Simulation and Prediction of Land Use Change and Carbon Emission under Multiple Development Scenarios at the City Level: A Case Study of Xi’an, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.2.1. Land Use Data
2.2.2. Data on Land Use Change Drivers
2.2.3. Socio-Economic and Energy Consumption Data
2.3. Research Methodology
2.3.1. Future Climate Scenarios Based on CMIP6
- (1)
- SSP126 combines SSP1 and Representative Concentration Pathway 2.6 (RCP2.6) and represents sustainable socio-economic development with low GHG emission levels.
- (2)
- SSP245 combines SSP2 and RCP4.5 and represents a middle-path scenario of socio-economic development with an intermediate level of GHG emissions.
- (3)
- SSP585 combines SSP5 and RCP8.5 and represents a rapid socio-economic development scenario characterized by the large-scale use of fossil fuels and high GHG emission levels.
2.3.2. SD Modelling
2.3.3. Measurement of Carbon Emissions from Land Use
- (1)
- Direct carbon emissions from land use
- (2)
- Indirect carbon emissions from land use
2.4. PLUS Modelling
2.4.1. Transfer Matrix
2.4.2. Field Weights
3. Results
3.1. Accuracy Verification
3.2. Simulation of Land Use Change in Xi’an under Different Scenarios
3.3. Land Use Carbon Emission Projections
3.3.1. Modelling of Carbon Emissions from Land Use from 2000 to 2020
3.3.2. Projections of Carbon Emissions from Land Use under Multiple Scenarios
4. Discussion
4.1. Reasons for Changes in Land Use and Carbon Emissions under Different Scenarios
4.2. Impact of Land Use Change on Carbon Emissions
4.3. Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rashid Khan, H.U.; Nassani, A.A.; Aldakhil, A.M.; Qazi Abro, M.M.; Islam, T.; Zaman, K. Pro-Poor Growth and Sustainable Development Framework: Evidence from Two Step GMM Estimator. J. Clean. Prod. 2019, 206, 767–784. [Google Scholar] [CrossRef]
- Yang, W.; Feng, L.; Wang, Z.; Fan, X. Carbon Emissions and National Sustainable Development Goals Coupling Coordination Degree Study from a Global Perspective: Characteristics, Heterogeneity, and Spatial Effects. Sustainability 2023, 15, 9070. [Google Scholar] [CrossRef]
- Bauer, N.; Keller, D.; Garbe, J.; Karstens, K.; Piontek, F.; Von Bloh, W.; Thiery, W.; Zeitz, M.; Mengel, M.; Strefler, J.; et al. Exploring Risks and Benefits of Overshooting a 1.5 °C Carbon Budget over Space and Time. Environ. Res. Lett. 2023, 18, 54015. [Google Scholar] [CrossRef]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Mi, Z.; Meng, J.; Guan, D.; Shan, Y.; Song, M.; Wei, Y.-M.; Liu, Z.; Hubacek, K. Chinese CO2 Emission Flows Have Reversed since the Global Financial Crisis. Nat. Commun. 2017, 8, 1712. [Google Scholar] [CrossRef] [PubMed]
- Kalfas, D.; Kalogiannidis, S.; Chatzitheodoridis, F.; Toska, E. Urbanization and Land Use Planning for Achieving the Sustainable Development Goals (SDGs): A Case Study of Greece. Urban Sci. 2023, 7, 43. [Google Scholar] [CrossRef]
- Hong, C.; Zhao, H.; Qin, Y.; Burney, J.A.; Pongratz, J.; Hartung, K.; Liu, Y.; Moore, F.C.; Jackson, R.B.; Zhang, Q.; et al. Land-Use Emissions Embodied in International Trade. Science 2022, 376, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jiang, X.; Chen, Y. Analysis of the Spatial-Temporal Evolution of Urbanization Quality in Zhejiang Province, China. Int. J. Environ. Res. Public Health 2023, 20, 4093. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Yang, C.; Song, J. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China. Sustainability 2015, 7, 4260–4279. [Google Scholar] [CrossRef]
