Land Use Carbon Budget Pattern and Carbon Compensation Mechanism of Counties in the Pearl River Basin: A Perspective Based on Fiscal Imbalance
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Research Framework
3.2. Study Area Overview
3.3. Research Methods
3.3.1. Research Method for LUCC
3.3.2. Estimation Method for Land Use Carbon Emissions
3.3.3. Estimation Method for Land Use Carbon Absorption
3.3.4. Estimation and Modification Method for the LUCB
3.3.5. Method for Determining the Subject–Object, Value, and Priority Order of Carbon Compensation
3.4. Data Sources
4. Results
4.1. Change Characteristics and Carbon Absorption Contribution of Each Land Use Type
4.1.1. Change Characteristics of Each Land Use Type
4.1.2. Carbon Absorption Contribution of Each Land Use Type
4.2. Spatiotemporal Patterns and Changes in Carbon Emissions and Absorption
4.2.1. Time Series Changes in Carbon Emissions and Absorption
4.2.2. Spatial Distribution and Changes in Carbon Emissions and Absorption
4.3. Spatiotemporal Pattern and Changes in the LUCB
4.3.1. Time Series Changes in the LUCB
4.3.2. Spatial Distribution and Changes in the Modified LUCB
4.4. Determination of the Subject–Object and Value of Carbon Compensation
4.5. Determination of the Priority Order of Carbon Compensation
5. Discussion
5.1. Construction of Carbon Compensation Mechanism
5.2. Analysis of Results
5.3. Policy Recommendations
- (1)
- Each county in the PRB should take differentiated measures to reduce carbon and increase sinks according to the actual situation. Most of the municipal districts have a high level of economic development and limited carbon sink resources. Thus, they become carbon deficit areas. These areas should limit the excessive expansion of construction land and increase regional carbon storage through artificial afforestation. Some resource-based counties have become carbon deficit areas because of their large energy consumption. These regions should develop clean energy, promote industrial transformation, and focus on reducing energy carbon emissions. Carbon surplus areas have made significant contributions to the process of achieving regional carbon neutrality. However, they also need to improve LUCEE, promote economic development, and seek more benefits for local people.
- (2)
- The mismatch between vertical and horizontal fiscal power and affairs is the root cause of the need for carbon compensation. Therefore, fiscal system reform should be carried out, and the matching degree of fiscal power and affairs among governments at all levels should be improved. Clarifying the scope of expenditure responsibilities of governments at all levels in environmental governance, avoiding the downward transfer of expenditure responsibilities from higher levels of government, and expanding the expenditure burden of grassroots governments are also necessary. Additional fiscal power should be delegated to areas with high pressure on environmental protection to enable them to obtain more benefits in environmental governance.
- (3)
