Spatio-Temporal Dynamics of Economic Density and Vegetation Cover in the Yellow River Basin: Unraveling Interconnections
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Data Sources and Variable Selection
3.2.1. Data Sources
3.2.2. Variable Selection
- (1)
- Explained variable: vegetation cover. Vegetation cover, an essential indicator for gauging regional ecological changes, typically denotes the ratio of forest area to the total land area [50]. As a widely used indicator of vegetation response, it mirrors the growth status of surface vegetation and serves as a measure for regional ecological environment changes [51]. Thus, this study adopts the vegetation coverage of each county (district) as the dependent variable for the empirical model.
- (2)
- Core explanatory variable: The correlation between socio-economic factors and vegetation cover or land use change in urban systems has garnered escalating interest [52]. Thus, delineating the relationship between socio-economic indicators and vegetation cover assumes pivotal significance in enhancing both socio-economic development and ecological environments. Economic density: This study investigates the influence of economic development levels on vegetation coverage, selecting economic density as the key measure based on previous research findings. “Economic density” refers to the measure of economic activity per unit area of land, often quantified as the output value per square kilometer of land. It is typically calculated as the gross regional product divided by the administrative area (billion yuan/km2). Beyond measuring the efficiency of economic activities and land use intensity in a city, economic density also represents the intensity of economic activities within a region [53]. Moreover, it serves as a crucial foundation for devising regional policies and evaluating implementation processes [54]. Consequently, this article designates the economic density of each county (district) as the core explanatory variable.
- (3)
- Control variables: Previous studies indicate that, apart from economic density, numerous factors can influence the vegetation coverage of each county (district). This article establishes three primary indicators by building upon prior research conclusions [55]: social development factors, land use factors, and natural factors. Corresponding secondary indicators are constructed, encompassing the proportion of the primary industry, the proportion of the secondary industry, population density, urbanization rate, forest protection level, proportion of cultivated land area, proportion of construction land, annual precipitation, and monthly average temperature. Specific variable descriptions are outlined in Table 1.
3.3. Methods
3.3.1. ArcGIS Spatial Analysis
3.3.2. Two-Way Fixed Effects Model
4. Results
4.1. Spatial-Temporal Evolution of Vegetation Cover and Economic Density
4.2. Regression Results
4.3. Robust Test
5. Discussion
5.1. Analysis of Spatio-Temporal Pattern
5.1.1. Vegetation Coverage Trend
5.1.2. Economic Density Trend
5.2. Analysis of the Relationship between Vegetation Coverage and Economic Density
5.2.1. The Whole Basin of the YRB
5.2.2. The Sub-Basin of the YRB
5.3. Limitation
6. Conclusions
6.1. Conclusions
6.2. Countermeasures
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Basin | Province | City | Country |
