The Impact of Catastrophic Forest Fires of 2021 on the Light Soils in Central Yakutia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- A Report on Climate Features on the Territory of the Russian Federation in 2020; Roshydromet: Moscow, Russia, 2021; p. 104. (In Russian)
- Leskinen, P.; Lindner, M.; Verkerk, P.J.; Nabuurs, G.J.; Van Brusselen, J.; Kulikova, E.; Hassegawa, M.; Lerink, B. Russian Forests and Climate Change. What Science Can Tell Us 11? European Forest Institute: Joensuu, Finland, 2020; p. 138. [Google Scholar] [CrossRef]
- Malinovskikh, A.A.; Gefke, I.V. The influence of soil hydrothermal regime on post-fire recovery process in the ribbon-like pine forests of Western Siberia. IOP Conf. Ser. Earth Environ. Sci. 2021, 848, 012129. [Google Scholar] [CrossRef]
- Zamolodchikov, D.G. Vulnerability and Adaptation of Russian Forestry to Climate Change. In Proceedings of the All-Russian Scientific Conference with International Participation on Scientific Foundations of Sustainable Forest Management, Dedicated to the 30th Anniversary of the Center for Forest Ecology and Productivity RAS, Moscow, Russia, 25–29 April 2022; pp. 223–225. (In Russian). [Google Scholar]
- Chebykina, E.; Polyakov, V.; Abakumov, E.; Petrov, A. Wildfire effects on cryosols in Central Yakutia Region, Russia. Atmosphere 2022, 13, 1889. [Google Scholar] [CrossRef]
- Bekhovykh, Y.V.; Makarychev, S.V.; Trofimov, I.T.; Bolotov, A.G. Features of Heat Accumulation and Heat Exchange in Soddy-Podzolic Soils on Burnt Areas of the Dry Steppe Zone of the Altai Territory. In Proceedings of the II International Conference on Anthropogenic Impact on Forest Ecosystems, Altai University Publishing House, Barnaul, Russia, 18–19 April 2002; pp. 142–145. (In Russian). [Google Scholar]
- Shcherbakov, I.P.; Zabelin, O.F.; Karpel, B.A. Forest Fires in Yakutia and Their Influence on the Nature of the Forest; Nauka: Novosibirsk, Russia, 1979; p. 226. (In Russian) [Google Scholar]
- Solovyev, V.S.; Kozlov, V.I. The Disastrous Forest Fires in the Yakutia. In Proceedings of the 1st International Conference on Hydrology and Water Resources in Asia Pacific Region (APHW2003), Kyoto, Japan, 13–15 March 2003; pp. 222–224. [Google Scholar]
- Solovyev, V.S.; Kozlov, V.I.; Smirnov, I.F. Spatio-temporal dynamics of forest fires in Yakutia. Nat. Resour. Arct. Subarct. 2005, 1, 67–73. (In Russian) [Google Scholar]
- Vasiliev, M.S.; Vasilieva, S.A.; Solovyev, V.S.; Kozlov, V.I. Distribution of pyrogenic events and cloudiness in Yakutia on remote sensing data (1997–2005). Vestn. Yakutsk. State Univ. 2006, 3, 36–42. (In Russian) [Google Scholar]
- Solovyev, V.S. Weekly variations of forest fires in Yakutia. Nat. Resour. Arct. Subarct. 2009, 1, 66–70. (In Russian) [Google Scholar]
- Sukhinin, A.I. Aerospace monitoring of catastrophic wildfires in East Siberia. In Proceedings of the XIII International Scientific Conference Dedicated to the 50th Anniversary of the Siberian State Aerospace University Named by Academician Reshetnev, Krasnoyarsk, Russia, 10–12 November 2009; pp. 189–190. [Google Scholar]
- Protopopova, V.V.; Gabysheva, L.P. Pyrological characteristic of vegetation in forests of Central Yakutia and its dynamics inpost-fire period. Nat. Resour. Arct. Subarct. 2018, 25, 80–86. (In Russian) [Google Scholar] [CrossRef]
- Andreev, D.V. Forest fires in Yakutia. StudNet 2021, 10, 1–6. Available online: https://cyberleninka.ru/article/n/lesnye-pozhary-v-yakutii/viewer (accessed on 7 November 2022).