- Watershed carbon compensation should not be limited to the level of transfer payments. The upper and middle reaches of the PRB (the compensation area) have abundant natural resources, labor, land, and other production factors, whereas the lower reaches (the payment area) have comparative advantages in capital, technology, and management. After the carbon compensation mechanism matures, the two sides can further establish a two-way economic cooperation relationship to achieve complementary advantages. For example, the compensated district government can attract enterprises in the payment area by setting up “enclave industrial parks” to realize the transfer of production factors in geographical space and improve the enthusiasm of local governments for cross-regional coordinated development.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, I.T.; Peters, G.P.; et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- Pan, X.; Guo, S.; Xu, H.; Tian, M.; Pan, X.; Chu, J. China’s carbon intensity factor decomposition and carbon emission decoupling analysis. Energy 2022, 239, 122175. [Google Scholar] [CrossRef]
- Shen, W.; Liang, H.; Dong, L.; Ren, J.; Wang, G. Synergistic CO2 reduction effects in Chinese urban agglomerations: Perspectives from social network analysis. Sci. Total Environ. 2021, 798, 149352. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shi, Y.; Sun, W.; Chang, J.; Zhu, J.; Chen, L.; Wang, X.; Guo, Y.; Zhang, H.; Yu, L. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Shao, K.; Ye, J. The impact of fiscal decentralization on environmental pollution and the transmission mechanism based on promotion incentive perspective. Environ. Sci. Pollut. Res. 2022, 29, 86634–86650. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chang, C. Fiscal decentralization, environmental regulation, and pollution: A spatial investigation. Environ. Sci. Pollut. Res. 2020, 27, 31946–31968. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Du, T. Vertical fiscal imbalance, transfer payments, and fiscal sustainability of local governments in China. Int. Rev. Econ. Financ. 2021, 74, 392–404. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, D.; Ding, Y.; Jiang, H.; Yin, J. Research on cities’ carbon emissions and their spatiotemporal evolution coupled with nighttime light image and land use data in the Pearl River Basin. Adv. Earth Sci. 2024, 39, 317–328. [Google Scholar]
- Fan, Z.; Liu, J.; Yu, H.; Lu, H.; Zhang, P. Spatial-Temporal Pattern and Influencing Factors of Land Ecological Carrying Capacity in The National Pilot Zones for Ecological Conservation in China. Land 2022, 11, 2199. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef]
- He, Q.; Wei, F.; Deng, X.; Kong, F.; Li, C.; Yan, Z.; Qi, Y. Spatiotemporal pattern of carbon productivity and carbon offset potential in Chinese counties. Sci. Total Environ. 2022, 846, 157153. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wei, F.; Zhang, K.; Zhong, R.; Kong, F.; Qi, Y. Fiscal decentralization, leader localization, and reduction of pollution and carbon emissions—Empirical evidence from China’s fiscal “province-managing-county” reform. J. Environ. Manag. 2024, 360, 121175. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, W.; Xie, P.; Zhao, D. Spatial and temporal disparities of carbon emissions and interregional carbon compensation in major function-oriented zones: A case study of Guangdong province. J. Clean. Prod. 2020, 245, 118873. [Google Scholar] [CrossRef]
- Li, D.; Cao, L.; Zhou, Z.; Zhao, K.; Du, Z.; Chen, Y. Correlating CO2 emissions of cities with the inter-city carbon compensation mechanism: A regional perspective in the middle reaches of the Yangtze River (MRYR), China. Environ. Dev. Sustain. 2024, 26, 9185–9216. [Google Scholar] [CrossRef]
