Grassland Ecosystem Services: Their Economic Evaluation through a Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Science Mapping
2.2. The Systematic Review Process
3. Results
3.1. The Descriptive and Bibliometric Analysis of the Literature on Grasslands Ecosystem Services
3.2. The Analysis of the Documents Referring to the Economic Evaluation Methodologies of the Grassland ES
4. Discussion
4.1. Main Findings
4.2. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Data on Land Cover (Grassland). FAOSTAT. 2021. Available online: https://www.fao.org/faostat/en/#data/LC (accessed on 10 May 2024).
- FAO. Guidelines: Land Evaluation for Extensive Grazing, 1990. FAO Soil Bulletin 58. Available online: https://www.fao.org/4/t0412e/t0412e.pdf (accessed on 3 July 2024).
- Faber-Langendoen, D.; Keeler-Wolf, T.; Meidinger, D.; Josse, C.; Weakley, A.; Tart, D.; Navarro, G.; Hoagland, B.; Ponomarenko, S.; Fults, G.; et al. Classification and Description of World Formation Types; Gen. Tech. Rep. RMRS-GTR-2016; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2016; Volume 346, p. 222. [Google Scholar]
- Dixon, A.P.; Faber-Langendoen, D.; Josse, C.; Morrison, J.; Loucks, C.J. Distribution mapping of world grassland types. J. Biogeogr. 2014, 41, 2003–2019. [Google Scholar] [CrossRef]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; Mcivor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Han, X.; Zhang, W.; Shao, C. Types and Distribution of Chinese Grassland Ecosystems. In Grassland Ecosystems of China. Ecosystems of China; Springer: Singapore, 2020; Volume 2. [Google Scholar] [CrossRef]
- Lezama, F.; Cáceres, D.; Pañella, P.; del Pino, A. Land-Use Intensification by Overseeding Legumes on Natural Grasslands: Impacts on Plant Diversity. Rangel. Ecol. Manag. 2024, 93, 95–103. [Google Scholar] [CrossRef]
- Colman, C.B.; Guerra, A.; Almagro, A.; de Oliveira, R.F.; Rosa, I.M.D.; Fernandes, G.W.; Oliveira, P.T.S. Modeling the Brazilian Cerrado land use change highlights the need to account for private property sizes for biodiversity conservation. Sci. Rep. 2024, 14, 4559. [Google Scholar] [CrossRef] [PubMed]
- Noellemeyer, E.; Álvarez, L.; Álvarez, C.; Dillchneider, A.; Farrell, M.; Fernández, R.; Buss, E.F.; Frasier, I.; Gaggioli, C.; Gili, A.; et al. From science to practice: The AGSUS protocol for monitoring and certification of sustainable soil management and carbon sequestration. Soil Till Res. 2024, 241, 106102. [Google Scholar] [CrossRef]
- Peeters, A.; Beaufoy, G.; Canals, R.M.; De Vliegher, A.; Huyghe, C.; Isselstein, J.; Jones, G.; Kessler, W.; Kirilov, A.; Mosquera-Losada, M.R.; et al. Grassland term definitions and classifications adapted to the diversity of European grassland-based systems. In Grassland Science in Europe—EGF at 50: The Future of European Grasslands; Hopkins, A., Collins, R.P., Fraser, M.D., King, V.R., Lloyd, D.C., Moorby, J.M., Robson, P.R.H., Eds.; IBERS, Aberystwyth University: Gogerddan, UK, 2014; Volume 19. [Google Scholar]
- Dengler, J.; Janišová, M.; Török, P.; Wellstein, C. Biodiversity of palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 2014, 182, 1–14. [Google Scholar] [CrossRef]
- Richter, F.; Jan, P.; El Benni, N.; Lüscher, A.; Buchmann, N.; Klaus, V.H. A guide to assess and value ecosystem services of grasslands. Ecosyst. Serv. 2021, 52, 101376. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More important for ecosystem services than you might think. Ecosphere 2019, 10, 1–20. [Google Scholar] [CrossRef]
- Costanza, R.; Dange, R.; Degroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Egoh, B.J.; Bengtsson, R.; Lindborg, J.M.; Bullock, A.; Dixon, P.; Rouget, M. The importance of grasslands in providing ecosystem services: Opportunities for poverty alleviation. In Routledge Handbook of Ecosystem Services; Potschin, M., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routledge: London, UK; New York, NY, USA, 2016; pp. 421–441. [Google Scholar]
- Basso, F.; Santilocchi, R.; Postiglione, L.; Cavallero, A.; Grignani, C.; Reyneri, A.; Acutis, M.; Costa, G.; Pascal, G.; Ziliotto, U.; et al. Gestione e miglioramento di pascoli italiani. Riv. Agron. 1992, 26, 344–359. [Google Scholar]
- Queiroz, C.; Beilin, R.; Folke, C.; Lindborg, R. Farmland abandonment: Threat or opportunity for biodiversity conservation? Front. Ecol. Environ. 2014, 12, 288–296. [Google Scholar] [CrossRef]
- Bojārs, E.; Ruskule, A.; Veidemane, K.; Fammler, H.; Kuris, M.; Norvaišaite, R.; Burkhard, B. How do Grasslands Benefit Humans-Introduction to Grassland Ecosystem Services. Baltic Environmental Forum. 2017. Available online: https://vivagrass.eu/wp-content/uploads/2017/05/broshure-final-how-grasslands-benefit-human-introduction-to-grassland-ecosystem-services-download.pdf (accessed on 1 July 2024).
