Effects of Design Factors and Multi-Stage Environmental Factors on Hydrological Performance of Subtropical Green Roofs
Abstract
:1. Introduction
Reference | Location | Climatic Feature | Retention | Peak Reduction | RD | Duration | imax | imean | Depth | Type | Season | ADWP | AVWC | RH24 | SR24 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[46] | Athens, USA | Subtropical | ○ | × | 1 | ||||||||||
[47] | Sheffield, UK | Temperate | ○ | ○ | 1 | 1 | 1 | 1 | |||||||
[31] | Michigan, USA | Temperate | × | ○ | 1 | ||||||||||
[14] | Sheffield, UK | Temperate | ○ | ○ | 1 | 1 | 1 | 1 | |||||||
[8] | Auckland, New Zealand | Subtropical | ○ | ○ | 1 | 0 | 0 | ||||||||
[35] | Adelaide, Australia | Hot Mediterranean | ○ | × | 1 | 1 | 1 | 1 | |||||||
[36] | Central Texas, USA | Subtropical | ○ | × | 1 | 1 | 1 | ||||||||
[48] | New York, USA | Humid Continental | ○ | ○ | 1 | 1 | 0 | 0 | |||||||
[9] | Leeds, UK | Temperate | ○ | × | 1 | 1 | 1 | 1 | 0 | ||||||
[43] | Hong Kong, China | Humid Subtropical | ○ | × | 1 | 1 | 1 | 0 | 1 | ||||||
[37] | Chongqing, China | Humid Subtropical | ○ | × | 1 | 1 | |||||||||
[38] | Lisbon, Portugal | Mediterranean | ○ | × | 1 | 1 | |||||||||
[49] | Gansu, China | Semi-arid | ○ | × | 1 | 1 | 0 | 1 | |||||||
[50] | Melbourne, Australia | Temperate | ○ | × | 0 | ||||||||||
[13] | London, UK | Moderate | × | ○ | 0 | 1 | |||||||||
[51] | Salerno, Italy | Mediterranean | ○ | × | 1 | 1 | 1 | ||||||||
[52] | Rio Grande do Sul, Brazil | Humid Subtropical | ○ | × | 1 | 0/1 | 1 | ||||||||
[53] | Rio Grande do Sul, Brazil | Humid Subtropical | ○ | × | 1 | 0 | 1 | 0 | |||||||
[34] | Chongqing, China | Humid Subtropical | ○ | ○ | 1 | 0 | 0 | 1 | 1 | 1 | 1/0 | 0 |
2. Data and Methods
2.1. Site Description
2.2. Experimental Setup
2.3. Data Collection
2.4. Definition of Variables
2.5. Statistical Analysis
3. Results
3.1. Overall Hydrological Performance of Green Roofs
3.2. Hydrological Performance across Design Factors
3.3. The LMMs for Retention and Peak Reduction
4. Discussion
4.1. Overall Hydrological Performance
4.2. Hydrological Performance across Design Factors
4.3. Environmental Factors as Drivers of Retention
4.4. Links between Environmental Factors and Peak Reduction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The Balance between Economic Development and Ecosystem Service Value in the Process of Land Urbanization: A Case Study of China’s Land Urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Iftekhar, M.S.; Pannell, D.J. Developing an Integrated Investment Decision-Support Framework for Water-Sensitive Urban Design Projects. J. Hydrol. 2022, 607, 127532. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L. Increasing Risk of Great Floods in a Changing Climate. Nature 2002, 415, 514–517. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global Flood Risk under Climate Change. Nat. Clim. Change 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Akbari, H.; Shea Rose, L.; Taha, H. Analyzing the Land Cover of an Urban Environment Using High-Resolution Orthophotos. Landsc. Urban Plan. 2003, 63, 1–14. [Google Scholar] [CrossRef]
- Dunnett, N.; Kingsbury, N. Planting Options for Extensive and Semi-Extensive Green Roofs; The Cardinal Group: Timber Press, OR, USA, 2004; pp. 221–236. [Google Scholar]
- Besir, A.B.; Cuce, E. Green Roofs and Facades: A Comprehensive Review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Fassman-Beck, E.; Voyde, E.; Simcock, R.; Hong, Y. 4 Living Roofs in 3 Locations: Does Configuration Affect Runoff Mitigation? J. Hydrol. 2013, 490, 11–20. [Google Scholar] [CrossRef]
- Nawaz, R.; Mcdonald, A.W.; Postoyko, S. Hydrological Performance of a Full-Scale Extensive Green Roof Located in a Temperate Climate. Ecol. Eng. 2015, 82, 66–80. [Google Scholar] [CrossRef]
- Bortolini, L.; Bettella, F.; Zanin, G. Hydrological Behaviour of Extensive Green Roofs with Native Plants in the Humid Subtropical Climate Context. Water 2020, 13, 44. [Google Scholar] [CrossRef]
