An Estimation Method for Passenger Flow Volumes from and to Bus Stops Based on Land Use Elements: An Experimental Study
Abstract
:1. Introduction
2. Theoretical Foundation
2.1. The Estimation Principle of Passenger Flow Volumes from and to Bus Stops
2.2. Travel Time and Distance Decay Law
3. Experimental Methods and Materials
3.1. The Estimation Method of Passenger Flow Volumes from and to Bus Stops
3.2. Key Data for the Estimation Method
3.2.1. Passenger Flow Volumes from and to Bus Stops
3.2.2. Walking and Bus Travel Distance Impedance
3.3. Construction of the Basic Estimation Models
3.3.1. The Walking from-and-to Models
3.3.2. The Bus Travel from-and-to Models
4. Results
4.1. The Basic Estimation Models’ Parameters
4.2. Fit Validation of the Estimation Method
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Mei (ha) | Mri (ha) | Moi (ha) | Mci (ha) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(0.0, 0.2) | (0.2, 0.4) | (0.4, 0.6) | (0.6, 0.8) | (0.0, 0.2) | (0.2, 0.4) | (0.4, 0.6) | (0.6, 0.8) | (0.0, 0.2) | (0.2, 0.4) | (0.4, 0.6) | (0.6, 0.8) | (0.0, 0.2) | (0.2, 0.4) | (0.4, 0.6) | (0.6, 0.8) | |
1 | 0.00 | 0.00 | 1.77 | 0.00 | 2.24 | 2.43 | 3.39 | 2.64 | 0.00 | 0.34 | 0.11 | 0.27 | 0.00 | 0.16 | 0.00 | 0.00 |
2 | 0.00 | 0.00 | 0.00 | 0.00 | 2.64 | 2.06 | 2.41 | 3.25 | 0.06 | 1.57 | 0.09 | 0.15 | 0.13 | 0.426 | 0.00 | 0.00 |
3 | 0.00 | 1.60 | 4.29 | 8.95 | 9.81 | 10.62 | 12.95 | 0.00 | 1.64 | 0.01 | 2.58 | 0.18 | 2.52 | 0.30 | 0.00 | 2.48 |
4 | 0.00 | 1.70 | 9.31 | 13.14 | 6.30 | 10.91 | 15.23 | 4.10 | 1.64 | 0.01 | 1.05 | 2.76 | 2.31 | 0.54 | 0.04 | 0.00 |
5 | 0.96 | 11.93 | 1.18 | 5.11 | 5.91 | 6.23 | 11.59 | 7.73 | 0.99 | 0.00 | 1.14 | 0.00 | 0.04 | 0.17 | 0.00 | 0.00 |
6 | 2.51 | 7.13 | 4.27 | 0.61 | 1.90 | 8.21 | 14.84 | 4.17 | 0.99 | 0.00 | 1.14 | 0.00 | 0.00 | 0.11 | 0.10 | 0.32 |
7 | 0.00 | 5.82 | 2.54 | 0.00 | 5.08 | 23.00 | 9.90 | 7.29 | 1.04 | 1.99 | 0.96 | 0.11 | 1.32 | 0.76 | 0.24 | 0.07 |
8 | 0.00 | 0.79 | 12.35 | 12.76 | 0.00 | 14.21 | 26.22 | 14.52 | 0.29 | 2.76 | 0.00 | 0.962 | 3.31 | 1.89 | 1.71 | 0.18 |
9 | 0.00 | 0.79 | 12.35 | 12.76 | 0.00 | 14.21 | 26.22 | 14.52 | 0.29 | 2.76 | 0.00 | 0.96 | 3.31 | 1.89 | 1.71 | 0.18 |
10 | 0.00 | 5.82 | 2.54 | 0.00 | 5.08 | 23.00 | 9.90 | 7.29 | 1.04 | 1.99 | 0.96 | 0.11 | 1.32 | 0.76 | 0.24 | 0.07 |
11 | 0.00 | 0.79 | 12.35 | 12.76 | 0.00 | 14.21 | 26.22 | 14.52 | 0.29 | 2.76 | 0.00 | 0.96 | 3.31 | 1.89 | 1.71 | 0.18 |
12 | 0.00 | 0.79 | 12.35 | 12.76 | 0.00 | 14.21 | 26.22 | 14.52 | 0.29 | 2.76 | 0.00 | 0.96 | 3.31 | 1.89 | 1.71 | 0.18 |
13 | 1.42 | 5.37 | 10.12 | 15.25 | 2.22 | 9.92 | 22.37 | 12.44 | 0.00 | 0.20 | 2.74 | 0.26 | 3.76 | 2.86 | 0.29 | 0.49 |
