The Temporal and Spatial Characteristics of Ecological Security Pattern in the Loess Plateau, China
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Framework
2.4. Identifying Ecological Sources with Ecological “Structure–Function”
2.5. Revising Ecological Resistance Surface Using Disturbance and Sensitivity
2.6. Extracting Potential Corridors Using the MCR Model
2.7. Optimizing ESP via the Gravity Model
2.8. Ecological Security Zone
3. Results
3.1. Ecological Sources in the Loess Plateau from 2000 to 2020
3.2. The Ecological Resistance Surface in the Loess Plateau from 2000 to 2020
3.3. Potential Ecological Corridors in the Loess Plateau from 2000 to 2020
3.4. The Temporal and Spatial Characteristics of ESP in the Loess Plateau
3.5. Ecological Security Zone in the Loess Plateau from 2000 to 2020
4. Discussion
4.1. Ecological Security Pattern in the Loess Plateau
4.2. Optimizing ESP in the Loess Plateau
4.3. Limitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Zhou, C.H. Review of the studies on ecological security. Prog. Geogr. 2005, 24, 8–20. [Google Scholar]
- Yu, K. Security patterns and surface model in landscape ecological planning. Landsc. Urban Plan. 1996, 36, 1–17. [Google Scholar] [CrossRef]
- Ma, K.M.; Fu, B.J.; Li, X.Y.; Guan, W.B. The regional pattern for ecological security (RPES): The concept and theoretical basis. Acta Ecol. Sin. 2004, 4, 761–768. [Google Scholar]
- Peng, J.; Zhao, H.J.; Liu, Y.X.; Wu, J.S. Research progress and prospect on regional ecological security pattern construction. Geogr. Res. 2017, 36, 407–419. [Google Scholar]
- Chen, L.D.; Jing, Y.C.; Sun, R.H. Urban eco-security pattern construction: Targets, principles and basic framework. Acta Ecol. Sin. 2018, 38, 4101–4108. [Google Scholar]
- Zhang, A.Q.; Li, P.H.; Xu, L.P. Valuation and analysis of ecological security based on the improved three-dimensional ecological footprint in Shaanxi Province, China. Ecol. Indic. 2022, 144, 109483. [Google Scholar] [CrossRef]
- Ke, S.; Pan, H.; Jin, B.W. Identification of Priority Areas for Ecological Restoration Based on Human Disturbance and Ecological Security Patterns: A Case Study of Fuzhou City, China. Sustainability 2023, 15, 2842. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, Y.Z.; Jiang, Z.Y.; Guo, C.X.; Zhao, M.Y.; Yang, Z.G.; Guo, M.Y.; Wu, B.Y.; Chen, Q.L. Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: A case study in Shenzhen city, China. Ecol. Process. 2021, 10, 63. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Sun, Y.J.; Mei, Y.; Jian, Z.; Pan, F.; Zhang, L.G. Construction and Analysis of Ecological Security Pattern of Qingdao Based on MSPA and MCR Models. Pol. J. Environ. Stud. 2022, 32, 155–169. [Google Scholar] [CrossRef]
- Yang, L.A.; Li, Y.L.; Jia, L.J.; Ji, Y.F.; Hu, G.G. Ecological risk assessment and ecological security pattern optimization in the middle reaches of the Yellow River based on ERI+MCR model. J. Geogr. Sci. 2023, 33, 823–844. [Google Scholar] [CrossRef]
- Li, Z.T.; Li, M.; Xia, B.C. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation. Ecol. Indic. 2020, 114, 106319. [Google Scholar] [CrossRef]
- Peng, J.; Pan, Y.J.; Liu, Y.X.; Zhao, H.J.; Wang, Y.L. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y.; Yi, S.Q. An integrated approach to constructing ecological security patterns and identifying ecological restoration and protection areas: A case study of Jingmen, China. Ecol. Indic. 2022, 114, 106319. [Google Scholar] [CrossRef]