- Yang, S.; Fu, W.; Hu, S.; Ran, P. Watershed carbon compensation based on land use change: Evidence from the Yangtze River Economic Belt. Habitat Int. 2022, 126, 102613. [Google Scholar] [CrossRef]
- Qin, F. Fiscal expenditure structure, vertical fiscal imbalance and environmental pollution. Int. J. Environ. Res. Public Health 2022, 19, 8106. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z. Fiscal System Imbalance and Regional Economic Resilience: Theoretical Mechanism and Empirical Evidence. J. Ind. Technol. Econ. 2023, 42, 146–153. [Google Scholar]
- Wang, L.; Zhang, Y.; Zhao, Q.; Ren, C.; Fu, Y.; Wang, T. Horizontal CO2 Compensation in the Yangtze River Delta Based on CO2 Footprints and CO2 Emissions Efficiency. Int. J. Environ. Res. Public Health 2023, 20, 1369. [Google Scholar] [CrossRef] [PubMed]
- Chuai, X.; Xia, M.; Ye, X.; Zeng, Q.; Lu, J.; Zhang, F.; Miao, L.; Zhou, Y. Carbon neutrality check in spatial and the response to land use analysis in China. Environ. Impact Assess. Rev. 2022, 97, 106893. [Google Scholar] [CrossRef]
- Bao, X.; Wen, X.; Sun, X.; Zhao, F.; Wang, Y. Interannual variation in carbon sequestration depends mainly on the carbon uptake period in two croplands on the North China Plain. PLoS ONE 2014, 9, e110021. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, G. Spatiotemporal differentiation of carbon budget and balance zoning: Insights from the middle reaches of the Yangtze River Urban Agglomeration, China. Appl. Geogr. 2024, 167, 103293. [Google Scholar] [CrossRef]
- Xia, M.; Chuai, X.; Xu, H.; Cai, H.H.; Xiang, A.; Lu, J.; Zhang, F.; Li, M. Carbon deficit checks in high resolution and compensation under regional inequity. J. Environ. Manag. 2023, 328, 116986. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Shen, H.; Li, X.; Gan, W.; Zhang, L. A long-term and comprehensive assessment of the urbanization-induced impacts on vegetation net primary productivity. Sci. Total Environ. 2019, 669, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Hao, R.; Ma, L.; Xie, B.; Zhou, L.; Zhou, J. Characteristics of carbon budget based on energy carbon emissions and vegetation carbon absorption. Environ. Monit. Assess. 2024, 196, 134. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Xia, W.; Yu, H.; Liu, J.; Liu, B. Spatiotemporal Pattern and Spatial Convergence of Land Use Carbon Emission Efficiency in the Pan-Pearl River Delta: Based on the Difference in Land Use Carbon Budget. Land 2024, 13, 634. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chin. J. Plant Ecol. 2007, 31, 413. [Google Scholar]
- Zhang, W. The Study of Carbon Sink and Carbon Source Accounting and Ecological Compensation in Key Ecological Functional Areas of Shaanxi Province. Ecol. Econ. 2018, 34, 191–194. [Google Scholar]
- Zhao, R.; Liu, Y.; Ma, L.; Li, Y.; Hou, L.; Zhang, Z.; Ding, M. County-level Carbon Compensation of Henan Province Based on Carbon Budget Estimation. J. Nat. Resour. 2016, 31, 1675–1687. [Google Scholar]
- Han, X.; Gao, X.; Ahmad, F.; Chandio, A.A.; Khan, S. Carbon compensation and carbon neutrality: Regional variations based on net carbon transfer of trade in China. Geosci. Front. 2024, 15, 101809. [Google Scholar] [CrossRef]
- Yan, F.; Li, C.; Lu, Z.; Miao, Z.; Han, Q.; Huang, X.; Zhao, M.; Li, J.; Pang, J.; Chen, Y. Spatial–Temporal Patterns of Carbon Sequestration Benefits and Identification of County-Level Compensation Orders in Beijing–Tianjin–Hebei Ecosystems. Sustainability 2023, 15, 15973. [Google Scholar] [CrossRef]