- Voyde, E.; Fassman, E.; Simcock, R. Hydrology of an Extensive Living Roof under Sub-Tropical Climate Conditions in Auckland, New Zealand. J. Hydrol. 2010, 394, 384–395. [Google Scholar] [CrossRef]
- Karteris, M.; Theodoridou, I.; Mallinis, G.; Tsiros, E.; Karteris, A. Towards a Green Sustainable Strategy for Mediterranean Cities: Assessing the Benefits of Large-Scale Green Roofs Implementation in Thessaloniki, Northern Greece, Using Environmental Modelling, GIS and Very High Spatial Resolution Remote Sensing Data. Renew. Sustain. Energy Rev. 2016, 58, 510–525. [Google Scholar] [CrossRef]
- Sims, A.W.; Robinson, C.; Smart, C.C.; O’Carroll, D. Mechanisms Controlling Green Roof Peak Flow Rate Attenuation. J. Hydrol. 2019, 557, 123972. [Google Scholar] [CrossRef]
- Stovin, V.; Vesuviano, G.; Kasmin, H. The Hydrological Performance of a Green Roof Test Bed under UK Climatic Conditions. J. Hydrol. 2012, 414, 148–161. [Google Scholar] [CrossRef]
- Ávila-Hernández, A.; Simá, E.; Ché-Pan, M. Research and Development of Green Roofs and Green Walls in Mexico: A Review. Sci. Total Environ. 2023, 856, 158978. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; He, B.-J. A Standardized Assessment Framework for Green Roof Decarbonization: A Review of Embodied Carbon, Carbon Sequestration, Bioenergy Supply, and Operational Carbon Scenarios. Renew. Sustain. Energy Rev. 2023, 182, 113376. [Google Scholar] [CrossRef]
- Shafique, M.; Xue, X.; Luo, X. An Overview of Carbon Sequestration of Green Roofs in Urban Areas. Urban For. Urban Green. 2020, 47, 126515. [Google Scholar] [CrossRef]
- Calviño, A.A.; Tavella, J.; Beccacece, H.M.; Estallo, E.L.; Fabián, D.; Moreno, M.L.; Salvo, A.; Fenoglio, M.S. The Native- Exotic Plant Choice in Green Roof Design: Using a Multicriteria Decision Framework to Select Plant Tolerant Species That Foster Beneficial Arthropods. Ecol. Eng. 2023, 187, 106871. [Google Scholar] [CrossRef]
- Deng, H.; Jim, C.Y. Spontaneous Plant Colonization and Bird Visits of Tropical Extensive Green Roof. Urban Ecosyst. 2017, 20, 337–352. [Google Scholar] [CrossRef]
- Williams, K.J.H.; Lee, K.E.; Sargent, L.; Johnson, K.A.; Rayner, J.; Farrell, C.; Miller, R.E.; Williams, N.S.G. Appraising the Psychological Benefits of Green Roofs for City Residents and Workers. Urban For. Urban Green. 2019, 44, 126399. [Google Scholar] [CrossRef]
- Lee, K.; Wylie, B.; Williams, N.S.G.; Johnson, K.A.; Sargent, L.D.; Williams, K.J.H. “It’s a Little Soap Opera of Its Own”: Fascinating Green Roofs Offer Complexity, Movement, Sensory Engagement, and Vast Vistas. Landsc. Urban Plan. 2024, 242, 104925. [Google Scholar] [CrossRef]
- Teotonio, I.; Silva, C.M.; Cruz, C.O. Eco-Solutions for Urban Environments Regeneration: The Economic Value of Green Roofs. J. Clean. Prod. 2018, 199, 121–135. [Google Scholar] [CrossRef]
- Castleton, H.; Stovin, V.; Beck, S.; Davison, J. Green Roofs; Building Energy Savings and the Potential for Retrofit. Energy Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- Czemiel Berndtsson, J. Green Roof Performance towards Management of Runoff Water Quantity and Quality: A Review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Chen, C.-F. Performance Evaluation and Development Strategies for Green Roofs in Taiwan: A Review. Ecol. Eng. 2013, 52, 51–58. [Google Scholar] [CrossRef]
- Carson, T.; Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Hydrological Performance of Extensive Green Roofs in New York City: Observations and Multi-Year Modeling of? Three Full-Scale Systems. Environ. Res. Lett. 2013, 8, 024036. [Google Scholar] [CrossRef]
- Nektarios, P.A.; Ntoulas, N.; Nydrioti, E.; Kokkinou, I.; Bali, E.-M.; Amountzias, I. Drought Stress Response of Sedum Sediforme Grown in Extensive Green Roof Systems with Different Substrate Types and Depths. Sci. Hortic. 2015, 181, 52–61. [Google Scholar] [CrossRef]