- Li, Y.; He, C. Scenario Simulation and Forecast of Land Use/Cover in Northern China. Chin. Sci. Bull. 2008, 53, 1401–1412. [Google Scholar] [CrossRef]
- Xu, X.; Du, Z.; Zhang, H. Integrating the System Dynamic and Cellular Automata Models to Predict Land Use and Land Cover Change. Int. J. Appl. Earth. Obs. 2016, 52, 568–579. [Google Scholar] [CrossRef]
- Sohl, T.L.; Wimberly, M.C.; Radeloff, V.C.; Theobald, D.M.; Sleeter, B.M. Divergent Projections of Future Land Use in the United States Arising from Different Models and Scenarios. Ecol. Model. 2016, 337, 281–297. [Google Scholar] [CrossRef]
- Luo, H.; Li, Y.; Gao, X.; Meng, X.; Yang, X.; Yan, J. Carbon Emission Prediction Model of Prefecture-Level Administrative Region: A Land-Use-Based Case Study of Xi’an City, China. Appl. Energy 2023, 348, 121488. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Dong, H.; Zhang, L.; He, S. Spatial–Temporal Change Analysis and Multi-Scenario Simulation Prediction of Land-Use Carbon Emissions in the Wuhan Urban Agglomeration, China. Sustainability 2023, 15, 11021. [Google Scholar] [CrossRef]
- Cao, M.; Tian, Y.; Wu, K.; Chen, M.; Chen, Y.; Hu, X.; Sun, Z.; Zuo, L.; Lin, J.; Luo, L.; et al. Future Land-Use Change and Its Impact on Terrestrial Ecosystem Carbon Pool Evolution along the Silk Road under SDG Scenarios. Sci. Bull. 2023, 68, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Zaehle, S.; Bondeau, A.; Carter, T.R.; Cramer, W.; Erhard, M.; Prentice, I.C.; Reginster, I.; Rounsevell, M.D.A.; Sitch, S.; Smith, B.; et al. Projected Changes in Terrestrial Carbon Storage in Europe under Climate and Land-Use Change, 1990–2100. Ecosystems 2007, 10, 380–401. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; Yang, L.; Zhao, J.; Li, Y.; Qi, Y.; Ma, X.; Cao, L. Exploring the Response of Ecosystem Service Value to Land Use Changes under Multiple Scenarios Coupling a Mixed-Cell Cellular Automata Model and System Dynamics Model in Xi’an, China. Ecol. Indic. 2023, 147, 110009. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. China’s Urban Agglomerations, 1st ed.; Springer Geography; Springer: Singapore; Science Press: Beijing, China, 2020; ISBN 9789811515507. [Google Scholar]
- Feng, D.; Bao, W.; Fu, M.; Zhang, M.; Sun, Y. Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model. Land 2021, 10, 286. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, L.; Hu, F.; Zhang, Q. Diurnal Dynamics of Heat Exposure in Xi’an: A Perspective from Local Climate Zone. Build Environ. 2022, 222, 109400. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, F.; Wang, J.; Cai, W.; Wang, C.; Wang, K. Provincial and Gridded Population Projection for China under Shared Socioeconomic Pathways from 2010 to 2100. Sci. Data 2020, 7, 83. [Google Scholar] [CrossRef]
- Jiang, T.; Zhao, J.; Cao, L.-G.; Wang, Y.-J.; Su, B.-D.; Jing, C.; Wang, R.; Gao, C. Projection of National and Provincial Economy under the Shared Socioeconomic Pathways in China. Adv. Clim. Chang. Res. 2018, 14, 50. [Google Scholar]
- Harrisson, T. Explainer: How ‘Shared Socioeconomic Pathways’ Explore Future Climate Change. Available online: https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change/ (accessed on 24 May 2024).