14 | 1.42 | 5.37 | 10.12 | 15.25 | 2.22 | 9.92 | 22.37 | 12.44 | 0.00 | 0.20 | 2.74 | 0.26 | 3.76 | 2.86 | 0.29 | 0.49 |
15 | 1.42 | 5.37 | 10.12 | 15.25 | 2.22 | 9.92 | 22.37 | 12.44 | 0.00 | 0.20 | 2.74 | 0.26 | 3.76 | 2.86 | 0.29 | 0.49 |
16 | 2.21 | 9.56 | 13.39 | 14.13 | 6.45 | 8.69 | 4.71 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 2.42 | 0.89 | 0.18 | 0.00 |
17 | 1.47 | 6.75 | 11.45 | 11.94 | 6.08 | 9.40 | 4.38 | 1.06 | 0.00 | 0.22 | 0.00 | 1.83 | 1.37 | 1.85 | 0.21 | 0.00 |
18 | 4.16 | 7.41 | 8.75 | 0.66 | 2.88 | 9.01 | 3.75 | 4.55 | 0.00 | 0.10 | 0.00 | 3.97 | 1.39 | 4.28 | 1.95 | 0.38 |
19 | 2.83 | 8.10 | 2.47 | 1.62 | 6.95 | 9.77 | 5.74 | 2.44 | 0.00 | 0.10 | 0.00 | 2.047 | 2.84 | 2.77 | 1.95 | 0.38 |
20 | 0.00 | 7.85 | 13.47 | 4.14 | 10.27 | 10.02 | 9.09 | 14.94 | 0.00 | 0.00 | 0.00 | 2.05 | 0.18 | 2.80 | 3.43 | 0.73 |
21 | 0.00 | 7.85 | 13.47 | 4.14 | 10.27 | 10.02 | 9.09 | 14.94 | 0.00 | 0.00 | 0.00 | 2.05 | 0.18 | 2.80 | 3.43 | 0.73 |
22 | 1.02 | 5.00 | 3.25 | 7.83 | 6.76 | 5.33 | 13.39 | 3.87 | 0.00 | 0.00 | 0.16 | 2.46 | 0.18 | 0.00 | 0.19 | 0.11 |
23 | 1.02 | 5.00 | 3.25 | 7.83 | 6.76 | 5.33 | 13.39 | 3.87 | 0.00 | 0.00 | 0.16 | 2.46 | 0.18 | 0.00 | 0.19 | 0.11 |
24 | 4.63 | 1.11 | 0.00 | 0.00 | 0.86 | 6.35 | 2.26 | 5.65 | 0.00 | 0.04 | 0.45 | 1.04 | 0.06 | 0.32 | 0.11 | 0.05 |
25 | 3.41 | 1.92 | 4.73 | 6.02 | 4.38 | 11.47 | 6.62 | 5.78 | 0.04 | 0.04 | 2.67 | 0.58 | 0.06 | 0.71 | 0.08 | 0.05 |
26 | 0.00 | 0.00 | 3.53 | 2.41 | 5.18 | 2.11 | 0.00 | 0.00 | 0.20 | 0.19 | 0.00 | 0.00 | 0.09 | 0.39 | 0.00 | 0.00 |
27 | 0.00 | 0.00 | 3.53 | 2.41 | 5.18 | 2.11 | 0.00 | 0.00 | 0.20 | 0.19 | 0.00 | 0.00 | 0.09 | 0.39 | 0.00 | 0.00 |
28 | 0.00 | 1.77 | 2.21 | 1.12 | 4.38 | 4.01 | 0.92 | 3.98 | 0.10 | 0.97 | 0.06 | 1.60 | 0.05 | 0.17 | 1.92 | 2.55 |
29 | 0.00 | 1.77 | 2.21 | 1.12 | 4.38 | 4.01 | 0.92 | 3.98 | 0.10 | 0.97 | 0.06 | 1.60 | 0.05 | 0.17 | 1.92 | 2.55 |
30 | 0.14 | 9.90 | 15.06 | 15.25 | 3.66 | 11.93 | 5.64 | 9.48 | 0.04 | 0.14 | 1.17 | 0.22 | 0.71 | 0.11 | 0.00 | 0.12 |
31 | 0.14 | 9.90 | 15.06 | 15.25 | 3.66 | 11.93 | 5.64 | 9.48 | 0.04 | 0.14 | 1.17 | 0.22 | 0.71 | 0.11 | 0.00 | 0.12 |
32 | 1.32 | 1.62 | 0.07 | 0.00 | 6.21 | 11.03 | 9.97 | 8.79 | 1.37 | 1.64 | 0.57 | 1.73 | 0.20 | 0.26 | 0.25 | 1.74 |
33 | 1.32 | 1.62 | 0.07 | 0.00 | 6.21 | 11.03 | 9.97 | 8.79 | 1.37 | 1.64 | 0.57 | 1.73 | 0.20 | 0.26 | 0.25 | 1.74 |
34 | 0.00 | 3.76 | 0.38 | 0.00 | 8.11 | 18.58 | 23.48 | 18.89 | 2.54 | 0.00 | 8.79 | 6.83 | 0.60 | 2.28 | 1.17 | 0.20 |
35 | 1.39 | 2.75 | 0.00 | 0.00 | 8.84 | 26.21 | 19.23 | 5.42 | 2.54 | 3.36 | 11.26 | 1.53 | 1.71 | 1.75 | 0.35 | 0.11 |
36 | 1.39 | 2.75 | 0.00 | 0.00 | 8.84 | 26.21 | 19.23 | 5.42 | 2.54 | 3.36 | 11.26 | 1.53 | 1.71 | 1.75 | 0.35 | 0.11 |