- Song, H.; Zhang, X.; Zou, J.; Gu, L.; Li, Y.; Tang, J. A study on the value of carbon compensation in the Huai River basin based on land use from 2000 to 2020. Phys. Chem. Earth Parts A/B/C 2023, 132, 103490. [Google Scholar] [CrossRef]
- Wang, N.; Liu, J.; Wu, D.; Gao, S.; Wang, R. Regional eco-compensation based on ecosystem service assessment: A case study of Shandong Province. Acta Ecol. Sin. 2010, 30, 6646–6653. [Google Scholar]
- Yang, G.; Shang, P.; He, L.; Zhang, Y.; Wang, Y.; Zhang, F.; Zhu, L.; Wang, Y. Interregional carbon compensation cost forecast and priority index calculation based on the theoretical carbon deficit: China as a case. Sci. Total Environ. 2019, 654, 786–800. [Google Scholar] [CrossRef]
- Miao, Y.; Kong, C.; Wang, L.; Mu, J.; Lu, X.; Bao, J.; Li, H. A provincial lateral carbon emissions compensation plan in China based on carbon budget perspective. Sci. Total Environ. 2019, 692, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yin, J.; Qiu, Y.; Zhang, B.; Ding, Y.; Xia, R. Industrial carbon emission efficiency of cities in the pearl river basin: Spatiotemporal dynamics and driving forces. Land 2022, 11, 1129. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Jia, J.; Zhang, Z. Spatiotemporal pattern evolution and influence factors of land-use carbon emissions in counties, Jiangxi Province. Acta Ecol. Sin. 2023, 43, 8390–8403. [Google Scholar]
- Niu, Y.; Zhao, X.; Hu, Y. Spatial variation of carbon emissions from county land use in Chang-Zhu-Tan area based on NPP-VIIRS night light. Acta Sci. Circumstantiae 2021, 41, 3847–3856. [Google Scholar]
- Wu, Y.; Wang, P.; Liu, X.; Chen, J.; Song, M. Analysis of regional carbon allocation and carbon trading based on net primary productivity in China. China Econ. Rev. 2020, 60, 101401. [Google Scholar] [CrossRef]
- Hong, Y.; Yu, H.; Lu, Y.; Peng, L. Balancing low-carbon and eco-friendly development: Coordinated development strategy for land use carbon emission efficiency and land ecological security. Environ. Sci. Pollut. Res. 2024, 31, 9495–9511. [Google Scholar] [CrossRef]
- Zhao, P.; Zeng, L.; Lu, H.; Zhou, Y.; Hu, H.; Wei, X. Green economic efficiency and its influencing factors in China from 2008 to 2017: Based on the super-SBM model with undesirable outputs and spatial Dubin model. Sci. Total Environ. 2020, 741, 140026. [Google Scholar] [CrossRef]
- Li, Z.; Li, M.; Xia, B. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation. Ecol. Indic. 2020, 114, 106319. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4407714. [Google Scholar] [CrossRef]
- Gao, J.; Shi, Y.; Zhang, H.; Chen, X.; Zhang, W.; Shen, W.; Xiao, T.; Zhang, Y. China Regional 250 m Normalized Difference Vegetation Index Data Set (2000–2022); National Tibetan Plateau/Third Pole Environment Data Center: Tibet, China, 2023. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Niu, J.; Wang, Z.; Lin, H.; Zhang, Y.; Sun, B.; Liu, Y. Temporal and Spatial Evolution Characteristics and Driving Factors of NPP in the Huaihe River Economic Belt. Geogr. Geo-Inf. Sci. 2024, 40, 37–43. [Google Scholar]
- Guo, J.; Liu, M. Experimental state rescaling, goal-oriented governance, and urban transformation in China: The case of Lanzhou. Geoforum 2022, 137, 72–82. [Google Scholar] [CrossRef]
- Cai, H.; Tong, Z.; Xu, S.; Chen, S.; Zhu, P.; Liu, W. Fiscal decentralization, government behavior, and environmental pollution: Evidence from China. Front. Environ. Sci. 2022, 10, 901079. [Google Scholar] [CrossRef]