- Timofeev, P.A.; Isaev, A.P.; Shcherbakov, I.P. Forests of the Middle Taiga Subzone of Yakutia; Desyatkin, R.V., Ed.; YSC SB RAS: Yakutsk, Russia, 1994; p. 140. (In Russian) [Google Scholar]
- Lytkina, L.P. Forest fires role in larch renewal in Central Yakutia. Vestn. Yakutsk State Univ. 2006, 3, 36–42. (In Russian) [Google Scholar]
- Isaev, A.P. Natural and Anthropogenic Dynamics of Larch Forests in the Permafrost Zone (on the Example of Yakutia). Ph.D. Thesis, IBPC SB RAS, Yakutsk, Russia, 2011. (In Russian). [Google Scholar]
- Protopopova, V.V.; Gabysheva, L.P. Forest fire zoning of the forest resources in Republic of Sakha (Yakutia). Adv. Curr. Nat. Sci. 2016, 8, 120–125. (In Russian) [Google Scholar]
- Bekhovykh, Y.V. The Influence of Forest Fires on the Hydrothermal Regime of Soddy-Podzolic Soils in the Dry Steppe Zone of the Altai Territory. In Proceedings of the II International Conference on Anthropogenic Impact on Forest Ecosystems, Altai University Publishing House, Barnaul, Russia, 18–19 April 2002; pp. 139–142. (In Russian). [Google Scholar]
- Kupriyanov, A.N.; Trofimov, I.T.; Zablotsky, V.I.; Makarychev, S.V.; Kudryashov, I.V.; Malinovskikh, A.A.; Burmistrov, M.V.; Strakowski, A.N.; Bolotov, A.G.; Begovich, Y.U.; et al. Restoration of Forest Ecosystems after Fires; KREOO IRBIS: Kemerovo, Russia, 2003; p. 262. (In Russian) [Google Scholar]
- Mazirov, M.A.; Makarychev, S.V.; Bolotov, A.G.; Trofimov, I.T.; Bekhovykh, Y.V.; Sizov, E.G.; Ivanov, A.N.; Levin, A.A. Thermophysical Properties and Regimes in Anthropogenically Disturbed Soils; All-Russian Scientific and Research Institute of Agrochemistry named by D.N. Pryanishnikov: Moscow, Russia, 2003; p. 153. (In Russian) [Google Scholar]
- Makarychev, S.V.; Bekhovykh, Y.V.; Bekhovykh, L.A. Soil-physical conditions for reforestation in the burnt forests of the southwestern part of the belt forests of the Altai Territory. In Proceedings of the IV Scientific-Practical Conference on Restoration of Disturbed Landscapes, Altai University Publishing House, Barnaul, Russia, 28–30 June 2004; pp. 59–65. [Google Scholar]
- Shur, Y.L.; Jorgenson, M.T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process. 2007, 18, 7–19. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S., III; Mack, M.C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 2010, 16, 1281–1295. [Google Scholar] [CrossRef]
- Tarasov, P.A.; Ivanov, V.A.; Ivanova, G.A.; Krasnoshchekova, E.N. Post-pyrogenic changes in hydrothermal parameters of soils in middle-taiga pine forests. Eurasian Soil Sci. 2011, 44, 731–738. [Google Scholar] [CrossRef]
- Jiang, Y.; Rocha, A.V.; O’Donnell, J.A.; Drysdale, J.A.; Rastetter, E.B.; Shaver, G.R.; Zhuang, Q. Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest. J. Geophys. Res. Earth Surf. 2015, 120, 363–378. [Google Scholar] [CrossRef]
- Jin, X.; Jin, H.; Iwahana, G.; Marchenko, S.; Luo, D.; Li, X.; Liang, S. Impacts of climate-induced permafrost degradation on vegetation: A review. Adv. Clim. Change Res. 2021, 12, 29–47. [Google Scholar] [CrossRef]