- William, R.; Goodwell, A.; Richardson, M.; Le, P.V.V.; Kumar, P.; Stillwell, A.S. An Environmental Cost-Benefit Analysis of Alternative Green Roofing Strategies. Ecol. Eng. 2016, 95, 1–9. [Google Scholar] [CrossRef]
- Schultz, I.; Sailor, D.; Starry, O. Effects of Substrate Depth and Precipitation Characteristics on Stormwater Retention by Two Green Roofs in Portland OR. J. Hydrol. Reg. Stud. 2018, 18, 110–118. [Google Scholar] [CrossRef]
- Leite, F.R.; Antunes, M.L.P. Green Roof Recent Designs to Runoff Control: A Review of Building Materials and Plant Species Used in Studies. Ecol. Eng. 2023, 189, 106924. [Google Scholar] [CrossRef]
- Carpenter, D.D.; Kaluvakolanu, P. Effect of Roof Surface Type on Storm-Water Runoff from Full-Scale Roofs in a Temperate Climate. J. Irrig. Drain. Eng. 2011, 137, 161–169. [Google Scholar] [CrossRef]
- Stovin, V.; Vesuviano, G.; De-Ville, S. Defining Green Roof Detention Performance. Urban Water J. 2017, 14, 574–588. [Google Scholar] [CrossRef]
- Alim, M.A.; Rahman, A.; Tao, Z.; Garner, B.; Griffith, R.; Liebman, M. Green Roof as an Effective Tool for Sustainable Urban Development: An Australian Perspective in Relation to Stormwater and Building Energy Management. J. Cleaner Prod. 2022, 362, 132561. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J. Green Roofs in the Humid Subtropics: The Role of Environmental and Design Factors on Stormwater Retention and Peak Reduction. Sci. Total Environ. 2023, 858, 159710. [Google Scholar] [CrossRef] [PubMed]
- Razzaghmanesh, M.; Beecham, S. The Hydrological Behaviour of Extensive and Intensive Green Roofs in a Dry Climate. Sci. Total Environ. 2014, 499, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Volder, A.; Dvorak, B. Event Size, Substrate Water Content and Vegetation Affect Storm Water Retention Efficiency of an Un-Irrigated Extensive Green Roof System in Central Texas. Sustain. Cities Soc. 2014, 10, 59–64. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, L.; Wang, X.; Liu, D.; Zhu, L.; Zhou, B.; Sun, J.; Liu, J. The Capacity of Greening Roof to Reduce Stormwater Runoff and Pollution. Landsc. Urban Plan. 2015, 144, 142–150. [Google Scholar] [CrossRef]
- Brandao, C.; Cameira, M.R.; Valente, F.; Carvalho, R.C.D.; Paço, T. Wet Season Hydrological Performance of Green Roofs Using Native Species under Mediterranean Climate. Ecol. Eng. 2017, 102, 596–611. [Google Scholar] [CrossRef]
- Gobatti, L.; Leite, B.C.C. Unmanaged Vegetated Roofs Hydrological Performance in Subtropical Areas: An Investigation in São Paulo, Brazil. Sci. Total Environ. 2023, 874, 162417. [Google Scholar] [CrossRef]
- DeNardo, J.C.; Jarrett, A.R.; Manbeck, H.B.; Beattie, D.J.; Berghage, R. Stormwater Mitigation and Surface Temperature Reduction by Green Roofs. Trans. ASABE 2005, 48, 1491–1496. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L. Compared Performance of a Conceptual and a Mechanistic Hydrologic Models of a Green Roof. Hydrol. Process. 2012, 26, 73–84. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, M.J.; Han, M. A Pilot Study to Evaluate Runoff Quantity from Green Roofs. J. Environ. Manag. 2015, 152, 171–176. [Google Scholar] [CrossRef]
- Wong, G.K.L.; Jim, C.Y. Identifying Keystone Meteorological Factors of Green-Roof Stormwater Retention to Inform Design and Planning. Landsc. Urban Plan. 2015, 143, 173–182. [Google Scholar] [CrossRef]
- Sims, A.W.; Robinson, C.E.; Smart, C.C.; Voogt, J.A.; Hay, G.J.; Lundholm, J.T.; Powers, B.; O’Carroll, D.M. Retention Performance of Green Roofs in Three Different Climate Regions. J. Hydrol. 2016, 542, 115–124. [Google Scholar] [CrossRef]
- Simmons, M.; Gardiner, B.; Windhager, S.; Tinsley, J. Green Roofs Are Not Created Equal: The Hydrologic and Thermal Performance of Six Different Extensive Green Roofs and Reflective and Non-Reflective Roofs in a Sub-Tropical Climate. Urban Ecosyst. 2008, 11, 339–348. [Google Scholar] [CrossRef]