37 | 0.00 | 3.01 | 1.13 | 0.00 | 5.99 | 20.29 | 16.50 | 15.82 | 2.54 | 0.00 | 8.38 | 4.98 | 0.60 | 2.69 | 0.53 | 0.09 |
38 | 0.00 | 3.01 | 1.13 | 0.00 | 5.99 | 20.29 | 16.50 | 15.82 | 2.54 | 0.00 | 8.38 | 4.98 | 0.60 | 2.69 | 0.53 | 0.09 |
No. | Mei⋅Si (ha) | Mri⋅Si (ha) | Moi⋅Si (ha) | Mci⋅Si (ha) | Afs (P·h−1) | Pfs | Afs⋅Pfs (P·h−1) | Qfs (P·h−1) | Pts (P·h−1) | Ats | Pts⋅Ats (P·h−1) | Qts (P·h−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.13 | 2.16 | 0.09 | 0.03 | 13.26 | 0.99 | 13.2 | 17.0 | 15.49 | 0.86 | 13.3 | 27.5 |
2 | 0.00 | 2.27 | 0.37 | 0.17 | 21.62 | 0.86 | 18.5 | 8.5 | 31.19 | 0.99 | 31.0 | 12.0 |
3 | 0.89 | 9.03 | 1.17 | 1.63 | 108.39 | 1.59 | 172.7 | 191.0 | 133.00 | 1.82 | 242.5 | 293.0 |
4 | 1.40 | 7.28 | 1.13 | 1.49 | 106.09 | 1.82 | 193.4 | 254.0 | 128.29 | 1.59 | 204.3 | 262.0 |
5 | 3.30 | 5.89 | 0.67 | 0.06 | 94.19 | 1.72 | 161.9 | 78.0 | 103.89 | 1.63 | 169.0 | 149.0 |
6 | 3.33 | 4.07 | 0.67 | 0.04 | 87.22 | 1.63 | 141.8 | 146.0 | 96.53 | 1.72 | 165.9 | 195.0 |
7 | 1.41 | 8.78 | 1.11 | 0.97 | 102.64 | 0.87 | 89.0 | 31.0 | 126.33 | 0.86 | 108.2 | 37.0 |
8 | 1.42 | 5.32 | 0.78 | 2.49 | 106.91 | 1.17 | 125.5 | 131.0 | 116.44 | 1.03 | 119.6 | 124.0 |
9 | 1.42 | 5.32 | 0.78 | 2.49 | 106.91 | 1.18 | 125.7 | 142.0 | 116.44 | 0.88 | 103.0 | 135.0 |
10 | 1.41 | 8.78 | 1.11 | 0.97 | 102.64 | 0.86 | 87.9 | 48.0 | 126.33 | 0.87 | 109.5 | 42.0 |
11 | 1.42 | 5.32 | 0.78 | 2.49 | 106.91 | 1.03 | 109.8 | 89.0 | 116.44 | 1.17 | 136.7 | 149.5 |
12 | 1.42 | 5.32 | 0.778 | 2.49 | 106.91 | 0.88 | 94.5 | 76.0 | 116.44 | 1.18 | 136.9 | 120.5 |
13 | 3.12 | 5.40 | 0.25 | 2.87 | 126.75 | 0.57 | 72.5 | 103.0 | — | — | — | — |
14 | 3.12 | 5.40 | 0.25 | 2.87 | 126.75 | 0.92 | 117.1 | 151.0 | 117.18 | 1.07 | 125.7 | 151.0 |
15 | 3.12 | 5.40 | 0.25 | 2.87 | — | — | — | — | 117.18 | 0.57 | 67.0 | 96.5 |
16 | 4.69 | 6.02 | 0.02 | 1.64 | 126.52 | 0.89 | 112.2 | 130.5 | 110.89 | 0.70 | 77.3 | 67.0 |
17 | 3.46 | 5.95 | 0.09 | 1.22 | 101.28 | 1.26 | 127.1 | 177.5 | 92.08 | 1.61 | 148.6 | 167.5 |
18 | 4.70 | 4.01 | 0.12 | 1.88 | 125.90 | 0.55 | 68.8 | 49.5 | 111.75 | 0.24 | 26.6 | 8.5 |
19 | 3.61 | 6.68 | 0.07 | 2.43 | 126.87 | 0.24 | 30.2 | 10.5 | 113.10 | 0.55 | 61.8 | 29.0 |
20 | 2.76 | 9.28 | 0.05 | 0.97 | — | — | — | — | 90.61 | 0.53 | 47.6 | 12.0 |
21 | 2.76 | 9.28 | 0.05 | 0.97 | 97.55 | 0.53 | 51.3 | 46.0 | — | — | — | — |
22 | 2.11 | 6.24 | 0.08 | 0.12 | 61.53 | 0.18 | 11.0 | 15.5 | 58.91 | 0.55 | 32.3 | 33.0 |
23 | 2.11 | 6.24 | 0.08 | 0.12 | 61.53 | 0.55 | 33.7 | 34.0 | 58.91 | 0.18 | 10.5 | 15.5 |
24 | 2.99 | 2.16 | 0.07 | 0.11 | 59.57 | 0.57 | 34.1 | 51.0 | 53.65 | 0.10 | 5.4 | 2.0 |