- Tsibart, A.S.; Gennadiev, A.N. The influence of fires on the properties of forest soils in the Amur River basin (the Norskii Reserve). Eurasian Soil Sci. 2008, 41, 686–693. [Google Scholar] [CrossRef]
- Krasnoshchekov, Y.N.; Cherednikova, Y.S. Postpyrogenic transformation of soils under Pinussibirica forests in the southern Lake Baikal basin. Eurasian Soil Sci. 2012, 45, 929–938. [Google Scholar] [CrossRef]
- Bodí, M.B.; Martin, D.A.; Balfour, V.N.; Santín, C.; Doerr, S.H.; Pereira, P.; Cerdà, A.; Mataix-Solera, J. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- Smits, K.M.; Kirby, E.; Massman, W.J.; Baggett, L.S. Experimental and modeling study of forest fire effect on soil thermal conductivity. Pedosphere 2016, 26, 462–473. [Google Scholar] [CrossRef]
- Dymov, A.A.; Abakumov, E.V.; Bezkorovaynaya, I.N.; Prokushkin, A.S.; Kuzyakov, Y.V.; Milanovsky, E.Y. Impact of forest fire on soil properties (review). Theor. Appl. Ecol. 2018, 4, 13–23. [Google Scholar] [CrossRef]
- Deviatova, T.A.; Gorbunova, Y.S.; Rumyantseva, I.V. Basic property analysis of sod-forest soil covered by a forest fire in the territory of Usmanskypinery (RF). IOP Conf. Ser. Earth Environ. Sci. 2019, 392, 012048. [Google Scholar] [CrossRef]
- Bezkorovaynaya, I.N.; Tarasov, P.A.; Gette, I.G.; Mogilnikova, I.A. Influence of fire on soil temperatures of pine forests of the middle taiga, Central Siberia, Russia. J. For. Res. 2021, 32, 1139–1145. [Google Scholar] [CrossRef]
- Fedorov, A.N.; Torgovkin, Y.I.; Shestakova, A.A.; Vasilyev, N.F.; Makarov, V.S.; Kalinicheva, S.V.; Basharin, N.I.; Egorova, L.S.; Konstantinov, P.Y.; Samsonova, V.V.; et al. Permafrost Landscape Map of the Republic of Sakha (Yakutia). Scale 1: 1 500 000; Zheleznyak, M.N., Ed.; MPI SB RAS: Yakutsk, Russia, 2018; Available online: http://mpi.ysn.ru/images/mlk20182.pdf (accessed on 7 March 2024). (In Russian)
- Weather and Climate. Available online: http://pogodaiklimat.ru/ (accessed on 25 February 2024). (In Russian).
- Kachinskii, N.A. Mechanical and Microaggregate Composition of Soil, Methods of Investigation; Publishing House of AS USSR: Moscow, Russia, 1958; p. 191. (In Russian) [Google Scholar]
- GOST 26212-2021; Soils. Determination of Hydrolytic Acidity by Kappen Method Modified by CINAO. Russian Standardization Institute: Moscow, Russia, 2021; p. 10. (In Russian)
- Vorobieva, L.A. Soil Chemical Analysis; Moscow State University Press: Moscow, Russia, 1998; p. 272. (In Russian) [Google Scholar]
- Numerical Palaeobiology: Computer-Based Modelling and Analysis of Fossils and Their Distributions; Harper, D.A.T. (Ed.) John Wiley & Sons: Chichester, UK; New York, NY, USA; Weinheim, Germany; Brisbane, Australia; Singapore; Toronto, ON, Canada, 1999; 468p. [Google Scholar]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Maksimova, E.Y.; Abakumov, E.V. Consequences of wildfires for landscapes of the Kuybyshevsky water reservoir basin. In Proceedings of the International Conference on Ecological Problems of Large River Basins Dedicated to the 35th Anniversary of the Institute of Ecology of the Volga Basin of the Russian Academy of Sciences and the 65th Anniversary of the Kuibyshev Biological Station, Tolyatti, Russia, 15–19 October 2018; pp. 197–199. (In Russian). [Google Scholar]