Upper reaches | Qinghai | Xining | Chengdong, Central, Chengxi, Chengbei, Huangzhong, Datong Hui and Tu Autonomous, Huangyuan |
Haidong | Ledu, Ping An, Minhe Hui and Tu Autonomous, Huzhu Tu Autonomous, Hualong Hui Autonomous, Xunhua Salar Autonomous | ||
Haibei Tibetan Autonomous Prefecture | Menyuan Hui Autonomous, Qilian, Haiyan, Gangcha, Tongren, Jainca, Zeku, Henan Mongol Autonomous, Gonghe, Tongde, Guide, Xinghai, Guinan, Maqin, Banma, Gande, Dari, Jiuzhi, Maduo, Chengduo, Qumalai, Dulan, Tianjun | ||
Sichuan | Aba Tibetan and Qiang Autonomous Prefecture | Malcolm, Songpan, Aba, Ruoergai, Hongyuan | |
Ganzi Tibetan Autonomous Prefecture | Shiqu | ||
Gansu | Lanzhou | Chengguan, Qilihe, Xigu, Anning, Honggu, Yongdeng, Gaolan, Yuzhong | |
Baiyin | Baiyin, Pingchuan, Jingyuan, Huining, Jingtai | ||
Tianshui | Qinzhou, Maiji, Qingshui, Qin’an, Gangu, Wushan, Zhangjiachuan Hui Autonomous | ||
Wuwei | Gulang, Tianzhu Tibetan Autonomous | ||
ZhangYe | Shandan | ||
Pingliang | Kongtong, Jingchuan, Lingtai, Chongxin, Huating, Zhuanglang, Jingning | ||
Qingyang | Xifeng, Qingcheng, Huan, Huachi, Heshui, Zhengning, Ning, Zhenyuan | ||
Dingxi | Anding, Tongwei, Longxi, Weiyuan, Lintao, Zhang, Min | ||
Longnan | Dangchang, Li | ||
Linxia Hui Autonomous Prefecture | Linxia (a), Linxia (b), Kangle, Yongjing, Guanghe, Hezheng, Dongxiang Autonomous Condado, Jishishan Bao’an Dongxiang Salar Autonomous | ||
Gannan Tibetan Autonomous Prefecture | Hezuo, Lintan, Zhuoni, Diebu, Maqu, Luqu, Xiahe | ||
Ningxia Hui Autonomous Region | Yinchuan | Xingqing, Xixia, Jinfeng, Yongning, Helan, Lingwu | |
Shizuishan | Dawukou, Huinong, Pingluo | ||
Wuzhong | Litong, Hongsibao, Yanchi, Tongxin, Qingtongxia | ||
Guyuan | Yuanzhou, Xiji, Longde, Jingyuan, Pengyang | ||
Zhongwei | Shapotou, Zhongning, Haiyuan | ||
Inner Mongolia Autonomous Region | Hohhot | Xincheng, Huimin, Yuquan, Saihan, Tumote Left Banne, Tokto, Helingeer, Qingshuihe, Wuchuan | |
Baotou | Donghe, Kundulun, Qingshan, Shiguai, Bayan Obo, Jiuyuan, Tumed Right Banner, Guyang, Darhamo Ming’an United Banner | ||
Wuhai | Haibowan, Hainan, Wuda | ||
Ordos | Dongsheng, Kangbashi, Dalad Banner, Jungar Banner, Otog Front Banner, Etuoke Banner, Hangjin Banner, Wushen Banner, Ejin Horo Banner | ||
Bayan Nur | Linhe, Wuyuan, Dengkou, Urat Front Banner, Urad Middle Banner, Urat Rear Banner, Hanggin Rear Banner | ||
Ulanqab | Zhuozi, Liangcheng, Chahar Right Middle Banner, Siziwang Banner | ||
Alxa | Alxa Left Banner | ||
Middle reaches | Shaanxi | Xi’an | Xincheng, Beilin, Lianhu, Baqiao, Weiyang, Yanta, Yanliang, Lintong, Chang’an, Gaoling, Huayi, Lantian, Zhouzhi |
Tongchuan | Wangyi, Yintai, Yaozhou, Yijun | ||
Baoji | Weibin, Jintai, Chencang, Fengxiang, Qishan, Fufeng, Mei, Long, Qianyang, Linyou, Feng, Taibai | ||
Xianyang | Qindu, Yangling, Weicheng, Sanyuan, Jingyang, Qian, Liquan, Yongshou, Changwu, Xunyi, Chunhua, Wugong, Xingping, Binzhou | ||
Weinan | Linwei, Huazhou, Tongguan, Dali, Heyang, Chengcheng, Pucheng, Baishui, Fuping, Hancheng, Huayin | ||
Yan’an | Baota, Ansai, Yanchang, Yanchuan, Zhidan, Wuqi, Ganquan, Fu, Luochuan, Yichuan, Huanglong, HuangLing, Zichang | ||
Hanzhong | Foping | ||
Yulin | Yuyang, Hengshan, Fugu, Jingbian, Dingbian, Suide, Mizhi, Jia, Wubao, Qingjian, Zizhou, Shenmu | ||
Ankang | Ningshan | ||
Shangluo | Shangzhou, Luonan, Danfeng, Zhashui | ||