- Carter, T.L.; Rasmussen, T.C. Hydrologic Behavior of Vegetated Roofs. JAWRA J. Am. Water Resour. Assoc. 2007, 42, 1261–1274. [Google Scholar] [CrossRef]
- Stovin, V. The Potential of Green Roofs to Manage Urban Stormwater: The Potential of Green Roofs to Manage Urban Stormwater. Water Environ. J. 2010, 24, 192–199. [Google Scholar] [CrossRef]
- Hakimdavar, R.; Culligan, P.; Finazzi, M.; Barontini, S.; Ranzi, R. Scale Dynamics of Extensive Green Roofs: Quantifying the Effect of Drainage Area and Rainfall Characteristics on Observed and Modeled Green Roof Hydrologic Performance. Ecol. Eng. 2014, 73, 494–508. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Chen, W.; Wei, W.; Deo, R. The Influence of Structural Factors on Stormwater Runoff Retention of Extensive Green Roofs: New Evidence from Scale-Based Models and Real Experiments. J. Hydrol. 2019, 569, 230–238. [Google Scholar] [CrossRef]
- Zhang, Z.; Szota, C.; Fletcher, T.D.; Williams, N.S.G.; Werdin, J.; Farrell, C. Influence of Plant Composition and Water Use Strategies on Green Roof Stormwater Retention. Sci. Total Environ. 2018, 625, 775–781. [Google Scholar] [CrossRef]
- Longobardi, A.; D’Ambrosio, R.; Mobilia, M. Predicting Stormwater Retention Capacity of Green Roofs: An Experimental Study of the Roles of Climate, Substrate Soil Moisture, and Drainage Layer Properties. Sustainability 2019, 11, 6956. [Google Scholar] [CrossRef]
- Liberalesso, T.; Tassi, R.; Ceconi, D.E.; Allasia, D.G.; Arboit, N.K.S. Effect of Rice Husk Addition on the Physicochemical and Hydrological Properties on Green Roof Substrates under Subtropical Climate Conditions. J. Clean. Prod. 2021, 315, 128133. [Google Scholar] [CrossRef]
- Persch, C.G.; Tassi, R.; Minetto, B.; Allasia, D.; Rippel, E. Assessing the Scale Dynamics of the Rainfall Retention of Green Roofs in a Subtropical Climate. J. Environ. Eng. 2021, 147, 04021054. [Google Scholar] [CrossRef]
- Kazemi, F.; Mohorko, R. Review on the Roles and Effects of Growing Media on Plant Performance in Green Roofs in World Climates. Urban For. Urban Green. 2017, 23, 13–26. [Google Scholar] [CrossRef]
- Shafique, M.; Shafique, M.; Shafique, M.; Kim, R.; Rafiq, M. Green Roof Benefits, Opportunities and Challenges—A Review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Xie, H.; Liu, J.; Randall, M. Impact of Structural Factors on Green Roof Runoff—A Field Investigation and Statistical Analysis. J. Hydrol. 2022, 613, 128345. [Google Scholar] [CrossRef]
- Xiao, M.; Lin, Y.; Han, J.; Zhang, G. A Review of Green Roof Research and Development in China. Renew. Sustain. Energy Rev. 2014, 40, 633–648. [Google Scholar] [CrossRef]
- Chen, X.; Shuai, C.; Chen, Z.; Zhang, Y. What Are the Root Causes Hindering the Implementation of Green Roofs in Urban China? Sci. Total Environ. 2019, 654, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, K. Green Roofs: A Critical Review on the Role of Components, Benefits, Limitations and Trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Moosavi, V.; Karami, A.; Behnia, N. Soil Erosion Assessment and Prioritization of Affecting Factors at Plot Scale Using the Taguchi Method. J. Hydrol. 2012, 448–449, 174–180. [Google Scholar] [CrossRef]
- Zhang, F.B.; Wang, Z.L.; Yang, M.Y. Assessing the Applicability of the Taguchi Design Method to an Interrill Erosion Study. J. Hydrol. 2015, 521, 65–73. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Y.; Che, S. Performance Analysis and Experimental Study on Rainfall Water Purification with an Extensive Green Roof Matrix Layer in Shanghai, China. Water Sci. Technol. 2018, 77, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yang, G.; Tu, X.; Zhang, P. LY/T 1215-1999; Determination of Forest Soil Water-Physical Properties. China Academy of Forestry, Forest Research Institute: Beijing, China, 1999.