25 | 2.94 | 5.66 | 0.25 | 0.19 | 78.32 | 0.10 | 7.9 | 7.0 | 77.52 | 0.57 | 44.3 | 80.0 |
26 | 0.33 | 3.52 | 0.16 | 0.14 | 25.21 | 0.04 | 1.0 | 2.0 | 28.70 | 0.56 | 16.1 | 39.5 |
27 | 0.33 | 3.52 | 0.16 | 0.14 | 25.21 | 0.56 | 14.1 | 29.0 | 28.70 | 0.04 | 1.1 | 2.0 |
28 | 0.57 | 3.62 | 0.31 | 0.28 | — | — | — | — | 42.40 | 0.57 | 24.1 | 67.5 |
29 | 0.57 | 3.62 | 0.31 | 0.28 | 35.97 | 0.57 | 20.4 | 20.5 | — | — | — | — |
30 | 3.68 | 5.35 | 0.14 | 0.45 | — | — | — | — | 84.40 | 0.52 | 44.2 | 114.0 |
31 | 3.68 | 5.35 | 0.14 | 0.45 | 90.62 | 0.52 | 47.4 | 56.5 | — | — | — | — |
32 | 1.13 | 6.98 | 1.25 | 0.24 | 82.36 | 0.49 | 40.3 | 47.5 | 112.21 | 0.12 | 13.9 | 5.0 |
33 | 1.13 | 6.98 | 1.25 | 0.24 | 82.36 | 0.12 | 10.2 | 17.0 | 112.21 | 0.49 | 54.9 | 62.5 |
34 | 0.82 | 10.97 | 2.34 | 0.93 | 134.10 | 0.22 | 29.4 | 30.0 | 191.55 | 0.48 | 91.7 | 109.0 |
35 | 1.41 | 12.34 | 3.09 | 1.41 | 177.19 | 1.50 | 266.5 | 260.0 | 251.15 | 1.32 | 332.3 | 284.0 |
36 | 1.41 | 12.34 | 3.09 | 1.41 | 177.19 | 1.32 | 234.5 | 192.0 | 251.15 | 1.50 | 377.8 | 344.5 |
37 | 0.72 | 9.47 | 2.26 | 0.97 | 125.23 | 0.34 | 42.3 | 48.0 | 180.50 | 0.48 | 86.5 | 94.0 |
38 | 0.72 | 9.47 | 2.26 | 0.97 | 125.23 | 0.96 | 119.9 | 154.0 | 180.50 | 0.49 | 87.6 | 118.0 |
References
- Berawi, M.A.; Saroji, G.; Iskandar, F.A.; Ibrahim, B.E.; Miraj, P.; Sari, M. Optimizing Land Use Allocation of Transit-Oriented Development (TOD) to Generate Maximum Ridership. Sustainability 2020, 12, 3798. [Google Scholar] [CrossRef]
- Hasibuan, H.S.; Mulyani, M. Transit-Oriented Development: Towards Achieving Sustainable Transport and Urban Development in Jakarta Metropolitan, Indonesia. Sustainability 2022, 14, 5244. [Google Scholar] [CrossRef]
- Woo, J.H. Classification of TOD Typologies Based on Pedestrian Behavior for Sustainable and Active Urban Growth in Seoul. Sustainability 2021, 13, 3047. [Google Scholar] [CrossRef]
- Stojanovski, T. Urban design and public transportation—Public spaces, visual proximity and Transit-Oriented Development (TOD). J. Urban Des. 2020, 25, 134–154. [Google Scholar]
- Su, S.; Zhang, J.; He, S.; Zhang, H.; Hu, L.; Kang, M. Unraveling the impact of TOD on housing rental prices and implications on spatial planning: A comparative analysis of five Chinese megacities. Habitat Int. 2021, 107, 102309. [Google Scholar] [CrossRef]
- Gan, Z.; Yang, M.; Feng, T.; Timmermans, H.P. Examining the relationship between built environment and metro ridership at station-to-station level. Transp. Res. D Transp. Environ. 2020, 82, 102332. [Google Scholar] [CrossRef]
- Newman, P.; Davies-Slate, S.; Conley, D.; Hargroves, K.; Mouritz, M. From TOD to TAC: Why and How Transport and Urban Policy Needs to Shift to Regenerating Main Road Corridors with New Transit Systems. Urban Sci. 2021, 5, 52. [Google Scholar] [CrossRef]