Shanxi | Taiyuan | Xiaodian, Yingze, Xinghualing, Jiancaoping, Wanbailin, Jinyuan, Qingxu, Yangqu, Loufan, Gujiao | |
Datong | Zuoyun | ||
Yangquan | urban area, mining area, suburbs, Pingding, Yu | ||
Changzhi | Shangdang, Tunliu, Zhangzi, Wuxiang, Qin, Qinyuan | ||
Jincheng | urban area, Qinshui, Yangcheng, Lingchuan, Zezhou, Gaoping | ||
Shuozhou | Shuocheng, Pinglu, Youyu | ||
Jinzhong | Yuci, Taigu, Yushe, Heshun, Xiyang, Shouyang, Qi, Pingyao, Lingshi, Jiexiu | ||
Yuncheng | Yanhu, Linyi, Wanrong, Wenxi, Jishan, Xinjiang, Jiangxian, Yuanqu, Xia, Pinglu, Ruicheng, Yongji, Hejin | ||
Xinzhou | Xinfu, Ningwu, Jingle, Shenchi, Wuzhai, Kelan, Hequ, Baode, Pianguan, Yuanping | ||
Linfen | Yaodu, Quwo, Yicheng, Xiangfen, Hongdong, Gu, Anze, Fushan, Ji, Xiangning, Daning, Xi, Yonghe, Pu, Fenxi, Houma, Huozhou | ||
lvliang | Lishi, Wenshui, Jiaocheng, Xing, Lin, Liulin, Shilou, Lan, Fangshan, Zhongyang, Jiaokou, Xiaoyi, Fenyang | ||
Henan | Zhengzhou | Jinshui, Shangjie, Huiji, Zhongmou, Gongyi, Xingyang, Xinmi, Dengfeng | |
Luoyang | Old Town, Xigong, Chanhe Hui Autonomous Region, Jianxi, Jili, Luolong, Mengjin, Xin’an, Luanchuan, Song, Ruyang, Yiyang, Luoning, Yichuan, Yanshi | ||
Pingdingshan | Ruzhou | ||
Anyang | Hua, Neihuang | ||
Hebi | Xun | ||
Jiaozuo | Bo’ai, Wuzhi, Wen, Qinyang, Mengzhou | ||
Sanmenxia | Hubin, Shaanzhou, Mianchi, Lushi, Yima, Lingbao | ||
Nanyang | Xixia | ||
Jiyuan | Jiyuan | ||
Lower reaches | Henan | Kaifeng | Longting, Shunhe Hui, Gulou, Yuwangtai, Xiangfu, Lankao |
Xinxiang | Hongqi, Xinxiang, Huojia, Yuanyang, Yanjin, Fengqiu, Weihui, Changyuan | ||
Puyang | Hualong, Fan, Taiqian, Puyang | ||
Shandong | Jinan | Lixia, Shizhong, Huaiyin, Tianqiao, Licheng, Changqing, Zhangqiu, Jiyang, Laiwu, Gangcheng, Pingyin | |
Zibo | Zichuan, Boshan, Gaoqing, Yiyuan | ||
Dongying | Dongying, Hekou, Kenli, Lijin | ||
Jining | Wenshang, Sishui, Liangshan, Qufu | ||
Tai’an | Taishan, Daiyue, Ningyang, Dongping, Xintai, Feicheng | ||
Linyi | Pingyi, Mengyin | ||
Dezhou | Qihe | ||
Binzhou | Bincheng, Huimin, Boxing, Zouping | ||
Heze | Mudan, Yuncheng, Juancheng, Dongming |
References
- Johnson, C.N.; Balmford, A.; Brook, B.W.; Buettel, J.C.; Galetti, M.; Guangchun, L.; Wilmshurst, J.M. Biodiversity losses and conservation responses in the Anthropocene. Science 2017, 356, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 2022, 608, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Kijowska-Oberc, J.; Staszak, A.M.; Kamiński, J.; Ratajczak, E. Adaptation of Forest Trees to Rapidly Changing Climate. Forests 2020, 11, 123. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, S.; Li, X.; Liu, H.; Chi, D.; Xu, K. The influence of climate change and human activities on ecosystem service value. Ecol. Eng. 2016, 87, 224–239. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Li, J.; Hao, Z. Coupling Coordination Network Analysis of Ecological Protection and High-quality Economic Development in the Yellow River Basin. Ecol. Econ. 2022, 38, 179–189. [Google Scholar]
- Jin, F.; Ma, L.; Xu, D. Environmental Stress and Optimized Path of Industrial Development in the Yellow River Basin. Resour. 2020, 42, 127–136. [Google Scholar] [CrossRef]
- Deng, C.; Bai, H.; Gao, S.; Liu, R.; Ma, X.; Huang, X.; Meng, Q. Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities. J. Nat. Resour. 2018, 33, 425–438. [Google Scholar]