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; van Vuuren, D.P.; van den Berg, M.; Feng, L.; Klein, D.; et al. Global Emissions Pathways under Different Socioeconomic Scenarios for Use in CMIP6: A Dataset of Harmonized Emissions Trajectories through the End of the Century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef]
- Wei, W.; Wang, J.; Wang, X.; Yan, P.; Xie, B.; Zhou, J.; Liu, T.; Lu, D. The Response of Global Terrestrial Water Storage to Drought Based on Multiple Climate Scenarios. Atmos. Res. 2024, 303, 107331. [Google Scholar] [CrossRef]
- Cook, B.; Mankin, J.; Marvel, K.; Williams, A.; Smerdon, J.; Anchukaitis, K. Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios. Earth’s Future 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
- Cai, G.; Xiong, J.; Wen, L.; Weng, A.; Lin, Y.; Li, B. Predicting the Ecosystem Service Values and Constructing Ecological Security Patterns in Future Changing Land Use Patterns. Ecol. Indic. 2023, 154, 110787. [Google Scholar] [CrossRef]
- Luo, P.; Wang, X.; Zhang, L.; Mohd Arif Zainol, M.R.R.; Duan, W.; Hu, M.; Guo, B.; Zhang, Y.; Wang, Y.; Nover, D. Future Land Use and Flood Risk Assessment in the Guanzhong Plain, China: Scenario Analysis and the Impact of Climate Change. Remote Sens. 2023, 15, 5778. [Google Scholar] [CrossRef]
- Tian, L.; Tao, Y.; Fu, W.; Li, T.; Ren, F.; Li, M. Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sens. 2022, 14, 2330. [Google Scholar] [CrossRef]
- Schwaninger, M.; Hamann, T.K. Theory-Building with System Dynamics: Principles and Practices. In Computer Aided Systems Theory—EUROCAST 2005; Moreno Díaz, R., Pichler, F., Quesada Arencibia, A., Eds.; Springer: Berlin/Heidelberg, China, 2005; pp. 56–62. [Google Scholar]
- Shen, Q.; Chen, Q.; Tang, B.; Yeung, S.; Hu, Y.; Cheung, G. A System Dynamics Model for the Sustainable Land Use Planning and Development. Habitat Int. 2009, 33, 15–25. [Google Scholar] [CrossRef]
- Hong, C.; Burney, J.A.; Pongratz, J.; Nabel, J.E.M.S.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and Regional Drivers of Land-Use Emissions in 1961-2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Wei, W.; Zhou, J.-J.; Hao, R.-J.; Chen, D.-B. Changes in Land Use Carbon Emissions and Coordinated Zoning in China. Huan Jing Ke Xue 2023, 44, 1267–1276. [Google Scholar] [PubMed]
- Yu, Z.; Chen, L.; Tong, H.; Chen, L.; Zhang, T.; Li, L.; Yuan, L.; Xiao, J.; Wu, R.; Bai, L.; et al. Spatial Correlations of Land-Use Carbon Emissions in the Yangtze River Delta Region: A Perspective from Social Network Analysis. Ecol. Indic. 2022, 142, 109147. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, S.; Fan, J.; Cai, Y. Examining the Effects of Land Use on Carbon Emissions: Evidence from Pearl River Delta. Int. J. Environ. Res. Public Health 2021, 18, 3623. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon Emissions from Land-Use Change and Management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, J.; Liu, Y.; Zhang, F.; Zhang, M. Response of Ecosystem Services to Land Use and Cover Change: A Case Study in Chengdu City. Resour. Conserv. Recycl. 2018, 132, 291–300. [Google Scholar] [CrossRef]
- Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; Shahtahmassebi, A. Carbon Emissions Induced by Land-Use and Land-Cover Change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2019, 646, 930–939. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, Land Use Change, and Carbon Emissions: Quantitative Assessments for City-Level Carbon Emissions in Beijing-Tianjin-Hebei Region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Su, K.; Wei, D.; Lin, W. Influencing Factors and Spatial Patterns of Energy-Related Carbon Emissions at the City-Scale in Fujian Province, Southeastern China. J. Clean. Prod. 2020, 244, 118840. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Y.; Li, B.; Liu, B.; Guo, Y.; Wang, Y.; Guo, Z.; Meng, R. Research on the Community Electric Carbon Emission Prediction Considering the Dynamic Emission Coefficient of Power System. Sci. Rep. 2023, 13, 5568. [Google Scholar] [CrossRef]