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef]
- Erb, K.H.; Kastner, T.; Plutzar, C.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 2018, 553, 73–76. [Google Scholar] [CrossRef]
- Veen, P.; Jefferson, R.; de Smidt, J.; van der Straaten, J. Grasslands in Europe of High Nature Value; KNNV Publishing: Zeist, The Netherlands, 2009. [Google Scholar]
- Habel, J.C.; Dengler, J.; Janišová, M.; Török, P.; Wellstein, C.; Wiezik, M. European grassland ecosystems: Threatened hotspots of biodiversity. Biodivers. Conserv. 2013, 22, 2131–2138. [Google Scholar] [CrossRef]
- Helgadóttir, Á.; Frankow-Lindberg, B.E.; Seppänen, M.M.; Søegaard, K.; Østrem, L. European grasslands overview: Nordic region. In Grassland Science in Europe—EGF at 50: The Future of European Grasslands; Hopkins, A., Collins, R.P., Fraser, M.D., King, V.R., Lloyd, D.C., Moorby, J.M., Robson, P.R.H., Eds.; IBERS, Aberystwyth University: Gogerddan, UK, 2014; Volume 19. [Google Scholar]
- Huyghe, C.; De Vliegher, A.; Goliński, P. European grasslands overview: Temperate region. In Grassland Science in Europe, EGF at 50: The Future of European Grasslands; Hopkins, A., Collins, R.P., Fraser, M.D., King, V.R., Lloyd, D.C., Moorby, J.M., Robson, P.R.H., Eds.; IBERS, Aberystwyth University: Gogerddan, UK, 2014; Volume 19. [Google Scholar]
- Cosentino, S.L.; Porqueddu, C.; Copani, V.; Patanè, C.; Testa, G.; Scordia, D.; Melis, R. European grasslands overview: Mediterranean region. In Grassland Science in Europe, EGF at 50: The Future of European Grasslands; Hopkins, A., Collins, R.P., Fraser, M.D., King, V.R., Lloyd, D.C., Moorby, J.M., Robson, P.R.H., Eds.; IBERS, Aberystwyth University: Gogerddan, UK, 2014; Volume 19. [Google Scholar]
- Jouven, M.; Lapeyronie, P.; Moulin, C.H.; Bocquier, F. Rangeland utilization in Mediterranean farming systems. Animal 2010, 4, 1746–1757. [Google Scholar] [CrossRef] [PubMed]
- Perevolotsky, A. Integrating landscape ecology in the conservation of Mediterranean ecosystems. The Israeli experience. Isr. J. Plant Sci. 2005, 53, 203–213. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N.; Berry, P.; Dunford, R.; Harrison, P.A. Concepts and methods in ecosystem services valuation. In Routledge Handbook of Ecosystem Services; Potschin, M., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routledge Handbooks Online: London, UK, 2016; pp. 99–111. [Google Scholar]
- Kang, B.; Shao, Q.; Xu, H.; Jiang, F.; Wei, X.; Shao, X. Research on grassland ecosystem service value in China under climate change based on meta-analysis: A case study of Qinghai province. Int. J. Clim. Change Strateg. Manag. 2020, 12, 617–637. [Google Scholar] [CrossRef]
- Liu, H.; Hou, L.; Kang, N.; Nan, Z.; Huang, J. A meta-regression analysis of the economic value of grassland ecosystem services in China. Ecol. Indic. 2022, 138, 108793. [Google Scholar] [CrossRef]
- Liu, H.; Hou, L.; Kang, N.; Nan, Z.; Huang, J. The economic value of grassland ecosystem services: A global meta-analysis. Grassl. Res. 2022, 1, 63–74. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A. How do scholars approach the circular economy? A systematic literature review. J. Clean. Prod. 2018, 178, 703–722. [Google Scholar] [CrossRef]
- Denyer, D.; Tranfield, D. Producing a systematic review. In The Sage Handbook of Organizational Research Methods; Buchanan, D.A., Bryman, A., Eds.; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 671–689. [Google Scholar]
- Pergola, M.; De Falco, E.; Belliggiano, A.; Ievoli, C. The Most Relevant Socio-Economic Aspects of Medicinal and Aromatic Plants through a Literature Review. Agriculture 2024, 14, 405. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Manual for VOSviewer Version 1.6.20. 2023. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.20.pdf (accessed on 25 May 2024).