- Wang, B.; de Jong, M.; van Bueren, E.; Ersoy, A.; Meng, Y. Transit-Oriented Development in China: A Comparative Content Analysis of the Spatial Plans of High-Speed Railway Station Areas. Land 2023, 12, 1818. [Google Scholar] [CrossRef]
- Carlton, I. Transit Planners’ Transit-Oriented Development-Related Practices and Theories. J. Plan. Educ. Res. 2019, 39, 508–519. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Ayad, H.M.; Turki, E.A.; Saadallah, D.M. Measuring Transit-Oriented Development (TOD) levels: Prioritize potential areas for TOD in Alexandria, Egypt using GIS-Spatial Multi-Criteria based model. Alex. Eng. J. 2023, 67, 241–255. [Google Scholar] [CrossRef]
- Ibraeva, A.; de Almeida Correia, G.H.; Silva, C.; Antunes, A.P. Transit-oriented development: A review of research achievements and challenges. Transp. Res. Part A Policy Pract. 2020, 132, 110–130. [Google Scholar] [CrossRef]
- Su, S.; Zhao, C.; Zhou, H.; Li, B.; Kang, M. Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning. J. Transp. Geogr. 2022, 100, 103308. [Google Scholar] [CrossRef]
- Currie, G. Bus Transit Oriented Development—Strengths and Challenges Relative to Rail. J. Public Transp. 2006, 9, 1–21. [Google Scholar] [CrossRef]
- Shen, Q.; Xu, S.; Lin, J. Effects of bus transit-oriented development (BTOD) on single-family property value in Seattle metropolitan area. Urban Stud. 2018, 55, 2960–2979. [Google Scholar] [CrossRef]
- Pan, H.; Li, J.; Shen, Q.; Shi, C. What determines rail transit passenger volume? Implications for transit oriented development planning. Transp. Res. Part D Transp. Environ. 2017, 57, 52–63. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Z.; Xu, Q.; Dai, S.; Chen, Y. Causality between multi-scale built environment and rail transit ridership in Beijing and Tokyo. Transp. Res. Part D Trans. Environ. 2024, 130, 104150. [Google Scholar] [CrossRef]
- Wegener, M. Land-Use Transport Interaction Models. In Handbook of Regional Science; Fischer, M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 229–246. [Google Scholar] [CrossRef]
- Ren, F.; Zhang, J.; Yang, X. Study on the Effect of Job Accessibility and Residential Location on Housing Occupancy Rate: A Case Study of Xiamen, China. Land 2023, 12, 912. [Google Scholar] [CrossRef]
- Derakhti, L.; Baeten, G. Contradictions of Transit-Oriented Development in Low-Income Neighborhoods: The Case Study of Rosengård in Malmö, Sweden. Urban Sci. 2020, 4, 20. [Google Scholar] [CrossRef]
- Lin, C.; Wang, K.; Wu, D.; Gong, B. Passenger Flow Prediction Based on Land Use around Metro Stations: A Case Study. Sustainability 2020, 12, 6844. [Google Scholar] [CrossRef]