- Zheng, H.; Gao, X.; Sun, Q.; Han, X.; Wang, Z. The Impact of Regional Industrial Structure Differences on Carbon Emission Differences in China: An Evolutionary Perspective. J. Clean. Prod. 2020, 257, 120506. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, J.; Yan, W.; Chen, C. Backcasting Approach with Multi-Scenario Simulation for Assessing Effects of Land Use Policy Using GeoSOS-FLUS Software. MethodsX 2019, 6, 1384–1397. [Google Scholar] [CrossRef] [PubMed]
- Yonaba, R.; Koïta, M.; Mounirou, L.A.; Tazen, F.; Queloz, P.; Biaou, A.C.; Niang, D.; Zouré, C.; Karambiri, H.; Yacouba, H. Spatial and Transient Modelling of Land Use/Land Cover (LULC) Dynamics in a Sahelian Landscape under Semi-Arid Climate in Northern Burkina Faso. Land Use Policy 2021, 103, 105305. [Google Scholar] [CrossRef]
- Wang, L.; Anna, H.; Zhang, L.; Xiao, Y.; Wang, Y.; Xiao, Y.; Liu, J.; Ouyang, Z. Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China. Chin. Geogr. Sci. 2019, 29, 809–819. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic Simulation of Land Use Change and Assessment of Carbon Storage Based on Climate Change Scenarios at the City Level: A Case Study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Alexiadis, A. Global Warming and Human Activity: A Model for Studying the Potential Instability of the Carbon Dioxide/Temperature Feedback Mechanism. Ecol. Modell. 2007, 203, 243–256. [Google Scholar] [CrossRef]
- Pongratz, J.; Reick, C.H.; Raddatz, T.; Claussen, M. Effects of Anthropogenic Land Cover Change on the Carbon Cycle of the Last Millennium. Glob. Biogeochem. Cycles 2009, 23, 2009GB003488. [Google Scholar] [CrossRef]
- Shao, Y.; Yuan, X.; Ma, C.; Ma, R.; Ren, Z. Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China. Sustainability 2020, 12, 4449. [Google Scholar] [CrossRef]
- Liu, L.; Qu, J.; Gao, F.; Maraseni, T.N.; Wang, S.; Aryal, S.; Zhang, Z.; Wu, R. Land Use Carbon Emissions or Sink: Research Characteristics, Hotspots and Future Perspectives. Land 2024, 13, 279. [Google Scholar] [CrossRef]
- Marvin, D.; Sleeter, B.; Cameron, D.; Nelson, E.; Plantinga, A. Natural Climate Solutions Provide Robust Carbon Mitigation Capacity under Future Climate Change Scenarios. Sci. Rep. 2023, 13, 19008. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Y.; Chen, K.; Chen, Y. Progress and Hotspots of Research on Land-Use Carbon Emissions: A Global Perspective. Sustainability 2023, 15, 7245. [Google Scholar] [CrossRef]
- Rong, T.; Zhang, P.; Zhu, H.; Jiang, L.; Li, Y.; Liu, Z. Spatial Correlation Evolution and Prediction Scenario of Land Use Carbon Emissions in China. Ecol. Inform. 2022, 71, 101802. [Google Scholar] [CrossRef]
Data Type | Data Name | Year | Data Sources |
---|---|---|---|
Land use data | Land use | 2000, 2010 and 2020 | Centre for Resource and Environmental Sciences and Data, Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 1 July 2023) |
Driving factor | Demographic | 2019 | Centre for Resource and Environmental Sciences and Data, Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 5 July 2023) |
GDP | 2019 | ||
Temperatures | 2020 | National Earth System Science Data Centre (https://www.geodata.cn/, accessed on 5 July 2023) | |
Precipitation (meteorology) | 2020 | ||