- Liu, X.Y.; Su, Y.X.; Li, Z.G.; Zhang, S. Constructing ecological security patterns based on ecosystem services trade-offs and ecological sensitivity: A case study of Shenzhen metropolitan area, China. Ecol. Indic. 2023, 154, 110626. [Google Scholar] [CrossRef]
- Lai, S.H.; Sha, J.M.; Eladawy, A.; Li, X.M.; Wang, J.L.; Kurbanov, E.; Lin, Z.J.; Wu, L.; Han, R.; Su, Y.C. Evaluation of ecological security and ecological maintenance based on pressure-state-response (PSR) model, case study: Fuzhou city, China. Hum. Ecol. Risk Assess. 2022, 28, 734–761. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.J.; Wu, D.F.; Yang, H. Construction of ecological security pattern adapting to future land use change in Pearl River Delta, China. Appl. Geogr. 2023, 154, 102946. [Google Scholar] [CrossRef]
- Jin, L.J.; Xu, Q.L.; Yi, J.H.; Zhong, X.C. Integrating CVOR-GWLR-Circuit model into construction of ecological security pattern in Yunnan Province, China. Environ. Sci. Pollut. Res. 2022, 29, 81520–81545. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, S.; Liu, Y.; Liu, J.B.; Liang, W.; Miao, C.Y. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, K.; Wang, S.D.; Wu, T.X.; Li, X.K.; Wang, J.N.; Wang, D.C.; Zhu, H.T.; Tan, C.; Ji, Y.H. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
- Shen, W.C.; Zhang, J.J.; Wang, K.; Zhang, Z.F. Identifying the spatio-temporal dynamics of regional ecological risk based on Google Earth Engine: A case study from Loess Plateau, China. Sci. Total Environ. 2023, 873, 162346. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.J.; Qin, Y.C. Ecological Service Evaluation: An Empirical Study on the Central Loess Plateau, China. Pol. J. Environ. Stud. 2020, 29, 1691–1701. [Google Scholar] [CrossRef]
- Xiong, M.Q.; Li, F.J.; Liu, X.H.; Liu, J.F.; Luo, X.P.; Xing, L.Y.; Wang, R.; Li, H.Y.; Guo, F.Y. Characterization of Ecosystem Services and Their Trade-Off and Synergistic Relationships under Different Land-Use Scenarios on the Loess Plateau. Land 2023, 12, 2087. [Google Scholar] [CrossRef]
- Liu, S.L.; Guo, X.D.; Lian, G.; Wang, J. Multi-scale ecological security evaluation of fragile areas of the Loess Plateau. Chin. J. Appl. Ecol. 2007, 7, 1554–1559. [Google Scholar]
- Fu, Y.; Shi, X.; He, J.; Yuan, Y.; Qu, L. Identification and optimization strategy of county ecological security pattern: A case study in the Loess plateau, China. Ecol. Indic. 2020, 112, 106030. [Google Scholar] [CrossRef]
- Wen, J.F.; Hou, K.; Li, H.H.; Zhang, Y.; He, D.; Mei, R.C. Study on the spatial-temporal differences and evolution of ecological security in the typical area of the Loess Plateau. Environ. Sci. Pollut. Res. 2021, 28, 23521–23533. [Google Scholar] [CrossRef]
- Jun, C.; Ban, Y.F.; Li, S.N. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef]
- Dong, J.W.; Kuang, W.H.; Liu, J.Y. Continuous land cover change monitoring in the remote sensing big data era. Sci. China Earth Sci. 2017, 60, 2223–2224. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Molinari, M.E.; Hussein, E.; Chen, J.; Li, R. The first comprehensive accuracy assessment of GlobeLand30 at a national level: Methodology and results. Remote Sens. 2015, 7, 4191–4212. [Google Scholar] [CrossRef]
- Wu, J.S.; Zhang, L.Q.; Peng, J.; Feng, Z.; Liu, H.M.; He, S.B. The integrated recognition of the source area of the urban ecological security pattern in Shenzhen. Acta Ecol. Sin. 2013, 33, 4125–4133. [Google Scholar]