- Jhariya, M.K.; Singh, L. Effect of fire severity on soil properties in a seasonally dry forest ecosystem of Central India. Int. J. Environ. Sci. Technol. 2021, 18, 3967–3978. [Google Scholar] [CrossRef]
- Li, X.Y.; Jin, H.J.; Wang, H.W.; Marchenko, S.S.; Shan, W.; Luo, D.L.; He, R.X.; Spektor, V.; Huang, Y.D.; Li, X.Y.; et al. Infuences of forest fires on the permafrost environment: A review. Adv. Clim. Change Res. 2021, 12, 48–65. [Google Scholar] [CrossRef]
- Li, X.; Jin, H.; He, R.; Huang, Y.; Wang, H.; Luo, D.; Jin, X.; Lü, L.; Wang, L.; Li, W.; et al. Effects of forest fires on the permafrost environment in the northern Da Xing’anling (Hinggan) mountains, Northeast China. Permafr. Periglac. Process. 2019, 30, 163–177. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Gyninova, A.B.; Sympilova, D.P. Changes in the properties of sod-forest soils under the influence of fires. In Soils of Siberia, Their Use and Protection; Nauka: Novosibirsk, Russia, 1999; pp. 120–124. [Google Scholar]
- Arocena, J.; Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 2003, 113, 1–16. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lukina, N.V.; Polyanskaya, L.M.; Orlova, M.A. Nutrient Regime of Soils in Northern Taiga Forests; Nauka: Moscow, Russia, 2008; p. 342. (In Russian) [Google Scholar]
- Tsibart, A.S.; Gennadiev, A.N. Trend of forest soils transformation under the influence of pyrogenic factor in the Amur River region. Mosc. Univ. Bull. Ser. 5 Geogr. 2009, 3, 66–74. (In Russian) [Google Scholar]
- Abakumov, E.; Pechkin, A.; Chebykina (Maksimova), E.; Shamilishvili, G. Effect of the wildfires on sandy podzol soils of Nadym region, Yamalo-Nenets autonomous district, Russia. Appl. Environ. Soil Sci. 2020, 2020, 8846005. [Google Scholar] [CrossRef]
- Lopatina, D.N.; Belozertseva, I.A. Natural and pyrogenic soils of the Primorsky Ridge. The Bulletin of Irkutsk State University. Ser. Earth Sci. 2020, 33, 73–87. (In Russian) [Google Scholar] [CrossRef]
- Liski, J.; Ilvesniemi, H.; Makela, A.; Starr, M. Model analysis of the effects of soils age, fires and harvesting on the carbon storage of boreal forest soils. Eur. J. Soil Sci. 1998, 49, 407–416. [Google Scholar] [CrossRef]
- Tarabukina, V.G.; Savvinov, D.D. The Influence of Fires on Permafrost Soils; Nauka: Novosibirsk, Russia, 1990; p. 120. (In Russian) [Google Scholar]
- Mataix-Solera, J.; Cerda, A.; Arcenegui, V.; Jordan, A.; Zavala, L.M. Fire effects on soil aggregation: A review. Earth Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Parise, M.; Cannon, S.H. Wildfire Impacts Process. That Gener. Debris Flows Burn. Watersheds. Nat. Hazards 2012, 61, 217–227. [Google Scholar] [CrossRef]