- Zhai, H.; Tian, R.; Cui, L.; Xu, X.; Zhang, W. A Novel Hierarchical Hybrid Model for Short-Term Bus Passenger Flow Forecasting. J. Adv. Transp. 2020, 2020, 7917353. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, M.; Xie, B.; Yang, H.; Ma, H. An automatic real-time bus schedule redesign method based on bus arrival time prediction. Adv. Eng. Inform. 2021, 48, 101295. [Google Scholar] [CrossRef]
- Li, W.; Sui, L.; Zhou, M.; Dong, H. Short-term passenger flow forecast for urban rail transit based on multi-source data. EURASIP J. Wirel. Comm. 2021, 2021, 9. [Google Scholar] [CrossRef]
- Wen, K.; Zhao, G.; He, B.; Ma, J.; Zhang, H. A decomposition-based forecasting method with transfer learning for railway short-term passenger flow in holidays. Expert Syst. Appl. 2022, 189, 116102. [Google Scholar] [CrossRef]
- Liu, W.; Tan, Q.; Wu, W. Forecast and Early Warning of Regional Bus Passenger Flow Based on Machine Learning. Math. Probl. Eng. 2020, 2020, 6625435. [Google Scholar] [CrossRef]
- Baghbani, A.; Bouguila, N.; Patterson, Z. Short-Term Passenger Flow Prediction Using a Bus Network Graph Convolutional Long Short-Term Memory Neural Network Model. Transp. Res. Rec. 2023, 2677, 1331–1340. [Google Scholar] [CrossRef]
- Liu, L.; Chen, R. A novel passenger flow prediction model using deep learning methods. Transp. Res. Part C Emerg. Technol. 2017, 84, 74–91. [Google Scholar] [CrossRef]
- Halyal, S.; Mulangi, R.H.; Harsha, M.M. Forecasting public transit passenger demand: With neural networks using APC data. Case Stud. 2022, 10, 965–975. [Google Scholar] [CrossRef]
- Arhin, S.; Manandhar, B.; Baba-Adam, H. Predicting Travel Times of Bus Transit in Washington, D.C. Using Artificial Neural Networks. Civ. Eng. J. 2020, 6, 2245–2261. [Google Scholar] [CrossRef]
- Lv, W.; Lv, Y.; Ouyang, Q.; Ren, Y. A Bus Passenger Flow Prediction Model Fused with Point-of-Interest Data Based on Extreme Gradient Boosting. Appl. Sci. 2022, 12, 940. [Google Scholar] [CrossRef]
- Deepa, L.; Pinjari, A.R.; Nirmale, S.K.; Srinivasan, K.K.; Rambha, T. A direct demand model for bus transit ridership in Bengaluru, India. Transp. Res. Part A Policy Pract. 2022, 163, 126–147. [Google Scholar] [CrossRef]
- Klar, B.; Lee, J.; Long, J.A.; Diab, E. The impacts of accessibility measure choice on public transit project evaluation: A comparative study of cumulative, gravity-based, and hybrid approaches. J. Transp. Geogr. 2023, 106, 103508. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.W.; Lee, K.; Choi, M.Y. Generalized maximal entropy argument for the gravity law in human mobility. Europhys. Lett. 2020, 132, 48001. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Z.; Chen, F.; Song, J.; Wang, J.; Li, Y. Low-Carbon Impact of Urban Rail Transit Based on Passenger Demand Forecast in Baoji. Energies 2020, 13, 782. [Google Scholar] [CrossRef]
