | ||||
22 | Ein Gidron West | Quaternary Center | Hatzeva | 18,300 | 18,800 | 25,000 | 103 | 137 | 🡾 | 🡽 | 🡺 |
23 | Ein Gidron East | 11,700 | 30,480 | 26,200 | 261 | 224 | 🡺 | 🡽 | ⮭ | ||
24 | Ein Layka | 7210 | No data | 15,340 | 213 | 🡺 | 🡽 | ⮭ | |||
25 | Ein Yamluch (Sayf) | 39,880 | 9000 | 10,060 | 23 | 25 | 🡾 | 🡽 | ⮯ | ||
26 | Ein Amatzia | Samara | 5600 | 5630 | 9840 | 101 | 176 | 🡺 | 🡽 | ⮭ | |
27 | Ein Ofarim | 50,000 | 34,000 | 74,500 | 68 | 149 | 🡺 | 🡽 | ⮭ | ||
28 | Ein Hufira | 39,030 | 15,000 | 43,000 | 38 | 110 | 🡾 | 🡽 | ⮭ | ||
29 | Ein Marzeva | 4000 | 6000 | 60,000 | 150 | 1500 | 🡺 | 🡽 | ⮭ | ||
30 | Ein Yotveta | Quaternary South | Samara | 60,000 | 64,750 | 70,000 | 108 | 117 | 🡾 | 🡽 | 🡺 |
# | Spring Name | Aquifer | Distance to the Closest Well (km) | Level of Correlation |
---|---|---|---|---|
1 | Ein Zach N | Senonian aquifer | 16.0 | 0.04 |
2 | Ein Zach S | 15.8 | 0.50 * | |
4 | Ein Tamid | 15.3 | 0.03 | |
5 | Ein Mashak | 13.5 | −0.05 | |
7 | Ein Shachak | 6.3 | −0.47 * | |
6 | Ein Rachel | 0.17 | −0.43 * | |
3 | Ein Yahav | 0.3 | −0.56 * | |
10 | Ein Erga | 0.9 | −0.41 * | |
25 | Ein Yamluch | Quaternary aquifer (Center) | 4.8 | −0.63 * |
# | Spring Name | Aquifer | Distance to Upstream Agricultural Area (m) | Year Agricultural Area was First Established | Level of Correlation |
---|---|---|---|---|---|
23 | Ein Gidron east | Quaternary aquifer (Center) | 200 | 2012 | 0.79 * |
22 | Ein Gidron west | 350 | 2012 | 0.78 * | |
24 | Ein Layka | 300 | 2012 | 0.85 * | |
28 | Ein Hufira | 10 | Before 1968 | 0.62 * | |
29 | Ein Marzeva | 10 | Before 1968 | 0.81 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meroz, A.M.; Babad, A.; Levin, N. Identifying the Climatic and Anthropogenic Impact on Vegetation Surrounding the Natural Springs of the Arava Valley Using Remote Sensing Methods. Land 2024, 13, 361. https://doi.org/10.3390/land13030361
Meroz AM, Babad A, Levin N. Identifying the Climatic and Anthropogenic Impact on Vegetation Surrounding the Natural Springs of the Arava Valley Using Remote Sensing Methods. Land. 2024; 13(3):361. https://doi.org/10.3390/land13030361
Chicago/Turabian StyleMeroz, Ariel Mordechai, Avshalom Babad, and Noam Levin. 2024. "Identifying the Climatic and Anthropogenic Impact on Vegetation Surrounding the Natural Springs of the Arava Valley Using Remote Sensing Methods" Land 13, no. 3: 361. https://doi.org/10.3390/land13030361
APA StyleMeroz, A. M., Babad, A., & Levin, N. (2024). Identifying the Climatic and Anthropogenic Impact on Vegetation Surrounding the Natural Springs of the Arava Valley Using Remote Sensing Methods. Land, 13(3), 361. https://doi.org/10.3390/land13030361