- Muley, A.; Medithi, S. A Quantitative Literature Analysis of the Research on Holy Basil (Tulsi). J. Scientometr. Res. 2022, 11, 30–36. [Google Scholar] [CrossRef]
- Sánchez, A.D.; de la Cruz Del Río Rama, M.; García, J.Á. Bibliometric analysis of publications on wine tourism in the databases Scopus and WoS. Eur. Res. Manag. Bus. Econ. 2017, 23, 8–15. [Google Scholar] [CrossRef]
- Aghaei Chadegani, A.; Salehi, H.; Md Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ale Ebrahim, N. A comparison between two main academic literature collections: Web of science and Scopus databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef]
- Guz, A.N.; Rushchitsky, J.J. Scopus: A system for the evaluation of scientific journals. Int. Appl. Mech. 2009, 45, 351–362. [Google Scholar] [CrossRef]
- Parton, W.J.; Wright, R.G.; Risser, P.G. Simulated grazing responses on the proposed prairies National Park. Environ. Manag. 1980, 4, 165–170. [Google Scholar] [CrossRef]
- Loreau, M.; Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 2001, 412, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Balvanera, P.; Pfisterer, A.B.; Buchmann, N.; He, J.; Nakashizuka, T.; Raffaelli, D.G.; Schmid, B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.; Knops, J. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 2006, 441, 629–632. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G.A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. 2014, 111, 5266–5270. [Google Scholar] [CrossRef]
- Hoekstra, J.M.; Boucher, T.; Ricketts, T.H.; Roberts, C.S. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol. Lett. 2004, 8, 23–29. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.; Reich, P.B.; Jeffries, T.C.; Gaitan, J.J.; Encinar, D.; Berdugo, M.; Campbell, C.D.; Singh, B.K. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 2016, 7, 10541. [Google Scholar] [CrossRef]
- Díaz, S.M.; Lavorel, S.; de Bello, F.; Quétier, F.; Grigulis, K.; Robson, T.M. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. 2007, 104, 20684–20689. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 17, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.S.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; van Ruijven, J.; et al. High plant diversity is needed to maintain ecosystem services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 15, 9477–9482. [Google Scholar] [CrossRef]
- Yang, C.; Li, J.; Jiang, S.; Tian, Y.; Li, C.; Yang, W.; Duan, H.; Wei, Z.; Huang, Y. The Impacts of Land-Use Changes on Ecosystem Service Value in the Yunnan–Kweichow Plateau, China. Sustainability 2024, 16, 1062. [Google Scholar] [CrossRef]
- Zhu, L.N.; Zhao, M.; Li, Y.F.; Fan, Y.; Wang, J. The Space-time Relationship between the Ecosystem Service Value and the Human Activity Intensity in Xi’an Metropolitan Area. J. Ecol. Rural. Environ. 2024, 40, 325–334. [Google Scholar]
- Li, J.; Hu, D.; Wang, Y.; Chu, J.; Yin, H.; Ma, M. Study of identification and simulation of ecological zoning through integration of landscape ecological risk and ecosystem service value. Sustain. Cities Soc. 2024, 107, 105442. [Google Scholar] [CrossRef]
- Hong, X.; Peng, Q.; Zheng, R.; Lin, W.; Fan, S.; Su, K. Evaluating the Spatial Evolution of the Eco-Economy Harmony in Anxi County, China, Based on Ecosystem Services Value. Sustainability 2024, 16, 1491. [Google Scholar] [CrossRef]
- Xia, F.; Huang, Y.; Dong, L. Comparison of comprehensive benefits of land-use systems under multi- and single-element governance. Land Use Policy 2024, 141, 107164. [Google Scholar] [CrossRef]
- You, C.; Qu, H.; Zhang, S.; Guo, L. Assessment of Uncertainties in Ecological Risk Based on the Prediction of Land Use Change and Ecosystem Service Evolution. Land 2024, 13, 535. [Google Scholar] [CrossRef]
- Dammag, A.Q.; Dai, J.; Cong, G.; Derhem, B.Q.; Latif, H.Z. Assessing and predicting changes of ecosystem service values in response to land use/land cover dynamics in Ibb City, Yemen: A three-decade analysis and future outlook. Int. J. Digit. Earth 2024, 17, 137–147. [Google Scholar] [CrossRef]
- Li, T.; Shi, D.; Jiang, S.; Li, Y.; Yu, H. Analysis of Spatial—Temporal Variation in Ecosystem Service Value in Shandong Province over the Last Two Decades. Sustainability 2024, 16, 515. [Google Scholar] [CrossRef]
- Zuo, Z.; Yang, Y.; Wang, R.; Li, J.; Zhang, P. Analysis of the gains and losses of ecosystem service value under land use change and zoning in Qiqihar. Front. Ecol. Evol. 2023, 11, 1192952. [Google Scholar] [CrossRef]
- Yin, D.; Yu, H.; Lu, Y.; Li, X. Spatial pattern evolution of territorial space and its effects on ecological response in the Yellow River Basin during 2000–2020. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering. Chin. Soc. Agric. Eng. 2023, 39, 217–228. [Google Scholar]