- Zhang, S.L.; Gu, X.; Zhao, X.B.; Zhu, J.F.; Zhao, Y.R. Influences of climatic factors and human activities on Forest–Shrub–Grass suitability in the Yellow River Basin, China. Forests 2023, 14, 1198. [Google Scholar] [CrossRef]
- Wu, Q.J.; Zhu, J.F.; Zhao, X.D. Effects of human social-economic activities on vegetation suitability in the Yellow River Basin, China. Forests 2023, 14, 234. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Li, Y.; Jia, L. Spatiotemporal variation and driving forces of NDVI from 1982 to 2015 in the Qinba Mountains, China. Environ. Sci. Pollut. Res. 2022, 29, 52277–52288. [Google Scholar] [CrossRef]
- Zhang, M.; Du, H.; Zhou, G.; Mao, F.; Li, X.; Zhou, L.; Zhu, D.; Xu, Y.; Huang, Z. Spatiotemporal Patterns and Driving Force of Urbanization and Its Impact on Urban Ecology. Remote Sens. 2022, 14, 1160. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Q.; Li, X.H.; Yang, S.X.; Yang, Q. Temporal and spatial variation of vegetation coverage and its response to climate factors in Gansu section of Yellow River Basin. Bull. Soil. Water Conserv. 2020, 40, 232–238. [Google Scholar]
- Wang, L.; Li, N.; Wen, G.C.; Yang, Y.H. Vegetation coverage changes and driving forces in Henan section of the Yellow River basin. Bull. Soil. Water Conserv. 2022, 42, 393–399. [Google Scholar]
- Zhang, H.Y.; Zhan, C.S.; Xia, J.; Hu, S.; Ning, L.K.; Deng, X.J. Spatio-temporal variations and strip pattrns of vegetation in the Inner Mongolia of Yellow River Basin. Acta Ecol. Sin. 2022, 42, 8818–8829. [Google Scholar]
- He, H.J.; Wang, Z.; Dong, J.F.; Wang, J.; Zou, J.Y. Synergy and trade-off between vegetation change and urbanization development in the Yellow River Basin of Shanxi Province based on satellite remote sensing data. Acta Ecol. Sin. 2022, 42, 3536–3545. [Google Scholar]
- Sheng, Y.; Liu, L.F.; Yuan, Y.; Wang, S.; Li, J.; An, L. Effects of climate change and human activities on vegetation coverage in arsenic sandstone area of Yellow River basin. Bull. Soil. Water Conserv. 2023, 43, 412–420. [Google Scholar]
- Li, Y.J.; Chen, Q.C.; Fang, H.; Li, J. Spatial heterogeneity of vegetation evolution and its influencing factors in the Yangtze River Basin based on multi-scale geographical weighted regression. China Environ. Sci. 2024, 44, 352–362. [Google Scholar]
- Wang, R.; Ding, X.; Yi, B.J.; Wang, J.L. Spatiotemporal characteristics of vegetation cover change in the Central Yunnan urban agglomeration from 2000 to 2020 based on Landsat data and its driving factors. Geocarto. Int. 2024, 39, 2316643. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Liu, H.; Zuo, Q.T.; Yu, J.T.; Li, Y. Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000–2019. Resour. Sci. 2021, 43, 849–858. [Google Scholar]
- Zhang, W.; Wang, L.; Xiang, F.; Qin, W.; Jing, W. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2020, 110, 105892. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, G.; Yuan, R.; Singh, V.P.; Wu, W.; Wang, D.Z. Dynamic responses of ecological vulnerability to land cover shifts over the Yellow River Basin, China. Ecol. Indic. 2022, 144, 109554. [Google Scholar] [CrossRef]
- Sun, G.P.; Liu, X.F.; Wang, X.H.; Li, S.S. Changes in vegetation coverage and its influencing factors across the Yellow River Basin during 2001-2020. J. Desert Res. 2021, 41, 205–212. [Google Scholar]