- Li, X.; Hussain, S.A.; Sobri, S.; Md Said, M.S. Overviewing the Air Quality Models on Air Pollution in Sichuan Basin, China. Chemosphere 2021, 271, 129502. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Shi, G.; Wu, X.; Yang, F. The Extraordinary Trend of the Spatial Distribution of PM2.5 Concentration and Its Meteorological Causes in Sichuan Basin. Atmosphere 2022, 13, 853. [Google Scholar] [CrossRef]
- Speak, A.; Rothwell, J.; Lindley, S.; Smith, C.L. Rainwater Runoff Retention on an Aged Intensive Green Roof. Sci. Total Environ. 2013, 461–462, 28–38. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Chang, L.; Roberts, S.; Welsh, A. Robust Lasso Regression Using Tukey’s Biweight Criterion. Technometrics 2018, 60, 36–47. [Google Scholar] [CrossRef]
- Lee, J.H.; Shi, Z.; Gao, Z. On LASSO for Predictive Regression. J. Econom. 2022, 229, 322–349. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Friedman, J.; Tibshirani, R.; Hastie, T. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Barr, D.J.; Levy, R.; Scheepers, C.; Tily, H.J. Random Effects Structure for Confirmatory Hypothesis Testing: Keep It Maximal. J. Mem. Lang. 2013, 68, 255–278. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.47.5. 2023. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 21 July 2024).
- Canessa, R.; van den Brink, L.; Berdugo, M.B.; Hättenschwiler, S.; Rios, R.S.; Saldaña, A.; Tielbörger, K.; Bader, M.Y. Trait Functional Diversity Explains Mixture Effects on Litter Decomposition at the Arid End of a Climate Gradient. J. Ecol. 2022, 110, 2219–2231. [Google Scholar] [CrossRef]
- Nakagawa, S.; Johnson, P.C.D.; Schielzeth, H. The Coefficient of Determination R2 and Intra-Class Correlation Coefficient from Generalized Linear Mixed-Effects Models Revisited and Expanded. J. R. Soc. Interface 2016, 14, 134. [Google Scholar]
- Ogle, D.H.; Doll, J.C.; Wheeler, A.P.; Dinno, A. FSA: Simple Fisheries Stock Assessment Methods. R Package Version 0.9.5. 2023. Available online: https://CRAN.R-project.org/package=FSA (accessed on 21 July 2024).