- Bao, J.; Wang, W.; Zhao, T. Spatiotemporal Changes of Ecosystem Service Values in Response to Land Cover Dynamics in China from 1992 to 2020. Sustainability 2023, 15, 7210. [Google Scholar] [CrossRef]
- Jin, T.; Chen, Y.; Shu, B.; Gao, M.; Qiu, J. Spatiotemporal evolution of ecosystem service value and topographic gradient effect in the Da-Xiao Liangshan Mountains in Sichuan Province, China. J. Mt. Sci. 2023, 20, 2344–2357. [Google Scholar] [CrossRef]
- Chi, Y.; He, C. Impact of Land Use Change on the Spatial and Temporal Evolution of Ecosystem Service Values in South China Karst Areas. Forests 2023, 14, 893. [Google Scholar] [CrossRef]
- Zeng, J.; Bian, J.; Chen, W. Impact of slope farmland use change on ecosystem services value in China, 2000–2020. J. Mt. Sci. 2023, 20, 821–833. [Google Scholar] [CrossRef]
- Xu, X.; Peng, Y. Ecological Compensation in Zhijiang City Based on Ecosystem Service Value and Ecological Risk. Sustainability 2023, 15, 4783. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Z.; Xiao, S.; Xiao, S.; Yan, C. Driving Force and Ecosystem Service Values Estimation in the Extreme Arid Region from 1975 to 2015: A Case Study of Alxa League, China. Chin. Geogr. Sci. 2021, 31, 1097–1107. [Google Scholar] [CrossRef]
- Gong, X.; Chang, C. Correlation and trade-off analysis of ecosystem service value and human activity intensity: A case study of Changsha, China. Environ. Dev. Sustain. 2023, 43, 100738. [Google Scholar] [CrossRef]
- Wang, H.; Niu, W.; Song, M.; Zhang, B.; Jin, Y. Construction and spatial optimization of ecological network in Shaanxi Province based on LUCC and its ESV response. Resour. Sci. 2023, 45, 1380–1395. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, T.; He, F.; Zhang, W.; Chen, K. Assessing and simulating changes in ecosystem service value based on land use/cover change in coastal cities: A case study of Shanghai, China. Ocean Coast Manag. 2023, 239, 106591. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.; Lei, F.; Cao, L.; Zeng, H. Analysis on spatio-temporal evolution and influencing factors of ecosystem service in the Changsha-Zhuzhou-Xiangtan urban agglomeration, China. Front. Environ. Sci. 2023, 11. [Google Scholar] [CrossRef]
- Farley, K.A.; Bremer, L.L. “Water Is Life”: Local Perceptions of Páramo Grasslands and Land Management Strategies Associated with Payment for Ecosystem Services. Ann. Assoc. Am. Geogr. 2017, 107, 371–381. [Google Scholar] [CrossRef]
- Byrne, A.T.; Hadrich, J.C.; Robinson, B.E.; Han, G. A factor-income approach to estimating grassland protection subsidy payments to livestock herders in Inner Mongolia, China. Land Use Policy 2020, 91, 104352. [Google Scholar] [CrossRef]
- Fan, S.; Zhao, C.; Zha, S. Analysis of the Impact of Policy Instruments on Payment for Grasslands Ecosystem Services (PGES) Implementation: A Case Study from Northwest China. Sustainability 2022, 14, 13779. [Google Scholar] [CrossRef]
- Behrendt, K.; Brown, C.; Qiao, G.; Zhang, B. Assessing the opportunity costs of Chinese herder compliance with a payment for environmental services scheme. Ecol. Econ. 2022, 193, 107313. [Google Scholar] [CrossRef]
- Li, A.; Wu, J.; Zhang, X.; Xue, J.; Liu, Z.; Han, X.; Huang, J. China’s new rural “separating three property rights” land reform results in grassland degradation: Evidence from Inner Mongolia. Land Use Policy 2018, 71, 170–182. [Google Scholar] [CrossRef]
- Bremer, L.L.; Farley, K.A.; Lopez-Carr, D.; Romero, J. Conservation and livelihood outcomes of payment for ecosystem services in the Ecuadorian Andes: What is the potential for ‘win-win’? Ecosyst. Serv. 2014, 8, 148–165. [Google Scholar] [CrossRef]
- Ranjan, R. Creating synergies between payments for ecosystem services, green bonds, and catastrophe insurance markets for enhanced environmental resilience. Land Use Policy 2024, 136, 106970. [Google Scholar] [CrossRef]
- Fan, S.; He, M.; Zhang, T.; Huo, Y.; Fan, D. Credibility measurement as a tool for conserving nature: Chinese herders’ livelihood capitals and payment for grassland ecosystem services. Land Use Policy 2022, 115, 106032. [Google Scholar] [CrossRef]
- Joslin, A. Dividing “Above” and “Below”: Constructing Territory for Ecosystem Service Conservation in the Ecuadorian Highlands. Ann. Assoc. Am. Geogr. 2020, 110, 1874–1890. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Chase, L.; Strong, A.M.; Swallow, S.K. Making markets for private provision of ecosystem services: The Bobolink Project. Ecosyst. Serv. 2019, 37, 100936. [Google Scholar] [CrossRef]
- Russi, D.; Margue, H.; Oppermann, R.; Keenleyside, C. Result-based agri-environment measures: Market-based instruments, incentives or rewards? The case of Baden-Württemberg. Land Use Policy 2016, 54, 69–77. [Google Scholar] [CrossRef]
- Bremer, L.L.; Farley, K.A.; Lopez-Carr, D. What factors influence participation in payment for ecosystem services programs? An evaluation of Ecuador’s Socio Páramo program. Land Use Policy 2014, 36, 122–133. [Google Scholar] [CrossRef]