- Zhang, X.J.; Wang, G.Q.; Xue, B.L.; Ying, L.A. Changes in vegetation cover and its influencing factors in the inner Mongolia reach of the Yellow River basin from 2001 to 2018. Environ. Res. 2022, 215, 114253. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.X.; Zhang, X.D.; Wang, T.; Chen, G.Z.; Zhu, K.; Wang, Q.; Wang, J. Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020. Ecol. Indic. 2022, 138, 108818. [Google Scholar] [CrossRef]
- Chen, S.; He, L.; Yan, F. Spatio-temporal evolution of vegetation coverage in Beijing-Tianjin-Hebei and its response to natural anthropogenic changes. China Environ. Sci. 2024, 1–18. [Google Scholar]
- Zhang, J.; Du, J.Q.; Sheng, Z.L.; Zhang, Y.C.; Wu, J.H.; Liu, B. Spatio-temporal changes of vegetation cover and their influencing factors in the Yellow River Basin from 1982 to 2015. Ecol. Environ. 2021, 30, 929. [Google Scholar]
- Wang, X.L.; Shi, S.H.; Chen, Z.X. Change and driving factors of vegetation coverage in the Yellow River Basin. China Environ. Sci. 2022, 42, 5358–5368. [Google Scholar]
- Ciccone, A.; Hall, R.E. Productivity and density of economic activity. The American Economic Review. 1996, 86, 54–70. [Google Scholar]
- Jie, L.I. A simulation approach to optimizing the vegetation covers under the water constraint in the Yellow River Basin. Forest Policy Econ. 2021, 123, 102377. [Google Scholar]
- Zhang, P.; Pang, B.; Li, Y.; He, J.; Hong, X.; Qin, C.; Zheng, H. Analyzing spatial disparities of economic development in Yellow River Basin, China. GeoJournal 2019, 84, 303–320. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, N. Differences in High-Quality Development and Its Influencing Factors between Yellow River Basin and Yangtze River Economic Belt. Land 2023, 12, 1461. [Google Scholar] [CrossRef]
- Ke Liu, K.; Qiao, Y.R.; Shi, T.; Zhou, Q. Study on coupling coordination and spatiotemporal heterogeneity between economic development and ecological environment of cities along the Yellow River Basin. Environ. Sci. Pollut. R. 2021, 28, 6898–6912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, H.; Cao, Y. Research on the Coordinated Development of Economic Development and Ecological Environment of Nine Provinces (Regions) in the Yellow River Basin. Sustainability 2022, 14, 13102. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, P.; Jiang, J.; Zhai, J.; Chen, Y.; Wang, Y.; Bai, J.; Zhang, B.; Xu, H. Coordination Study on Ecological and Economic Coupling of the Yellow River Basin. Int. J. Environ. Res. Public Health 2021, 18, 10664. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, X.; Deng, G.; Xi, Y. Decoupling Relationship between Resource Environment and High-Quality Economic Development in the Yellow River Basin. Sustainability 2023, 15, 9385. [Google Scholar] [CrossRef]
- Song, C.; Yin, G.; Lu, Z.; Chen, Y. Industrial ecological efficiency of cities in the Yellow River Basin in the background of China’s economic transformation: Spatial-temporal characteristics and influencing factors. Environ. Sci. Pollut. R. 2022, 29, 4334–4349. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Zhang, Y.; Zhong, F.; Jiang, D. Spatiotemporal Patterns of Ecosystem Service Value Changes and Their Coordination with Economic Development: A Case Study of the Yellow River Basin, China. Int. J. Environ. Res. Public. Health 2020, 17, 8474. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.J.; Guerschman, J.P. The MODIS Global Vegetation Fractional Cover Product 2001–2018: Characteristics of Vegetation Fractional Cover in Grasslands and Savanna Woodlands. Remote Sens. 2020, 12, 406. [Google Scholar] [CrossRef]