- Ranceva, J.; Ušpalytė-Vitkūnienė, R. Specifics of Creating a Public Transport Demand Model for Low-Density Regions: Lithuanian Case. Sustainability 2024, 16, 1412. [Google Scholar] [CrossRef]
- Bhatt, D.; Minal. GIS and Gravity Model-Based Accessibility Measure for Delhi Metro. Iran. J. Sci. Technol. Trans Civ. Eng. 2022, 46, 3411–3428. [Google Scholar] [CrossRef]
- Mashrur, S.M.; Lavoie, B.; Wang, K.; Habib, K.N. A Regional Multimodal Network Microsimulation (GTASim) for a Comprehensive Utility maximizing System of Travel Options Modelling (CUSTOM) in the Greater Toronto and Hamilton Area. Procedia Comput. Sci. 2023, 220, 110–118. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, Y.; Li, L. Accessibility measure of bus transit networks. IET Intell. Transp. Syst. 2018, 12, 682–688. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Potoglou, D.; Tian, M.; Fu, Y. Travel impedance, the built environment, and customized-bus ridership: A stop-to-stop level analysis. Transp. Res. Part D Trans. Environ. 2023, 122, 103889. [Google Scholar] [CrossRef]
- Dai, P.; Han, S.; Yang, X.; Fu, H.; Wang, Y.; Liu, J. Analysis of the Factors Affecting the Construction of Subway Stations in Residential Areas. Sustainability 2022, 14, 13075. [Google Scholar] [CrossRef]
- Gao, K.; Yang, Y.; Li, A.; Qu, X. Spatial heterogeneity in distance decay of using bike sharing: An empirical large-scale analysis in Shanghai. Transp. Res. Part D Trans. Environ. 2021, 94, 102814. [Google Scholar]
- Wu, X.; Lu, Y.; Lin, Y.; Yang, Y. Measuring the Destination Accessibility of Cycling Transfer Trips in Metro Station Areas: A Big Data Approach. Int. J. Environ. Res. Public Health 2019, 16, 2641. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. The distance-decay function of geographical gravity model: Power law or exponential law? Chaos Solitons Fractals 2015, 77, 174–189. [Google Scholar] [CrossRef]
- Shoup, D.C.; Shi, F.; Luo, Y.; Zhu, W.; Zhang, G. Truth in Transportation Planning. Urban Transp. China. 2022, 20, 49–59. [Google Scholar]
- Rahman, M.; Yasmin, S.; Faghih-Imani, A.; Eluru, N. Examining the Bus Ridership Demand: Application of Spatio-Temporal Panel Models. J. Adv. Transp. 2021, 2021, 8844743. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, J.; Qi, M. Research on the spatiotemporal organization order of supply and demand based on the travel time/distance distribution law. Urban Transp. China 2024, in press.