- Groth, M. Cost-effective Biodiversity Conservation: Procurement Auctions and Payment-by-Results. EuroChoices 2011, 10, 32–37. [Google Scholar] [CrossRef]
- Wätzold, F.; Drechsler, M.; Johst, K.; Mewes, M.; Sturm, A. A Novel, Spatiotemporally Explicit Ecological-Economic Modeling Procedure for the Design of Cost-Effective Agri-Environment Schemes to Conserve Biodiversity. Am. J. Agric. Econ. 2016, 98, 489–512. [Google Scholar] [CrossRef]
- Hecker, L.P.; Sturm, A.; Querhammer, L.; Wätzold, F. Cost-effectiveness of state-dependent versus state-independent agri-environment schemes for biodiversity conservation. Ecol. Econ. 2024, 217, 108088. [Google Scholar] [CrossRef]
- Ward, A.; Dargusch, P.; Thomas, S.; Liu, Y.; Fulton, E.A. A global estimate of carbon stored in the world’s mountain grasslands and shrublands, and the implications for climate policy. Glob. Environ. Chang. 2014, 28, 14–24. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Deng, H. Construction and Influencing Factors of Voluntary Compensation Subjects for Herders—From the Perspective of Sustainable Utilization of Grassland Resources. Sustainability 2024, 16, 2576. [Google Scholar] [CrossRef]
- Deng, Y.J.; Hou, M.Y.; Jia, L.; Wang, Y.Q.; Zhang, X.; Yao, S.B. Ecological compensation strategy of the old revolutionary base areas along the route of Long March based on ecosystem service value evaluation. Ying Yong Sheng Tai Xue Bao 2022, 33, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Horák, I.; Marada, P. Erosion and the Economic Evaluation of the Conservation Grassland as an Existing Effective Tool to Reduce Erosion. Acta Univ. Agric. Silvic. Mendelianae Brun. 2023, 71, 141–153. [Google Scholar] [CrossRef]
- Lai, M.; Wu, S.H.; Yin, Y.H.; Pan, T. Accounting for eco-compensation in the three-river headwaters region based on ecosystem service value. Shengtai Xuebao 2015, 35, 227–236. [Google Scholar] [CrossRef]
- Dai, Q.-W.; Zhao, X.-Y. Discussion on Several Key Scientific Issues of Eco-compensation Mechanism in Gannan Tibetan Autonomous Prefecture. Acta Geogr. Sin. 2010, 65, 494–506. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Bhatt, S.; Rahmat, S.; Paul, S.K.; Sen, S. Estimating global ecosystem service values and its response to land surface dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef]
- Blignaut, J.; Mander, M.; Schulze, R.; Horan, M.; Dickens, C.; Pringle, C.; Mavundla, K.; Mahlangu, I.; Wilson, A.; McKenzie, M.; et al. Restoring and managing natural capital towards fostering economic development: Evidence from the Drakensberg, South Africa. Ecol. Econ. 2010, 69, 1313–1323. [Google Scholar] [CrossRef]
- Du, J.; Liu, F.; Zhou, Y.; Zhang, L.; Feng, C.; Wang, W. A Review of Ecosystem Services Assessment and Valuation of Protected Areas. Res. Environ. 2019, 32, 1475–1482. [Google Scholar] [CrossRef]
- Inoue, M. Change of Landscape and Ecosystem Services of Semi-natural Grassland in Mt. Sanbe, Shimane Prefecture, Japan. In Landscape Ecology for Sustainable Society; Hong, S.K., Nakagoshi, N., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Zhao, X.; Yi, P.; Xia, J.; He, W.; Gao, X. Temporal and spatial analysis of the ecosystem service values in the Three Gorges Reservoir area of China based on land use change. Environ. Sci. Pollut. Res. Int. 2022, 29, 26549–26563. [Google Scholar] [CrossRef] [PubMed]
- Gascoigne, W.R.; Hoag, D.; Koontz, L.; Tangen, B.A.; Shaffer, T.L.; Gleason, R.A. Valuing ecosystem and economic services across land-use scenarios in the Prairie Pothole Region of the Dakotas, USA. Ecol. Econ. 2011, 70, 1715–1725. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Chen, J. Assessment of Grassland Ecosystem Services and Analysis on Its Driving Factors: A Case Study in Hulunbuir Grassland. Front. Ecol. Evol. 2022, 10, 841943. [Google Scholar] [CrossRef]
- Mulwa, R.; Siikamaki, J.; Ndwiga, M.; Alvsilver, J. Influence of proximity to and type of foraging habitat on value of insect pollination in the tropics, with applications to Kenya. Afr. J. Agric. Resour. Econ. 2022, 17, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Rewitzer, S.; Huber, R.; Grêt-Regamey, A.; Barkmann, J. Economic valuation of cultural ecosystem service changes to a landscape in the Swiss Alps. Ecosyst. Serv. 2017, 26, 197–208. [Google Scholar] [CrossRef]
- Kusi, K.K.; Khattabi, A.; Mhammdi, N. Analyzing the impact of land use change on ecosystem service value in the main watersheds of Morocco. Environ. Dev. Sustain. 2023, 25, 2688–2715. [Google Scholar] [CrossRef]
- Admasu, S. Assessing the impact of Land use changes on ecosystem services in the Alledighe rangeland, Ethiopia. Heliyon 2024, 10, 28798. [Google Scholar] [CrossRef]