- Wong, G.K.L.; Jim, C.Y. Quantitative Hydrologic Performance of Extensive Green Roof under Humid-Tropical Rainfall Regime. Ecol. Eng. 2014, 70, 366–378. [Google Scholar] [CrossRef]
- Gong, Y.; Yin, D.; Li, J.; Zhang, X.; Wang, W.; Fang, X.; Shi, H.; Wang, Q. Performance Assessment of Extensive Green Roof Runoff Flow and Quality Control Capacity Based on Pilot Experiments. Sci. Total Environ. 2019, 687, 505–515. [Google Scholar] [CrossRef]
- Jamei, M.; Guiras, H.; Chtourou, Y.; Kallel, A.; Romero, E.; Georgopoulos, I. Water Retention Properties of Perlite as a Material with Crushable Soft Particles. Eng. Geol. 2011, 122, 261–271. [Google Scholar] [CrossRef]
- Stovin, V.; Poë, S.; Berretta, C. A Modelling Study of Long Term Green Roof Retention Performance. J. Environ. Manag. 2013, 131, 206–215. [Google Scholar] [CrossRef]
- Cascone, S.; Coma, J.; Gagliano, A.; Pérez, G. The Evapotranspiration Process in Green Roofs: A Review. Build. Environ. 2019, 147, 337–355. [Google Scholar] [CrossRef]
- Arboit, N.K.S.; Tassi, R.; Liberalesso, T.; Ceconi, D.E.; Piccili, D.G.A. Green Roof Evapotranspiration Rates and Stormwater Control under Subtropical Climate: A Case Study in Brazil. RBRH 2021, 26, e32. [Google Scholar] [CrossRef]
- Liu, R.; Fassman-Beck, E. Hydrologic Response of Engineered Media in Living Roofs and Bioretention to Large Rainfalls: Experiments and Modeling. Hydrol. Process. 2017, 31, 556–572. [Google Scholar] [CrossRef]
- Tseng, K.-H.; Chung, M.-Y.; Chen, L.-H.; Chou, L.-A. A Study of Green Roof and Impact on the Temperature of Buildings Using Integrated IoT System. Sci. Rep. 2022, 12, 16140. [Google Scholar] [CrossRef] [PubMed]
Properties (% v/v) | Abbreviations | Substrate | |||
---|---|---|---|---|---|
A | B | C | D | ||
Perlite | P | 25 | 25 | 0 | 0 |
Zeolite | Z | 0 | 0 | 25 | 25 |
Expanded shale | ES | 30 | 0 | 30 | 0 |
Sandy loam | SL | 0 | 30 | 0 | 30 |
Vermiculite | V | 25 | 25 | 25 | 25 |
Compost | C | 20 | 20 | 20 | 20 |
Properties | Substrate | |||
---|---|---|---|---|
A | B | C | D | |
Bulk density (g/cm3) | 0.403 | 0.607 | 0.787 | 0.885 |
Saturated density (g/cm3) | 1.13 | 1.18 | 1.29 | 1.5 |
Capillary storage (g/L) | 326 | 391 | 246 | 394 |
Maximum water-holding capacity (g/kg) | 1796 | 944 | 642 | 697 |
Infiltration rate (mm/hour) | 32.1 | 91.1 | 39.6 | 82.3 |
Capillary porosity (%) | 32.7 | 39.1 | 24.6 | 39.3 |
Non-capillary porosity (%) | 39.8 | 18.2 | 25.9 | 22.3 |
Total porosity (%) | 72.5 | 57.3 | 50.6 | 61.7 |
Particle size > 2 mm (%) | 51.9 | 7.4 | 29.4 | 4.2 |
0.25 mm < particle size < 2 mm (%) | 28.6 | 60.1 | 58.7 | 66 |
Particle size < 0.25 mm (%) | 19.5 | 32.5 | 11.9 | 29.8 |
Variable | Description | Mean ± SD | Min–Max | Median |
---|---|---|---|---|
Dependent variable | ||||
Retention * | %, the event-based retention | 78.70 ± 23.98 | 16.15–99.89 | 92.50 |
Peak reduction * | %, the event-based peak flow reduction | 84.74 ± 22.09 | 3.03–99.88 | 95.75 |
Environmental variables | ||||
RD * | mm, rainfall depth | 20.42 ± 22.51 | 1.4–81.2 | 10.4 |
Duration * | min, duration of the rainfall | 1618 ± 1665 | 51–7552 | 970 |
imax | mm/min, maximum of rainfall intensity | 0.47 ± 0.40 | 0.2–1.6 | 0.2 |
imean * | mm/min, mean rainfall intensity | 0.03 ± 0.05 | 0.002–0.220 | 0.01 |
ADWP * | min, antecedent dry weather periods | 4588 ± 4471 | 320–23071 | 2711 |