- Gubin, S.V.; Lupachev, A.V. Suprapermafrost horizons of the accumulation of raw organic matter in tundra cryozems of northern Yakutia. Eurasian Soil Sci. 2018, 51, 772–781. [Google Scholar] [CrossRef]
- Dymov, A.A.; Dubrovsky, Y.A.; Gabov, D.N. Pyrogenic changes in iron-illuvialpodzols in the middle taiga of the Komi republic. Eurasian Soil Sci. 2014, 47, 47–56. [Google Scholar] [CrossRef]
- Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys. 2005, 43, RG4002. [Google Scholar] [CrossRef]
- Andréassian, V. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27. [Google Scholar] [CrossRef]
- Chang, X.; Jin, H.; Zhang, Y.; Sun, H. Study of seasonal snow cover influencing the ground thermal regime on western flank of Da Xing’anling mountains, northeastern China. Sci. Cold. Arid. Reg. 2015, 7, 666–674. [Google Scholar]
- Szczypta, C.; Gascoin, S.; Houet, T.; Hagolle, O.; Dejoux, J.-F.; Vigneau, C.; Fanise, P. Impact of climate and land cover changes on snow cover in a small Pyrenean catchment. J. Hydrol. 2015, 521, 84–99. [Google Scholar] [CrossRef]
- Benninghoff, W.S. Interaction of vegetation and soil frost phenomena. Arctic 1952, 5, 34–44. Available online: https://www.jstor.org/stable/40506520 (accessed on 7 March 2024). [CrossRef]
- Runyan, C.W.; D’Odorico, P. Ecohydrological feedbacks between permafrost and vegetation dynamics. Adv. Water Resour. 2012, 49, 1–12. [Google Scholar] [CrossRef]
- Mazhitova, G.G. Pyrogenic dynamics of permafrost-affected soils in the Kolyma Upland. Eurasian Soil Sci. 2000, 33, 542–551. [Google Scholar]
- Evdokimenko, M.D. Microclimate of tree stands and hydrothermal regime of soils in pine forests of Trans-Baikal after ground fires. In Burning and Fires in the Forest; Publishing House of the Forestry Institute of the Siberian Branch of the USSR Academy of Sciences: Krasnoyarsk, Soviet Union, 1979; Volume 3, pp. 130–140. (In Russian) [Google Scholar]
- Gael, A.G.; Smirnova, L.F. Sands and Sandy Soils; GEOS: Moscow, Russia, 1999; p. 212. (In Russian) [Google Scholar]
- Evdokimenko, M.D.; Krivobokov, L.V.; Petrenko, A.E. Environmental consequences of landscape fires in Trans-Baikal forests. Tomsk. State Univ. J. Biol. 2022, 58, 153–180. [Google Scholar] [CrossRef]
- Kosarev, V.P. Forest Meteorology with Basic Climatology; Publishing House LTA: St. Petersburg, Russia, 2002; p. 264. (In Russian) [Google Scholar]
- Evdokimenko, M.D. Post-fire dynamics of the microclimate and hydrothermal regime of frozen soils in the larch forests of the Stanovoy Range. Sib. Ecol. J. 1996, 1, 73–79. (In Russian) [Google Scholar]
- Krasnoshchekov, Y.N. The influence of fires on the properties of mountain sod-taiga soils of larch forests in Mongolia. Eurasian Soil Sci. 1994, 9, 102–109. (In Russian) [Google Scholar]
- Ping, C.L.; Jastrow, J.D.; Jorgenson, M.T.; Michaelson, G.J.; Shur, Y.L. Permafrost soils and carbon cycling. Soil 2015, 1, 147–171. [Google Scholar] [CrossRef]