- Wei, H.; Zhu, H.; Chen, J.; Jiao, H.Y.; Li, P.H.; Xiong, L.Y. Construction and Optimization of Ecological Security Pattern in the Loess Plateau of China Based on the Minimum Cumulative Resistance (MCR) Model. Remote Sens. 2022, 14, 5906. [Google Scholar] [CrossRef]
- Filatova, T.; Verburg, P.H.; Parker, D.C.; Stannard, C.A. Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environ. Model. Softw. 2013, 45, 1–7. [Google Scholar] [CrossRef]
- Zhuang, J.Q.; Peng, J.B.; Wang, G.H.; Javed, I.; Wang, Y.; Li, W. Distribution and characteristics of landslide in Loess Plateau: A case study in Shaanxi province. Eng. Geol. 2018, 236, 89–96. [Google Scholar] [CrossRef]
- Fan, J.; Shao, M.A.; Wang, Q.J.; Jones, S.B.; Reichardt, K.; Cheng, X.R.; Fu, X.L. Toward sustainable soil and water resources use in China’s highly erodible semi-arid loess plateau. Geoderma 2009, 155, 93–100. [Google Scholar]
- Qu, L.L.; Huang, Y.X.; Yang, L.F.; Liu, Y.R. Vegetation restoration in response to climatic and anthropogenic changes in the Loess Plateau, China. Chin. Geogr. 2020, 30, 89–100. [Google Scholar] [CrossRef]
- Risser, P.G.; Iverson, L.R. 30 years later—Landscape ecology: Directions and approaches. Landsc. Ecol. 2013, 28, 367–369. [Google Scholar] [CrossRef]
- Meurant, G. The Ecology of Natural Disturbance and Patch Dynamics; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Zhang, L.X.; Fan, J.W.; Zhang, H.Y.; Zhou, D.C. Spatial-temporal Variations and Their Driving Forces of the Ecological Vulnerability in the Loess Plateau. Environ. Sci. 2022, 43, 4902–4910. [Google Scholar]
- Guo, M.J. Responses of Vegetation Coverage to Climate Change on the Loess Plateau Based on AVHRR/NDVI and Its Quantitative Analysis; Research Center of Soil and Water Conservation and Ecological Environment: Xi’an, China, 2014. [Google Scholar]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuna, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef]
- Shi, S.Y.; Yu, J.J.; Wang, F.; Wang, P.; Zhang, Y.C.; Jin, K. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. J. Clean. Prod. 2021, 755, 142419. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. The Spatial-Temporal Analysis of Landscape Ecological Risk in Yulin. Master’s Thesis, Chang’an University, Xi’an, China, 2015. [Google Scholar]
- Shi, Y.Q.; Wang, N.L.; Li, T.S.; Wang, H. Landscape ecological risk and its spatiotemporal variation in Yulin. Arid Zone Res. 2019, 36, 494–504. [Google Scholar]
- Hu, X.J.; Ma, C.M.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection? A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Luo, M.Y.; Zhao, Y.H.; Jia, X.; Zhang, P.; Zhao, M. Ecological vulnerability assessment and its driving force based on ecological zoning in the Loess Plateau, China. Ecol. Indic. 2024, 159, 111658. [Google Scholar] [CrossRef]
- Luo, M.Y.; Li, T.S. Spatial and temporal analysis of landscape ecological quality in Yulin. Environ. Technol. Innov. 2021, 23, 101700. [Google Scholar] [CrossRef]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape planning. Landsc. Urban Plan. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- Li, Z.Y.; Yang, G.S.; Dong, Y.W. Establishing the ecological security pattern in rapidly developing regions: A case in the AYRAP. Nat. Resour J. 2007, 1, 106–113. [Google Scholar]
- Yu, K.J. Landscape ecological security patterns in biological conservation. Acta Ecol. Sin. 1999, 19, 8–15. [Google Scholar]
- Sun, W.Y.; Song, X.Y.; Mu, X.M.; Gao, P.; Wang, F.; Zhao, G.J. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209, 87–99. [Google Scholar] [CrossRef]