- Liu, R.; Sun, K.; Cao, H. The impact and mechanism of vertical fiscal imbalance on green development efficiency: An empirical analysis based on city-level samples in China. Heliyon 2024, 10, e27097. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Zhang, C. The evolutionary game analysis of inter-provincial horizontal carbon ecological compensation. Soft Sci. 2021, 35, 115–122. [Google Scholar]
- Peng, Q.; Xu, W.; Xiao, Y. Can carbon offset policies be effectively implemented in all regions of China? An evolutionary game analysis of decision-making dynamics of local governments. Sustainability 2022, 14, 1591. [Google Scholar] [CrossRef]
- Lan, J.; Qu, L. Multi-scenario Simulation of Land Use and Carbon Storage Assessment in the Pearl River Basin in the Next Decade. J. Soil Water Conserv. 2024, 38, 266–275. [Google Scholar]
- Li, L.; Xia, Q.; Dong, J.; Zhang, B. County-level carbon ecological compensation of Wuhan Urban Agglomeration under carbon neutrality target: Based on the difference in land use carbon budget. Acta Ecol. Sin. 2023, 7, 2627–2639. [Google Scholar]
- Xia, Q.; Li, L.; Zhang, B.; Dong, J. Nonlinear influence of land-use transition on carbon emission transfer: A threshold regression analysis of the middle reaches of the Yangtze River in China. Land 2022, 11, 1531. [Google Scholar] [CrossRef]
- Rong, T.; Zhang, P.; Li, G.; Wang, Q.; Zheng, H.; Chang, Y.; Zhang, Y. Spatial correlation evolution and prediction scenario of land use carbon emissions in the Yellow River Basin. Ecol. Indic. 2023, 154, 110701. [Google Scholar] [CrossRef]
- Gu, H.; Liu, Y.; Xia, H.; Li, Z.; Huang, L.; Zeng, Y. Temporal and Spatial Differences in CO2 Equivalent Emissions and Carbon Compensation Caused by Land Use Changes and Industrial Development in Hunan Province. Sustainability 2023, 15, 7832. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Y.; Wang, Y.; Lin, X.; Wu, Y.; Wang, J.; Wu, S.; He, Y. Urbanization promotes carbon storage or not? The evidence during the rapid process of China. J. Environ. Manag. 2024, 359, 121061. [Google Scholar] [CrossRef]
- Cheng, K.; Yang, H.; Tao, S.; Su, Y.; Guan, H.; Ren, Y.; Hu, T.; Li, W.; Xu, G.; Chen, M. Carbon storage through China’s planted forest expansion. Nat. Commun. 2024, 15, 4106. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, J.; Jiang, H.; Chen, S.; Ding, Y.; Xia, R.; Wei, D.; Luo, X. Multi-source data assessment and multi-factor analysis of urban carbon emissions: A case study of the Pearl River Basin, China. Urban Clim. 2023, 51, 101653. [Google Scholar] [CrossRef]
2020 2005 | Cropland | Forestland | Grassland | Water Area | Unused Land | Construction Land | Transfer-Out |
---|---|---|---|---|---|---|---|
Cropland | 121,957.04 | 26,399.27 | 1999.78 | 799.81 | 16.07 | 4098.12 | 33,313.05 |
Forestland | 21,724.27 | 368,982.35 | 491.62 | 24.59 | 1.4 | 373.74 | 22,615.62 |
Grassland | 3779.39 | 2755.69 | 4865.78 | 53.9 | 10.07 | 189.53 | 6788.58 |
Water area | 1285.42 | 91.27 | 17.28 | 6306 | 8.7 | 359.6 | 1762.27 |
Unused land | 0.93 | 0.04 | 1.2 | 4.22 | 2.7 | 3.14 | 9.53 |
Construction land | 19.22 | 0.68 | 0.17 | 115.18 | 0.02 | 7976.36 | 135.27 |
Transfer-in | 26,809.23 | 29,246.95 | 2510.05 | 997.7 | 36.26 | 5024.13 | |
Net transfer | −6503.82 | 6631.33 | −4278.53 | −764.57 | 26.73 | 4888.86 |
Region | Amount | Region | Amount | Region | Amount | Region | Amount |
---|---|---|---|---|---|---|---|
Guangdong | 5750.97 | Qingyuan | −388.21 | Baise | −1959.02 | Yunnan | −4962.9 |