- Aaltonen, H.; Köster, K.; Köster, E.; Berninger, F.; Zhou, X.; Karhu, K.; Biasi, C.; Bruckman, V.; Palvianen, M.; Pumpanen, J. Forest fires in Canadian permafrost region: The combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry 2019, 143, 257–274. [Google Scholar] [CrossRef]
- Holloway, J.E.; Lewkowicz, A.G.; Douglas, T.A.; Li, X.; Turetsky, M.R.; Baltzer, J.L.; Jin, H. Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects. Permafr. Periglac. Process. 2020, 31, 371–382. [Google Scholar] [CrossRef]
Horizon | Depth, cm | pH | Corg.% | Cations mmol/100 g | Hydrolythic Acidity, mmol/100 g | CEC, % | Sum of Salts, % | |
---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | |||||||
larch.cont—Albic Podzol (Arenic. Gelic) | ||||||||
O | 0–4 | 87.10 | ||||||
AO | 4–5 | 4.64 | 29.21 * | - | - | 20.00 | - | 0.267 |
E/EB | 5 (10)–10 (24) | 4.68 | 0.30 | 1.10 | 0.50 | 1.37 | 53.87 | 0.025 |
BF | 10 (24)–24 (36) | 5.09 | 0.15 | 1.20 | 0.60 | 1.18 | 60.40 | 0.015 |
B | 24 (36)–42 | 5.17 | 0.10 | 0.95 | 0.45 | 0.80 | 63.64 | 0.015 |
BC/C | 42–52 (65) | 5.32 | 0.08 | 0.70 | 0.40 | 0.66 | 62.50 | - |
org. interlayer. | 5.22 | 2.35 | 6.65 | 2.15 | 4.71 | 65.14 | - | |
C/AE′ | 52 (65)–67 | 5.45 | 0.29 | 3.80 | 1.85 | 1.53 | 78.69 | - |
Cf/BF | 67–69 (74) | 5.65 | 0.10 | 1.50 | 0.70 | 0.80 | 73.33 | - |
C | 69 (74)–98 | 5.96 | 0.07 | 1.25 | 0.55 | 0.61 | 74.69 | - |
larch.pyr—pyrogenic Albic Podzol (Arenic. Gelic. Turbic) | ||||||||
Opir | 0–1pir | 67.10 * | ||||||
AOpir | 1–2 (10) pir | 5.84 | 33.52 * | - | - | 45.90 | - | 0.156 |
[A-EB-BFhi]tr | 2 (10)–3 (15) dark spots | 4.29 | 2.51 | 1.80 | 0.85 | 3.69 | 41.80 | 0.069 |
2 (10)–3 (15) light spots | 4.25 | 1.25 | 2.20 | 0.95 | 5.73 | 35.47 | 0.032 | |
[A-BFhi]tr.@ | 3 (15)–50 dark spots | 4.98 | 3.36 | 4.00 | 1.95 | 10.30 | 36.62 | 0.034 |
3 (15)–50 light spots | 4.19 | 0.08 | 0.85 | 0.40 | 0.83 | 60.10 | 0.015 | |
pine.cont—Albic Arenosol (Gelic. Protospodic. Turbic) | ||||||||
O | 0–1 | 91.70 * | ||||||
AO (AOpir) | 1–2 (3) | 4.53 | 17.56 * | 2.70 | 0.65 | 7.11 | 32.03 | 0.022 |
AE | 2 (3)–4 (8) | 4.94 | 1.71 | 2.15 | 0.35 | 3.63 | 40.78 | 0.017 |
[E-BF]tr | 4 (8)–15 (24) | 4.70 | 0.45 | 0.65 | 0.30 | 2.16 | 30.55 | 0.013 |
Bf | 15 (24)–62 (68) | 5.04 | 0.08 | 0.73 | 0.47 | 1.01 | 54.30 | 0.008 |
BCf | 62 (68)–95 | 5.44 | 0.06 | 1.05 | 0.45 | 0.61 | 71.09 | - |
C | 95–135 | 5.62 | 0.06 | 1.50 | 0.55 | 0.70 | 74.55 | - |
pine.pyr—pyrogenic Arenosol (Gelic. Protospodic. Turbic) | ||||||||
Opir | 0–1pir | 81.65 * | ||||||
AOpir | 1–2pir | 6.06 | 53.14 * | - | - | - | - | 0.209 |
[AE-BF] pir.tr | 2–9 (14) | 4.88 | 1.01 | 1.00 | 0.45 | 2.07 | 41.19 | 0.022 |
Bf | 9 (14)–34 (42) | 4.63 | 0.11 | 0.35 | 0.18 | 0.85 | 38.41 | 0.013 |
BC (C) | 34 (42)–75 | 4.80 | 0.06 | 0.93 | 0.27 | 0.75 | 61.54 | 0.008 |
C1 | 75–100 | 5.26 | 0.03 | 0.60 | 0.25 | 0.44 | 65.89 | - |
C2 | 100–130 | 5.34 | 0.03 | 0.58 | 0.27 | 0.43 | 66.41 | - |
Horizon | Depth, cm | Moisture, % | Bulk Density, g/cm3 | Particle Size (%) mm | Sum of Particles <0.01, mm | |||||
---|---|---|---|---|---|---|---|---|---|---|
1–0.25 | 0.25–0.05 | 0.05–0.01 | 0.01–0.005 | 0.005–0.001 | <0.001 | |||||