- Su, K.; Liu, H.J.; Wang, H.Y. Spatial–Temporal Changes and Driving Force Analysis of Ecosystems in the Loess Plateau Ecological Screen. Forests 2022, 13, 54. [Google Scholar] [CrossRef]
- Shi, M.; Lin, F.; Jing, X.; Li, B.Y.; Shi, Y.; Hu, Y.M. Ecological Environment Quality Assessment of Arid Areas Based on Improved Remote Sensing Ecological Index—A Case Study of the Loess Plateau. Sustainability 2023, 15, 13881. [Google Scholar] [CrossRef]
- Fu, W.; Lv, Y.H.; Fu, B.J.; Hu, W.Y. Landscape ecological risk assessment under the influence of typical human activities in the Loess Plateau, Northern Shaanxi. J. Ecol. Rural. Environ. 2019, 35, 290–299. [Google Scholar]
- Cao, Y.; Li, H.W.; Liu, Y.L.; Zhang, Y.F.; Jiang, Y.K.; Dai, W.T.; Shen, M.X.; Guo, X.; Qi, W.N.; Li, L.; et al. Regional Contribution and Attribution of the Interannual Variation of Net Primary Production in the Yellow River Basin, China. Remote Sens. 2023, 15, 5212. [Google Scholar] [CrossRef]
- Yang, S.T. The Effect of Vegetation Restoration on Ecosystem Services Trade-Off and Synergy in the Typical Watershed of the Loess Plateau of China. Master’s Thesis, Xi’an University of Technology, Xianyang, China, 2020. [Google Scholar]
- Zhu, Y. Study on Spatial Distribution of Land Use Landscape Pattern under Human Activity Intensity Gradient in Loess Plateau. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2018. [Google Scholar]
- Lu, Y.H.; Fu, B.J.; Feng, X.M.; Zeng, Y.; Liu, Y.; Chang, R.Y.; Sun, G.; Wu, B.F. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar]
- Yang, Y.F.; Wang, B.; Wang, G.L.; Li, Z.S. Ecological regionalization and overview of the Loess Plateau. Acta Ecol. Sin. 2019, 39, 20. [Google Scholar]
- Zhou, X. Analysis of Land Use Change and Land Ecological Risk in Yan’an City. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2018. [Google Scholar]
- Chen, H. Spatial and Temporal Changes of Soil Erosion and Its Driving Factors before and after the “Grain for Green” Project in the Loess Plateau. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2019. [Google Scholar]
- Jiao, C.M.; Xie, M.Y.; Jiao, F.; Li, T.S. Spatial and temporal shifts in land use structure and changes of ecosystem service values in Yan’an city from 1990 to 2020. Bull. Soil Water Conserv. 2022, 41, 274–281. [Google Scholar]
- Liu, L.T.; Yu, S.C.; Zhang, H.J.; Wang, Y.; Liang, C. Analysis of Land Use Change Drivers and Simulation of Different Future Scenarios: Taking Shanxi Province of China as an Example. Int. J. Environ. Res. Public Health 2023, 20, 1626. [Google Scholar] [CrossRef] [PubMed]
- Song, R.Y.; Zhao, X.F.; Jing, Y.C.; Li, X.X.; Su, J.W.; Wang, X.; Zhao, D.D. Analysis of ecosystem protection and sustainable development strategies—Evidence based on the RWEQ model on the Loess Plateau, China. Sustainability 2022, 14, 11502. [Google Scholar] [CrossRef]
- Gregory, A.; Spence, E.; Beier, P.; Garding, E. Toward Best Management Practices for Ecological Corridors. Land 2021, 10, 140. [Google Scholar] [CrossRef]
Identification | Dimension | Criteria Layer | Index Layer | Weight | Tendency | |
---|---|---|---|---|---|---|
ESP | Ecological source | Ecological structure | Diversity | SHDI | 0.4 | + |
Landscape fragmentation | Fragmentation index | 0.2 | − | |||
Connectivity | Integral index of Connectivity | 0.4 | + | |||
Ecological function | Vegetation index | NDVI | 0.4 | + | ||
Precipitation | Annual total precipitation | 0.1 | + | |||
Temperature | Annual average temperature | 0.1 | + | |||