- Aziz, T. Changes in land use and ecosystem services values in Pakistan, 1950–2050. Environ. Dev. 2021, 37, 100576. [Google Scholar] [CrossRef]
- Yi, F.; Yang, Q.; Wang, Z.; Li, Y.; Cheng, L.; Yao, B.; Lu, Q. Changes in Land Use and Ecosystem Service Values of Dunhuang Oasis from 1990 to 2030. Remote Sens. 2023, 15, 564. [Google Scholar] [CrossRef]
- Mendoza-González, G.; Martínez, M.L.; Lithgow, D.; Pérez-Maqueo, O.; Simonin, P.W. Land use change and its effects on the value of ecosystem services along the coast of the Gulf of Mexico. Ecol. Econ. 2012, 82, 23–32. [Google Scholar] [CrossRef]
- Gren, I.M.; Groth, K.H.; Sylvén, M. Economic Values of Danube Floodplains. J. Environ. Manag. 1995, 45, 333–345. [Google Scholar] [CrossRef]
- Hardaker, A.; Pagella, T.; Rayment, M. Ecosystem service and dis-service impacts of increasing tree cover on agricultural land by land-sparing and land-sharing in the Welsh uplands. Ecosyst. Serv. 2021, 48, 101253. [Google Scholar] [CrossRef]
- Jayalath, T.A.; Grala, R.K.; Grado, S.C.; Evans, D.L. Increasing provision of ecosystem services through participation in a conservation program. Ecosyst. Serv. 2021, 50, 101303. [Google Scholar] [CrossRef]
- Dong, J.; Ren, Z.; Zhang, X.; Liu, X. Pastoral Differentiations’ Effects on Willingness to Accept Valuation for Grassland Eco-Subsidy—Empirical Study of 410 Herder Households in Grass–Livestock Balance Sub-Policy Zones in Inner Mongolia, China. Sustainability 2023, 15, 10001. [Google Scholar] [CrossRef]
- Ingram, S.; Belcher, K.; Hesseln, H. Policy development to support ecosystem services on pasture systems in Saskatchewan: A case study. Land Use Policy 2023, 134, 106885. [Google Scholar] [CrossRef]
- Huber, R.; Finger, R. A Meta-analysis of the Willingness to Pay for Cultural Services from Grasslands in Europe. J. Agric. Econ. 2020, 71, 357–383. [Google Scholar] [CrossRef]
- Ning, J.; Jin, J.; Kuang, F.; Wan, X.; Zhang, C.; Guan, T. The Valuation of Grassland Ecosystem Services in Inner Mongolia of China and Its Spatial Differences. Sustainability 2019, 11, 7117. [Google Scholar] [CrossRef]
- Huber, R.; Le’Clec’h, S.; Buchmann, N.; Finger, R. Economic value of three grassland ecosystem services when managed at the regional and farm scale. Sci. Rep. 2022, 12, 4194. [Google Scholar] [CrossRef]
- Divinsky, I.; Becker, N.; Kutiel, P.B. Ecosystem service tradeoff between grazing intensity and other services—A case study in Karei-Deshe experimental cattle range in northern Israel. Ecosyst. Serv. 2017, 24, 16–27. [Google Scholar] [CrossRef]
- Shen, P.; Wu, L.; Huo, Z.; Zhang, J. A Study on the Spatial Pattern of the Ecological Product Value of China’s County-Level Regions Based on GEP Evaluation. Int. J. Environ. Res. Public Health 2023, 20, 3181. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Li, X.B.; Wang, H.; Zhang, L.J.; Xu, W.H.; Fu, R. Accounting of gross ecosystem product based on emergy analysis and ecological land classification in China. Shengtai Xuebao 2016, 36, 1663–1675. [Google Scholar]
- Dolkar, P.; Xiao, Y.; Ouyang, Z.; Wang, L. Assessment of ecological conservation effect in Xishui county based on gross ecosystem product. Acta Ecol. Sin. 2020, 40, 499–509. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, H.; Zhong, J.; Bai, Y.; Yi, S. Evaluation of the Gross Ecosystem Product and Analysis of the Transformation Path of “Two Mountains” in Hulunbuir City, China. Land 2023, 12, 63. [Google Scholar] [CrossRef]
- Dong, X.; Brown, M.T.; Pfahler, D.; Ingwersen, W.W.; Kang, M.; Jin, Y.; Yu, B.; Zhang, X.; Ulgiati, S. Carbon modeling and emergy evaluation of grassland management schemes in Inner Mongolia. Agr. Ecosyst. Environ. 2012, 158, 49–57. [Google Scholar] [CrossRef]
- Wanga, C.; Lic, X.; Yua, H.; Wang, Y. Tracing the spatial variation and value change of ecosystem services in Yellow River Delta, China. Ecol. Indic. 2019, 96, 270–277. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Giannetti, B.F.; Agostinho, F.; Almeida, C.M.V.B.; Casazza, M. Emergy-based ecosystem services valuation and classification management applied to China’s grasslands. Ecosyst. Serv. 2020, 42, 101073. [Google Scholar] [CrossRef]
- Dong, X.B.; Yu, B.H.; Brown, M.T.; Zhang, Y.S.; Kang, M.Y.; Jin, Y.; Zhang, X.S.; Ulgiati, S. Environmental and economic consequences of the overexploitation of natural capital and ecosystem services in Xilinguole League, China. Energy Policy 2014, 67, 767–780. [Google Scholar] [CrossRef]
- Tindale, S.; Vicario-Modroño, V.; Gallardo-Cobos, R.; Hunter, E.; Miškolci, S.; Price, P.N.; Sánchez-Zamora, P.; Sonnevelt, M.; Ojo, M.; McInnes, K.; et al. Citizen perceptions and values associated with ecosystem services from European grassland landscapes. Land Use Policy 2023, 127, 106574. [Google Scholar] [CrossRef]