- Ahlfeldt, G.M.; Pietrostefani, E. The economic effects of density: A synthesis. J. Urban Econ. 2019, 111, 93–107. [Google Scholar] [CrossRef]
- Henderson, J.V.; Nigmatulina, D.; Kriticos, S. Measuring Urban Economic Densit. J. Urban Econ. 2019, 125, 103188. [Google Scholar] [CrossRef]
- Richards, D.R.; Belcher, R.N. Global Changes in Urban Vegetation Cover. Remote Sens. 2020, 12, 23. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Wang, T.; Li, J.; Li, Z.; Teng, M.; Gao, Y. Using Vegetation Indices to Characterize Vegetation Cover Change in the Urban Areas of Southern China. Sustainability 2020, 12, 9403. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, H.; Fu, Y.; Niu, H.; Yang, Y.; Zhang, B. Fractional Vegetation Cover Estimation of Different Vegetation Types in the Qaidam Basin. Sustainability 2019, 11, 864. [Google Scholar] [CrossRef]
- Li, C.H.; Yang, Z.F. Spatio-temporal changes of NDVI and their relations with precipitation and runoff in the Yellow River Basin. Geogr. Res.-Aust. 2004, 23, 753–759. [Google Scholar]
- McVicar, T.R.; Van Niel, T.G.; Li, L.; Hutchinson, M.F.; Mu, X.; Liu, Z. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J. Hydrol. 2007, 338, 196–220. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, Y.M.; Chang, J.X.; Zhou, S.; Guo, A.J. Spatial and temporal evolution of drought characteristics across the Yellow River basin. Ecol. Indic. 2021, 131, 108–207. [Google Scholar] [CrossRef]
- Liu, H.; Liu, F.; Zheng, L. Effects of climate change and human activites on vegetation cover change in the Yellow Rive Basin. J. Soil. Water Conserv. 2021, 35, 143–151. [Google Scholar]
- Li, Q.Q.; Cao, Y.P.; Miao, S.L. Spatio-temporal variation in vegetation coverage and its response to climate factors in the Yellow River Basin, China. Acta Ecol. Sin. 2022, 42, 4041–4054. [Google Scholar]
- Yuan, L.H.; Jiang, W.G.; Shen, W.M.; Liu, Y.H.; Wang, W.J.; Tao, L.L.; Zheng, H.; Liu, X.F. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010. Acta Ecol. Sin. 2013, 33, 7798–7806. [Google Scholar]
- Wang, K.; Zhou, J.; Tan, M.L.; Lu, P.; Xue, Z.; Liu, M.; Wang, X. Impacts of vegetation restoration on soil erosion in the Yellow River Basin, China. Catena 2024, 234, 107547. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y. Dynamic vegetation cover change over the last 18 years in China. Quat. Sci. Rev. 2001, 21, 294–302. [Google Scholar]
- Lopez, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land cover and land-use change in the urban fringe, A case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Percoco, M. Path dependence, institutions and the density of economic activities: Evidence from Italian cities. Pap. Reg. Sci. 2014, 93, 53–76. [Google Scholar] [CrossRef]
- Wheeler, D.; Hammer, D.; Kraft, R.; Dasgupta, S.; Blankespoor, B. Economic dynamics and forest clearing: A spatial econometric analysis for Indonesia. Ecol. Econ. 2013, 85, 85–96. [Google Scholar] [CrossRef]
- Chen, W.Y.; Wang, D.T. Economic development and natural amenity: An econometric analysis of urban green spaces in China. Urban. For. Urban Green. 2013, 12, 435–442. [Google Scholar] [CrossRef]
- Ding, Y. Spatial distribution characteristics and impact analysis of national wetland parks in the Yellow River basin from the perspective of arcgis. SPIE 2023, 12797, 105–110. [Google Scholar]