- Cai, J.; Liu, K.; Liu, L. Bus OD matrix estimation by VISUM model: Case of Xining of China. J. Transp. Syst. Eng. Inf. Technol. 2013, 13, 49–56. [Google Scholar]
- Appleyard, B.S.; Frost, A.R.; Allen, C. Are all transit stations equal and equitable? Calculating sustainability, livability, health, & equity performance of smart growth & transit-oriented-development (TOD). J. Transp. Health. 2019, 14, 100584. [Google Scholar]
- Turbay, A.L.B.; Pereira, R.H.M.; Firmino, R. The equity implications of TOD in Curitiba. Case Stud. 2024, 16, 101211. [Google Scholar] [CrossRef]
- Knowles, R.D.; Ferbrache, F.; Nikitas, A. Transport’s historical, contemporary and future role in shaping urban development: Re-evaluating transit oriented development. Cities 2020, 99, 102607. [Google Scholar] [CrossRef]
- Liang, Y.; Du, M.; Wang, X.; Xu, X. Planning for urban life: A new approach of sustainable land use plan based on transit-oriented development. Eval. Program Plann. 2020, 80, 101811. [Google Scholar] [CrossRef]
Parameter Symbol | S1 | S2 | S3 | S4 |
---|---|---|---|---|
Distance segment (km) | (0.0, 0.2) | (0.2, 0.4) | (0.4, 0.6) | (0.6, 0.8) |
Estimated value (%) | 59.46 | 21.02 | 7.43 | 2.63 |
Parameter Symbol | R1 | R2 | R3 | R4 | R5 |
---|---|---|---|---|---|
Distance segment (km) | (0.0, 2.0) | (2.0, 4.0) | (4.0, 6.0) | (6.0, 8.0) | (8.0, 10.0) |
Estimated value (%) | 65.98 | 28.72 | 12.50 | 5.44 | 2.37 |
Land Use Type | Educational | Residential | Office | Commercial |
---|---|---|---|---|
Parameter symbol (person·ha−1·h−1) | Oe | Or | Oo | Oc |
Fitted relative value | 13.2948 | 4.0310 | 52.6219 | 14.1178 |
Land Use Type | Educational | Residential | Office | Commercial |
---|---|---|---|---|
Parameter symbol (person·ha−1·h−1) | Te | Tr | To | Tc |
Fitted relative value | 15.9049 | 3.8221 | 26.9189 | 17.2681 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Cai, J.; Wang, M.; Zhang, W. An Estimation Method for Passenger Flow Volumes from and to Bus Stops Based on Land Use Elements: An Experimental Study. Land 2024, 13, 971. https://doi.org/10.3390/land13070971
Zhang J, Cai J, Wang M, Zhang W. An Estimation Method for Passenger Flow Volumes from and to Bus Stops Based on Land Use Elements: An Experimental Study. Land. 2024; 13(7):971. https://doi.org/10.3390/land13070971
Chicago/Turabian StyleZhang, Jianming, Jun Cai, Mengjia Wang, and Wansong Zhang. 2024. "An Estimation Method for Passenger Flow Volumes from and to Bus Stops Based on Land Use Elements: An Experimental Study" Land 13, no. 7: 971. https://doi.org/10.3390/land13070971
APA StyleZhang, J., Cai, J., Wang, M., & Zhang, W. (2024). An Estimation Method for Passenger Flow Volumes from and to Bus Stops Based on Land Use Elements: An Experimental Study. Land, 13(7), 971. https://doi.org/10.3390/land13070971