Shenzhen | 975.67 | Dongguan | 1231.32 | Hezhou | −491.96 | Kunming | −63.27 |
Guangzhou | 2141.08 | Zhongshan | 1107.63 | Hechi | −1598.99 | Qujing | −1822.7 |
Shaoguan | −553.46 | Yunfu | −143.75 | Laibin | −373.65 | Yuxi | −171.25 |
Zhuhai | 719.58 | Guangxi | −7310.12 | Chongzuo | −806.21 | Honghe | −947.6 |
Foshan | 1443.67 | Nanning | 273.01 | Guizhou | −1382.37 | Wenshan | −1958.07 |
Jiangmen | 830.84 | Liuzhou | −99.85 | Guiyang | 380.18 | Jiangxi | −744.75 |
Maoming | −391.2 | Guilin | −838.54 | Liupanshui | 564.74 | Ganzhou | −744.75 |
Zhaoqing | −210.38 | Wuzhou | −371.8 | Anshun | −81.22 | Hunan | −415.11 |
Huizhou | 1021.11 | Fangchenggang | −295.14 | Bijie | −472 | Shaoyang | −131.02 |
Meizhou | −142.94 | Qinzhou | −414.34 | Qianxinan | −421.5 | Chenzhou | 158.24 |
Heyuan | −645.76 | Guigang | −147.53 | Qiandongnan | −635.83 | Yongzhou | −328.41 |
Yangjiang | −268.55 | Yulin | −186.11 | Qiannan | −716.74 | Huaihua | −113.92 |
Rank | County | Amount | Rank | County | Amount | Rank | County | Amount |
---|---|---|---|---|---|---|---|---|
1 | Dongguan | 1231.32 | 18 | Panzhou | 289.01 | 241 | Yangchun | −236.54 |
2 | Zhongshan | 1107.63 | 19 | Qingcheng | 276.95 | 242 | Rongshui | −242.2 |
3 | Nanning urban district | 680.68 | 20 | Xinhui | 275.28 | 243 | Shiping | −245.09 |
4 | Liuzhou urban district | 642.22 | 21 | Heshan | 260.48 | 244 | Luoping | −247.96 |
5 | Guangzhou urban district | 621.12 | 22 | Doumen | 248.82 | 245 | Longlin | −256.26 |
6 | Shunde | 522.06 | 23 | Liupanshui urban district | 247.51 | 246 | Mile | −265.88 |
7 | Nanhai | 504.18 | 24 | Huadu | 244.1 | 247 | Jianshui | −284.32 |
8 | Huiyang | 437.95 | 25 | Jinwan | 239.55 | 248 | Xingbin | −300.35 |
9 | Zengcheng | 390.87 | … | … | … | 249 | Yanshan | −334.4 |
10 | Bao’an | 389.3 | 233 | Bobai | −198.32 | 250 | Xundian | −349.45 |
11 | Huaxi | 380.18 | 234 | Liping | −198.58 | 251 | Funing | −365.24 |
12 | Longgang | 372.96 | 235 | Dongyuan | −199.86 | 252 | Tianlin | −372.39 |
13 | Baiyun | 366.73 | 236 | Fuyuan | −223.92 | 253 | Xuanwei | −400.68 |
14 | Huicheng | 365.62 | 237 | Xinyi | −229.64 | 254 | Qiubei | −441.13 |
15 | Xingyi | 338.18 | 238 | Huanjiang | −232.12 | 255 | Weining | −472 |
16 | Guandu | 291.16 | 239 | Xilin | −235.02 | 256 | Huize | −479.16 |
17 | Boluo | 289.13 | 240 | Ningming | −235.06 | 257 | Guangnan | −625.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Xia, W.; Yu, H.; Liu, J.; Liu, B. Land Use Carbon Budget Pattern and Carbon Compensation Mechanism of Counties in the Pearl River Basin: A Perspective Based on Fiscal Imbalance. Land 2024, 13, 1141. https://doi.org/10.3390/land13081141
Fan Z, Xia W, Yu H, Liu J, Liu B. Land Use Carbon Budget Pattern and Carbon Compensation Mechanism of Counties in the Pearl River Basin: A Perspective Based on Fiscal Imbalance. Land. 2024; 13(8):1141. https://doi.org/10.3390/land13081141
Chicago/Turabian StyleFan, Zhenggen, Wentong Xia, Hu Yu, Ji Liu, and Binghua Liu. 2024. "Land Use Carbon Budget Pattern and Carbon Compensation Mechanism of Counties in the Pearl River Basin: A Perspective Based on Fiscal Imbalance" Land 13, no. 8: 1141. https://doi.org/10.3390/land13081141
APA StyleFan, Z., Xia, W., Yu, H., Liu, J., & Liu, B. (2024). Land Use Carbon Budget Pattern and Carbon Compensation Mechanism of Counties in the Pearl River Basin: A Perspective Based on Fiscal Imbalance. Land, 13(8), 1141. https://doi.org/10.3390/land13081141