- Cicia, G.; Giudice, T.; Scarpa, R. Consumers’ perception of quality in organic food: A random utility model under preference heterogeneity and choice correlation from rank-orderings. Brit. Food J. 2002, 104, 200–213. [Google Scholar] [CrossRef]
- Liu, X.; Pan, Y.; Zhu, X.; Li, S. Spatio-temporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors. Acta Geogr. Sin. 2015, 70, 705–716. [Google Scholar]
- Luck, G.W.; Smallbone, L.T.; O’Brien, R. Socio-economics and vegetation change in urban ecosystems: Patterns in space and time. Ecosystems 2009, 12, 604–620. [Google Scholar] [CrossRef]
- Ren, Z.; Tian, Z.; Wei, H.; Liu, Y.; Yu, Y. Spatio-temporal evolution and driving mechanisms of vegetation in the Yellow River Basin, China during 2000–2020. Ecol. Indic. 2022, 138, 108832. [Google Scholar] [CrossRef]
- Fang, J.; Yu, G.; Liu, L.; Hu, S.; Chapin, F.S. Climate change, human impacts, and carbon sequestration in China. Proc. Nat. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shi, C.; Zhou, Y. Trends and attribution of runoff changes in the upper and middle reaches of the Yellow River in China. J. Hydro.-Environ. Res. 2021, 37, 57–66. [Google Scholar] [CrossRef]
- Li, P.; Tian, Y.; Wu, J.; Xu, W. The Great Western Development policy: How it affected grain crop production, land use and rural poverty in western China. Agricultural Economic Review. 2021, 13, 319–348. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, T.; Qiao, X.; Yang, Y.; Guo, J.; Zhang, H. Eco-economic coordination analysis of the Yellow River Basin in China: Insights from major function-oriented zoning. Sustainability 2021, 13, 2715. [Google Scholar] [CrossRef]
- Zhang, G.X.; Su, Z.X. Construction and measurement of high-quality development evaluation system for the central cities in the Yellow River Basin. Ecol. Econ. 2020, 36, 37–43. [Google Scholar]
- Chen, Y.; Syvitski, J.P.; Gao, S.; Overeem, I.; Kettner, A.J. Socio-economic impacts on flooding: A 4000-year history of the Yellow River. China Ambio 2012, 41, 682–698. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; Chu, L.; Wang, T.; Li, Z.; Cai, C. Analysis of spatial and temporal variations in vegetation index and its driving force in Hubei Province in the last 10 years. Acta Ecol. Sin. 2019, 39, 7722–7736. [Google Scholar]
- Ma, F.; Zhuo, J.; He, H.J.; Han, S.S. Ecological evolution and driving mechanism of vegetation in Yulin City, Shaanxi Province. Bull. Soil. Water Conserv. 2020, 40, 257–261. [Google Scholar]
- Lu, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent ecological transitions in China: Greening, browning, and influential factors. Sci. Rep. 2015, 5, 8732. [Google Scholar] [CrossRef]
Variable Types | Variable Names | Abbreviation | Description | |
---|---|---|---|---|
Explained variable | Vegetation cover | vc | The ratio of forest area to total land area | |
Core explanatory variable | Economic density | eco | Gross regional product/area of the administrative region (billion yuan/km2) | |
Control variables | Social development factors | The proportion of primary industry | agri | The ratio of the value added of primary industry to the gross regional domestic product of the county (%) |
The proportion of secondary industry | indus | The ratio of the value added of secondary industry to the gross regional domestic product of the county (%) | ||