- Cebrián-Piqueras, M.A.; Karrasch, L.; Kleyer, M. Coupling stakeholder assessments of ecosystem services with biophysical ecosystem properties reveals importance of social contexts. Ecosyst. Serv. 2017, 23, 108–115. [Google Scholar] [CrossRef]
- Sigwela, A.; Elbakidze, M.; Powell, M.; Angelstam, P. Defining core areas of ecological infrastructure to secure rural livelihoods in South Africa. Ecosyst. Serv. 2017, 27, 272–280. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, H.; Liang, X.; Zhang, H.; Liu, D. Cultural ecosystem services valuation and its multilevel drivers: A case study of Gaoqu Township in Shaanxi Province, China. Ecosyst. Serv. 2020, 41, 101052. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Zhou, Z.; Zeng, L.; Zhang, C. Estimation of the Value of Ecosystem Carbon Sequestration Services under Different Scenarios in the Central China (the Qinling-Daba Mountain Area). Sustainability 2020, 12, 337. [Google Scholar] [CrossRef]
- Peacock, R.; Bently, M.A.; Rees, P.; Blignaut, J.N. The benefits of ecological restoration exceed its cost in South Africa: An evidence-based approach. Ecosyst. Serv. 2023, 61, 101528. [Google Scholar] [CrossRef]
- Zang, Z.; Zou, X.Q. Connotation characterization and evaluation of ecological well-being based on ecosystem service theory. Ying Yong Sheng Tai Xue Bao 2016, 27, 1085–1094. [Google Scholar] [CrossRef]
- Durán, M.; Canals, R.M.; Sáez, J.L.; Ferrer, V.; Lera-López, F. Disruption of traditional land use regimes causes an economic loss of provisioning services in high-mountain grasslands. Ecosyst. Serv. 2020, 46, 101200. [Google Scholar] [CrossRef]
- Pei, S.; Xie, G.; Liu, C.; Zhang, C.; Li, S.; Chen, L. Dynamic Changes of Water Conservation Service of Typical Ecosystems in China within a Year Based on Data from CERN. Sustainability 2015, 7, 16513–16531. [Google Scholar] [CrossRef]
- Li, C.; Xu, C.; He, L.; Wang, S.T.; Chen, Y.H.; Xu, H. Purification function of coastal-terrestrial ecosystems and its evaluation: A case study of Huanghua City. J. Ecol. Rural. Environ. 2015, 31, 506–513. [Google Scholar] [CrossRef]
- Raviv, O.; Zemah-Shamir, S.; Izhaki, I.; Lotan, A. The effect of wildfire and land-cover changes on the economic value of ecosystem services in Mount Carmel Biosphere Reserve, Israel. Ecosyst. Serv. 2021, 49, 101291. [Google Scholar] [CrossRef]
- Brandão, M. Chapter 16: A Life Cycle Approach for Assessing the Impacts of Land-Use Systems on the Economy and Environment: Climate Change, Ecosystem Services, and Biodiversity. In Life Cycle Assessment; World Scientific: Singapore, 2022; pp. 285–298. [Google Scholar]
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy. Environ. Impact Assess. Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef]
- Cai, Y.; Zhao, M.; Shi, Y.; Khan, I. Assessing restoration benefit of grassland ecosystem incorporating preference heterogeneity empirical data from Inner Mongolia Autonomous Region. Ecol. Indic. 2020, 117, 106705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, J. Identifying priority areas for biodiversity conservation based on Marxan and InVEST model. Landsc. Ecol. 2022, 37, 3043–3058. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Xiao, Y. The Economic Evaluation of Grassland Ecosystem Services in Qinghai-Tibet Plateau. J. Mt. Sci. 2003, 21, 50–55. [Google Scholar]
- Lipton, J.; Özdemiroglu, E.; LeJeune, K.; Peers, J. Resource equivalency methods in the European Union: A ‘toolkit’ for calculating environmental liability. In Equivalency Methods for Environmental Liability; Lipton, J., Özdemiroğlu, E., Chapman, D., Peers, J., Eds.; Springer: Dordrecht, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Zhu, C.Q.; Yang, G.B.; Xu, W.H.; Zheng, H.; Zhang, Y.; Xiao, Y. Gross ecosystem product: Concept, accounting framework and case study. Acta Ecol. Sin. 2013, 33, 6747–6761. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
Type of Grasslands | Description |
---|---|
Annual | The forage is established annually |
Cultivated | The forage is established with domesticated species that receive periodic agricultural treatments |
Permanent | With perennial or self-seeding annual forage species that may survive indefinitely or often due to limiting factors that prevent other uses (excessive slope, shallow soil depth, outcropping rockiness, stoniness) |
Temporary | The vegetation is composed of annual, biennial, or perennial forage species kept for only a few years |
Naturalized | The forage species are mainly introduced from other geographical places that have established themselves and have persisted for a long time in existing environmental and management conditions |
Semi-natural | A managed ecosystem dominated by native or naturally occurring herbs and other herbaceous species |
European Area | Grasslands Type | Main Functions Provided | Ecosystem Services Category |
---|---|---|---|