DEM | - | Geospatial data cloud GDEMV3.30M resolution digital elevation data (http://www.gscloud.cn/home, accessed on 5 July 2023) | |
Elevation | - | Derived from slope analysis based on DEM | |
Distance to railway | 2020 | Open street map (https://www.openhistoricalmap.org/, accessed on 7 July 2023) | |
Distance to motorway | 2020 | ||
Distance to primary roads | 2020 | ||
Distance to secondary roads | 2020 | ||
Distance to river | 2020 | ||
Restricted conversion area | Qinling Mountain Ecological Function Reserve | 2020 | Centre for Resource and Environmental Sciences and Data, Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 10 September 2023) |
Reclassification using ArcGIS with restricted areas set to 0 and unrestricted areas set to 1 | |||
Development area | Xi’an Construction Outline Zone | 2020 | National Tibetan Plateau Science Data Centre (https://www.tpdc.ac.cn, accessed on 1 September 2023) |
Reclassification using ArcGIS, with development areas set to 2 and non-development areas set to 1 |
Type of Energy | Standard Coal Reference Factor (kgce/kg) | Carbon Emission Factor (tC/tce) |
---|---|---|
Raw coal | 0.7143 | 0.7559 |
Crude oil | 1.4286 | 0.5857 |
Petroleum | 1.2143 | 0.4483 |
Electrical power | 0.3450 | 0.2720 |
Results | Cultivated Land/km2 | Forest Land/km2 | Grass Land/km2 | Water/km2 | Construction Land/km2 | Unused Land/km2 |
---|---|---|---|---|---|---|
Actual value | 3533.66 | 3029.89 | 2102.35 | 162.22 | 1273.08 | 4.51 |
Analogue value | 3530.00 | 3030.00 | 2102.00 | 164.10 | 1277.00 | 2.27 |
Relative error | −0.10% | 0.00% | −0.02% | 1.16% | 0.31% | −49.66% |
Land Use Type | SSP126 | SSP245 | SSP585 | |||
---|---|---|---|---|---|---|
2030 | 2040 | 2030 | 2040 | 2030 | 2040 | |
Cultivated land | 3308.00 | 3082.00 | 3342.00 | 3153.00 | 3357.00 | 3178.00 |
Forest land | 3042.00 | 3051.00 | 3035.01 | 3040.12 | 3002.00 | 2976.00 |
Grassland | 2080.00 | 2064.00 | 2068.00 | 2041.00 | 2057.00 | 2014.00 |
Water | 171.80 | 182.60 | 165.70 | 173.70 | 154.10 | 149.00 |
Construction land | 1509.00 | 1721.00 | 1492.00 | 1691.00 | 1529.00 | 1789.00 |
Unused land | −4.85 | 4.84 | 3.27 | 7.71 | 7.06 | 0.68 |
Carbon Footprint | 2000 | 2010 | 2020 | |
---|---|---|---|---|
Carbon source | Cultivated land | 16.80 | 15.85 | 14.90 |
Construction land | 397.35 | 1216.30 | 2361.20 | |
Total | 414.15 | 1232.15 | 2376.10 | |
Carbon sinks | Forest land | 19.43 | 19.45 | 19.52 |
Grassland | 0.45 | 0.45 | 0.44 | |
Water | 0.31 | 0.35 | 0.42 | |
Unused land | 0.00 | 0.00 | 0.00 | |
Total | 20.19 | 20.25 | 21.38 | |
Net carbon emissions | 393.96 | 1211.90 | 2355.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, R.; Zhao, A.; Zou, L.; Liu, X.; Xu, R.; Li, Z. Simulation and Prediction of Land Use Change and Carbon Emission under Multiple Development Scenarios at the City Level: A Case Study of Xi’an, China. Land 2024, 13, 1079. https://doi.org/10.3390/land13071079
Bian R, Zhao A, Zou L, Liu X, Xu R, Li Z. Simulation and Prediction of Land Use Change and Carbon Emission under Multiple Development Scenarios at the City Level: A Case Study of Xi’an, China. Land. 2024; 13(7):1079. https://doi.org/10.3390/land13071079
Chicago/Turabian StyleBian, Rui, Anzhou Zhao, Lidong Zou, Xianfeng Liu, Ruihao Xu, and Ziyang Li. 2024. "Simulation and Prediction of Land Use Change and Carbon Emission under Multiple Development Scenarios at the City Level: A Case Study of Xi’an, China" Land 13, no. 7: 1079. https://doi.org/10.3390/land13071079
APA StyleBian, R., Zhao, A., Zou, L., Liu, X., Xu, R., & Li, Z. (2024). Simulation and Prediction of Land Use Change and Carbon Emission under Multiple Development Scenarios at the City Level: A Case Study of Xi’an, China. Land, 13(7), 1079. https://doi.org/10.3390/land13071079