Population density | ps | The ratio of permanent population to county area (thousands/km2) | ||
Urbanization rate | urbi | Urbanization rate of permanent population (%) | ||
Forest protection level | protect | Based on the weighted average of “forest land protection level” in the sample land attribute table | ||
Land use factors | Proportion of cultivated land area | farmland | The ratio of cultivated land area to county area (%) | |
Proportion of construction land | constru | The ratio of the construction area to county area (%) | ||
Natural factors | Annual precipitation | rainfall | Annual precipitation in each county and district (mm) | |
Monthly average temperature | tempe | Annual average temperature in each county and district (°C) |
Variable | The Entire Basin | Upper | Middle | Lower | ||||
---|---|---|---|---|---|---|---|---|
Variable | Coefficient | t | Coefficient | t | Coefficient | t | Coefficient | t |
eco | −1.108 *** | −3.920 | −0.579 | −0.460 | −1.103 *** | −3.580 | −0.706 | −0.340 |
agri | 0.114 ** | 2.010 | 0.197 *** | 3.600 | 0.019 | 0.150 | −0.152 | −0.440 |
indus | −0.019 | −0.350 | 0.065 | 1.270 | −0.092 | −1.370 | −0.004 | −0.020 |
ps | −0.109 | −1.120 | 0.023 | 0.040 | −0.102 | −1.020 | 0.081 | 0.020 |
urbi | 0.095 * | 1.710 | −0.049 | −0.610 | 0.145 ** | 2.080 | −0.017 | −0.050 |
protect | −2.165 * | −1.850 | −0.053 | −0.030 | −3.364 * | −1.890 | −0.340 | −0.110 |
farmland | 0.120 * | 1.800 | −0.133 | −1.020 | 0.224 ** | 2.510 | 0.015 | 0.080 |
constru | 0.171 | 1.600 | −0.167 | −1.090 | 0.133 | 0.740 | 0.689 | 1.570 |
rainfall | 0.001 | 0.170 | 0.024 ** | 2.540 | 0.008 | 0.840 | −0.015 | −0.570 |
tempe | 0.959 | 1.490 | 1.196 | 1.590 | 1.800 * | 1.660 | −1.270 | −0.180 |
Variable | The Entire Basin | Midstream | ||
---|---|---|---|---|
Variable | Coefficient | t | Coefficient | t |
GDP | −0.009 *** | −2.690 | −0.010 ** | −2.140 |
agri | 0.098 * | 1.720 | −0.003 | −0.020 |
indus | −0.018 | −0.420 | −0.093 | −1.370 |
ps | −0.128 | −1.310 | −0.113 | −1.120 |
urbi | 0.110 ** | 1.990 | 0.160 ** | 2.280 |
protect | −2.370 ** | −2.020 | −3.594 ** | −2.000 |
farmland | 0.103 | 1.520 | 0.197 ** | 2.190 |
constru | 0.139 | 1.290 | 0.060 | 0.340 |
rainfall | 0.000 | 0.000 | 0.008 | 0.820 |
tempe | 0.982 | 1.510 | 2.004 ** | 1.810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Yang, X.; Dou, Y.; Wu, Q.; Wang, G.; Li, Y.; Zhao, X. Spatio-Temporal Dynamics of Economic Density and Vegetation Cover in the Yellow River Basin: Unraveling Interconnections. Land 2024, 13, 475. https://doi.org/10.3390/land13040475
Wang B, Yang X, Dou Y, Wu Q, Wang G, Li Y, Zhao X. Spatio-Temporal Dynamics of Economic Density and Vegetation Cover in the Yellow River Basin: Unraveling Interconnections. Land. 2024; 13(4):475. https://doi.org/10.3390/land13040475
Chicago/Turabian StyleWang, Benxu, Xuanqin Yang, Yaquan Dou, Qingjun Wu, Guangyu Wang, Ya Li, and Xiaodi Zhao. 2024. "Spatio-Temporal Dynamics of Economic Density and Vegetation Cover in the Yellow River Basin: Unraveling Interconnections" Land 13, no. 4: 475. https://doi.org/10.3390/land13040475
APA StyleWang, B., Yang, X., Dou, Y., Wu, Q., Wang, G., Li, Y., & Zhao, X. (2024). Spatio-Temporal Dynamics of Economic Density and Vegetation Cover in the Yellow River Basin: Unraveling Interconnections. Land, 13(4), 475. https://doi.org/10.3390/land13040475