Nordic countries (Denmark, Finland, Iceland, Norway and Sweden) | Natural | livestock production | Provisioning |
Semi-natural | grazing maintaining biodiversity maintaining landscape | Provisioning Supporting | |
Cultivated | winter fodder milk in summer | Provisioning | |
Temperate regions (such as Ireland, the UK, France, the Benelux, Germany, Czech Republic, Slovakia, and Poland) | Permanent | feed production maintaining biodiversity soil erosion control | Provisioning Supporting Regulating |
Temporary | feed production maintaining biodiversity | Provisioning Supporting | |
Mediterranean basin | Natural/ Semi-natural | livestock production soil erosion control carbon sequestration biodiversity conservation maintaining landscape | Multiple |
Source Title | Number of Documents | % of Documents |
---|---|---|
Ecological indicators | 176 | 4% |
Shengtai xuebao | 175 | 4% |
Science of the total environment | 138 | 3% |
Sustainability Switzerland | 131 | 3% |
Land | 115 | 2% |
Agriculture ecosystems and environment | 110 | 2% |
Journal of Environmental Management | 95 | 2% |
Remote sensing | 71 | 2% |
Plos one | 70 | 2% |
Journal of Applied Ecology | 65 | 1% |
Total of the top ten journals | 1146 | 25% |
Number of documents published in journals | 4304 | 93% |
Number of documents related to grassland ESs | 4608 | 100% |
Title of the Top Ten Cited Manuscripts | Journal’s Name | Year of Publication | Number of Citations |
---|---|---|---|
Partitioning selection and complementarity in biodiversity experiments [42] | Nature | 2001 | 2242 |
Quantifying the evidence for biodiversity effects on ecosystem functioning and services [43] | Ecology letters | 2006 | 2006 |
Biodiversity and ecosystem stability in a decade-long grassland experiment [44] | Nature | 2006 | 1611 |
Soil biodiversity and soil community composition determine ecosystem multifunctionality [45] | Proc. Natl. Acad. Sci. | 2014 | 1495 |
Confronting a biome crisis: Global disparities of habitat loss and protection [46] | Ecology letters | 2004 | 1321 |
Microbial diversity drives multifunctionality in terrestrial ecosystems [47] | Nature Communications | 2016 | 1306 |
Incorporating plant functional diversity effects in ecosystem service assessments [48] | Proc. Natl. Acad. Sci. | 2007 | 1250 |
Improvements in ecosystem services from investments in natural capital [49] | Science | 2016 | 1228 |
High plant diversity is needed to maintain ecosystem services [50] | Nature | 2011 | 1150 |
Ecological and socioeconomic effects of China’s policies for ecosystem services [51] | Proc. Natl. Acad. Sci. | 2008 | 1125 |
Methodologies | Number of Documents | References |
---|---|---|
Ecosystem Service Value (ESV) Assessment | 91 | [52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71] * |
Resource Equivalency Approach | 22 | [72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92] |
Econometric Models | 11 | [12,93,94,95,96,97,98,99,100,101] |
Benefit Transfer Method | 7 | [102,103,104,105,106,107,108] |
Contingent Valuation Method (CVM) | 7 | [109,110,111,112,113,114,115] |
Gross Ecosystem Product (GEP) | 4 | [116,117,118,119] |
Emergy Value Method | 4 | [120,121,122] |
Focus Groups, Perception/Social Preference Method | 4 | [123,124,125,126] |
Net Present Value | 3 | [127,128,129] |
Replacement Cost Method | 3 | [115,130,131,132] |
Market and Shadow Price Method | 2 | [133,134] |
Life Cycle Assessment Approach | 1 | [135] |
Social Cost | 1 | [136] |
Theory of Value and Random Utility | 1 | [137] |
Cost–Benefit Analysis | 1 | [138] |
Type of Data | Number of Documents |
---|---|
Land use/cover change (LUCC) | 60 |
Data from structured and semi-structured interviews (SSIs) | 22 |
Land cover data, net primary productivity, precipitation, and soil erosion data (LNPS) | 21 |
Multi-source data (MS) | 14 |
Bio-economic modeling approach (BEM) | 12 |
Data from others research (R) | 12 |
Land use data and socio-economic data (LSE) | 9 |
LUCC, climatic, socioeconomic, and biophysical data (LCSEB) | 7 |
Socio-economic data (SE) | 4 |
Total | 161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pergola, M.; De Falco, E.; Cerrato, M. Grassland Ecosystem Services: Their Economic Evaluation through a Systematic Review. Land 2024, 13, 1143. https://doi.org/10.3390/land13081143
Pergola M, De Falco E, Cerrato M. Grassland Ecosystem Services: Their Economic Evaluation through a Systematic Review. Land. 2024; 13(8):1143. https://doi.org/10.3390/land13081143
Chicago/Turabian StylePergola, Maria, Enrica De Falco, and Michele Cerrato. 2024. "Grassland Ecosystem Services: Their Economic Evaluation through a Systematic Review" Land 13, no. 8: 1143. https://doi.org/10.3390/land13081143
APA StylePergola, M., De Falco, E., & Cerrato, M. (2024). Grassland Ecosystem Services: Their Economic Evaluation through a Systematic Review. Land, 13(8), 1143. https://doi.org/10.3390/land13081143