larch.cont—Albic Podzol (Arenic. Gelic) | ||||||||||
E/EB | 5–10 | 0.27 | 1.77 | 52.5 | 39.1 | 3.3 | 0.8 | 0.4 | 3.9 | 5.1 |
BF | 10–24 | 0.20 | 1.75 | 59.3 | 32.1 | 3.9 | 0.6 | 1.2 | 2.9 | 4.7 |
B | 24–42 | 0.07 | 2.34 | 55.8 | 35.2 | 1.9 | 1.0 | 3.0 | 3.1 | 7.1 |
BC/C | 42–52 | 0.13 | 1.79 | 55.7 | 39.6 | 0.8 | 0.2 | 0.4 | 3.3 | 3.9 |
C/AE′ | 52–67 | 0.73 | 2.32 | 30.7 | 57.7 | 1.5 | 2.2 | 1.8 | 6.1 | 10.1 |
Cf/BF | 67–69 | 0.32 | 2.18 | 58.1 | 34.9 | 1.0 | 1.2 | 4.5 | 0.3 | 6.0 |
C | 69–98 | 0.21 | 2.33 | 64.3 | 31.6 | 0.2 | 1.5 | 0.4 | 2.0 | 3.9 |
org. interlayer | 0.22 | - | 41.5 | 45.6 | 2.5 | 1.0 | 3.0 | 6.4 | 10.4 | |
larch.pyr—pyrogenic Albic Podzol (Arenic. Gelic. Turbic) | ||||||||||
[A-EB-BFhi]tr | 2 (10)–3 (15) dark spots | 1.10 | 2.65 | 61.8 | 31.5 | 0.2 | 1.0 | 0.8 | 4.7 | 6.5 |
2 (10)–3 (15) light spots | 0.13 | 1.86 | 60.3 | 35.0 | 0.2 | 0.8 | 0.4 | 3.3 | 4.5 | |
[A-BFhi]tr.@ | 3 (15)–50 dark spots | 1.25 | 2.04 | 54.2 | 33.0 | 0.8 | 2.1 | 1.8 | 8.1 | 12.0 |
3 (15)–50 light spots | 0.42 | 1.80 | 69.0 | 27.2 | 0.7 | 0.4 | 0.2 | 2.5 | 3.1 | |
pine.cont—Albic Arenosol (Gelic. Protospodic. Turbic) | ||||||||||
AE | 2–4 | 0.30 | 1.98 | 56.9 | 35.6 | 1.6 | 0.4 | 2.0 | 3.5 | 5.9 |
[E-BF]tr | 4–15 | 0.20 | 1.71 | 69.0 | 23.7 | 1.4 | 0.6 | 1.8 | 3.5 | 5.9 |
Bf | 15–62 | 0.20 | 1.91 | 64.8 | 29.7 | 1.2 | 0.6 | 0.4 | 3.3 | 4.3 |
BCf | 62–95 | 0.20 | 1.85 | 64.7 | 30.9 | 0.6 | 1.5 | 1.4 | 0.9 | 3.8 |
C | 95–135 | 0.20 | 2.50 | 61.0 | 32.3 | 2.4 | 0.6 | 0.6 | 3.1 | 4.3 |
pine.pyr—pyrogenic Arenosol (Gelic. Protospodic. Turbic) | ||||||||||
[AE-BF] pir.tr | 2–9 | 0.28 | 1.79 | 74.8 | 19.5 | 1.6 | 0.4 | 0.4 | 3.3 | 4.1 |
Bf | 9–34 | 0.14 | 1.80 | 72.9 | 19.1 | 1.0 | 3.6 | 1.1 | 2.3 | 7.0 |
BC (C) | 34–75 | 0.20 | 1.70 | 65.5 | 29.2 | 0.4 | 0.4 | 0.8 | 3.7 | 4.9 |
C1 | 75–100 | 0.20 | 1.85 | 71.2 | 19.8 | 1.5 | 3.6 | 0.6 | 3.3 | 7.5 |
C2 | 100–130 | 0.07 | 2.46 | 67.9 | 22.7 | 1.9 | 3.2 | 1.4 | 2.9 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desyatkin, A.; Okoneshnikova, M.; Fedorov, P.; Ivanova, A.; Filippov, N.; Desyatkin, R. The Impact of Catastrophic Forest Fires of 2021 on the Light Soils in Central Yakutia. Land 2024, 13, 1130. https://doi.org/10.3390/land13081130
Desyatkin A, Okoneshnikova M, Fedorov P, Ivanova A, Filippov N, Desyatkin R. The Impact of Catastrophic Forest Fires of 2021 on the Light Soils in Central Yakutia. Land. 2024; 13(8):1130. https://doi.org/10.3390/land13081130
Chicago/Turabian StyleDesyatkin, Alexey, Matrena Okoneshnikova, Pavel Fedorov, Alexandra Ivanova, Nikolay Filippov, and Roman Desyatkin. 2024. "The Impact of Catastrophic Forest Fires of 2021 on the Light Soils in Central Yakutia" Land 13, no. 8: 1130. https://doi.org/10.3390/land13081130
APA StyleDesyatkin, A., Okoneshnikova, M., Fedorov, P., Ivanova, A., Filippov, N., & Desyatkin, R. (2024). The Impact of Catastrophic Forest Fires of 2021 on the Light Soils in Central Yakutia. Land, 13(8), 1130. https://doi.org/10.3390/land13081130