Ecosystem services | Habitat quality | 0.4 | + | |||
Resistance surface | Assigned by land use type, DEM, soil texture | Disturbance | Construction land disturbance | 0.4 | − | |
Ecological sensitivity | Soil erosion sensitivity | 0.5 | − | |||
Desertification sensitivity | 0.5 | − |
Indicators | ||
---|---|---|
Structure | Function | |
Regional Landscape | Heterogeneity; connectivity; patchiness; porosity; fragmentation; configuration; juxtaposition; contrast; patch size; frequency distribution; perimeter-area ratio; pattern of habitat layer distribution; grain size; spatial linkage | Disturbance processes (frequency, period, predictability, intensity; sensitivity); nutrient cycling rates; energy flow rates; rates of erosion and geomorphic; hydrologic processes; human disturbance |
Resistance Surface | Dimension | Index System | Resistance Coefficients (Weight) | Weight | ||||
---|---|---|---|---|---|---|---|---|
1 (0.05) | 2 (0.1) | 3 (0.2) | 4 (0.25) | 5 (0.4) | ||||
Ecological sensitivity | Soil erosion sensitivity | Soil texture | Clay | Clay loam Silty clay | Loam | Sandy loam Sandy clay Sandy clay loam | Sand Loamy sand Silt loam | 0.4 |
Slope (m) | 0–20 | 21–50 | 51–100 | 101–300 | >300 | 0.2 | ||
Vegetation | Water bodies Wetland Glacier | Forest land | Bush land Grass land | Cultivated land | Bare land Artificial surface | 0.4 | ||
Desertification sensitivity | Land use type | Forest land Water bodies Wetland Glacier | Bush land Artificial surface | Grass land | Cultivated land | Bare land | 0.5 | |
Disturbance | Construction land disturbance | Artificial surface | / | / | / | / | / | 0.4 |
Province | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Number | Total Area (km2) | Number | Total Area (km2) | Number | Total Area (km2) | |
Shanxi | 9 | 344.892 | 7 | 2787.956 | 28 | 42,236.743 |
Shaanxi | 7 | 1573.262 | 11 | 1312.133 | 13 | 34,891.863 |
Qinghai | 0 | / | 4 | 464.522 | 9 | 2715.901 |
Ningxia | 1 | 1015.665 | 2 | 1341.986 | 10 | 2979.969 |
Inner Mongolia | 0 | / | 8 | 792.578 | 14 | 7506.349 |
Henan | 14 | 973.902 | 2 | 1679.187 | 6 | 5854.184 |
Gansu | 2 | 356.088 | 17 | 12,547.432 | 14 | 17,562.792 |
Total | 27 | 4263.810 | 41 | 18,566.034 | 77 | 113,209.595 |
Potential Corridors (km) | |||||
---|---|---|---|---|---|
Year | Number | Min | Max | Sum | Average |
2000 | 64 | 8.783 | 304.374 | 4579.326 | 71.552 |
2010 | 85 | 1.174 | 747.333 | 6526.996 | 76.788 |
2020 | 105 | 1.624 | 258.197 | 7015.174 | 66.811 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Jia, X.; Zhao, Y.; Wang, H.; Chen, C.; Li, D.; Yang, S.; Li, J. The Temporal and Spatial Characteristics of Ecological Security Pattern in the Loess Plateau, China. Land 2024, 13, 570. https://doi.org/10.3390/land13050570
Luo M, Jia X, Zhao Y, Wang H, Chen C, Li D, Yang S, Li J. The Temporal and Spatial Characteristics of Ecological Security Pattern in the Loess Plateau, China. Land. 2024; 13(5):570. https://doi.org/10.3390/land13050570
Chicago/Turabian StyleLuo, Manya, Xia Jia, Yonghua Zhao, Huanyuan Wang, Chunyang Chen, Dongqian Li, Shuyuan Yang, and Juan Li. 2024. "The Temporal and Spatial Characteristics of Ecological Security Pattern in the Loess Plateau, China" Land 13, no. 5: 570. https://doi.org/10.3390/land13050570
APA StyleLuo, M., Jia, X., Zhao, Y., Wang, H., Chen, C., Li, D., Yang, S., & Li, J. (2024). The Temporal and Spatial Characteristics of Ecological Security Pattern in the Loess Plateau, China. Land, 13(5), 570. https://doi.org/10.3390/land13050570