AWVC * | v/v, antecedent volumetric water content | 0.19 ± 0.15 | 0.01–0.79 | 0.16 |
RH24 | %, mean air relative humidity during the 24 h preceding the event | 76.36 ± 9.00 | 54.72–89.83 | 76.96 |
TP24 | °C, mean air temperature during the 24 h preceding the event | 22.51 ± 6.88 | 7.59–33.91 | 22.77 |
kPa24 | kPa, mean atmosphere pressure during the 24 h preceding the event | 98.10 ± 0.77 | 96.84–99.39 | 97.93 |
SR24 * | W/m2, mean solar radiation during the 24 h preceding the event | 72.41 ± 53.70 | 4.93–195.91 | 66.47 |
RHe * | %, mean relative humidity during the event | 87.13 ± 2.42 | 78.91–90.05 | 87.72 |
TPe * | °C, mean air temperature during the event | 18.64 ± 5.64 | 2.77–28.52 | 20.36 |
kPae | kPa, mean atmosphere pressure during the event | 98.43 ± 0.84 | 97.07–100.35 | 98.42 |
SRe | W/m2, mean solar radiation during the event | 20.97 ± 18.82 | 0–76.83 | 18.31 |
RHo * | %, mean relative humidity during the outflow | 85.95 ± 3.23 | 71.26–90.42 | 86.71 |
TPo | °C, mean air temperature during the outflow | 18.75 ± 5.75 | 2.75–28.39 | 20.61 |
kPao | kPa, mean atmosphere pressure during the outflow | 98.48 ± 0.84 | 97.06–100.52 | 98.48 |
SRo * | W/m2, mean solar radiation during the outflow | 48.95 ± 41.17 | 0–314.19 | 39.84 |
Design variables | ||||
type * | Four substrate types: substrate A, B, C, and D | / | / | / |
depth * | Two substrate depths: 17 cm and 12 cm | / | / | / |
roof group * | Eight combinations of substrate types and depths: A17: Substrate A + Depth 17 cm B17: Substrate B + Depth 17 cm C17: Substrate C + Depth 17 cm D17: Substrate D + Depth 17 cm A12: Substrate A + Depth 12 cm B12: Substrate B + Depth 12 cm C12: Substrate C + Depth 12 cm D12: Substrate D + Depth 12 cm | / | / | / |
Other variables | ||||
id * | 24 module identifiers | / | / | / |
season * | Four seasons: spring, summer, fall, and winter | / | / | / |
Event | Count | Rainfall Depth (mm) | Mean Intensity (mm/min) | Peak Intensity (mm/min) | Duration (min) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Min–Max | Mean | Median | Min–Max | Mean | Median | Min–Max | Mean | Median | Min–Max | ||
Small (<10 mm) | 60 | 3.0 | 1.6 | 0.2-9.8 | 0.058 | 0.013 | 0.002–0.400 | 0.23 | 0.2 | 0.2–0.6 | 463 | 250 | 1–4534 |
Medium (10–50 mm) | 11 | 18.8 | 14.8 | 10.4-37.0 | 0.038 | 0.013 | 0.006–0.220 | 0.55 | 0.4 | 0.2–1.2 | 1690 | 1022 | 51–4674 |
Large (>50 mm) | 4 | 74.0 | 76.2 | 62.4-81.2 | 0.069 | 0.082 | 0.010–0.102 | 1.10 | 1.2 | 0.4–1.6 | 2549 | 1001 | 640–7552 |
Total | 75 | 9.1 | 2.8 | 0.2-81.2 | 0.056 | 0.013 | 0.002–1.600 | 0.32 | 0.2 | 0.2–1.6 | 754 | 348 | 1–7552 |
Roof Group | Small Events (<10 mm) | Medium Events (10–50 mm) | Large Events (>50 mm) | Overall | ||||
---|---|---|---|---|---|---|---|---|
Retention (%) | Peak Reduction (%) | Retention (%) | Peak Reduction (%) | Retention (%) | Peak Reduction (%) | Retention (%) | Peak Reduction (%) | |
Substrate A + Depth 17 cm | 96.77 ± 5.34 | 98.96 ± 2.61 | 78.13 ± 18.87 | 89.78 ± 11.03 | 43.47 ± 10.32 | 49.25 ± 24.97 | 68.52 ± 15.35 | 88.34 ± 12.47 |
Substrate A + Depth 12 cm | 94.05 ± 7.60 | 98.71 ± 5.17 | 68.96 ± 23.79 | 81.19 ± 22.62 | 43.53 ± 13.87 | 36.20 ± 22.10 | 65.16 ± 17.65 | 84.03 ± 16.99 |
Substrate B + Depth 17 cm | 96.70 ± 5.39 | 99.06 ± 2.91 | 84.84 ± 16.10 | 87.64 ± 20.87 | 52.72 ± 12.67 | 56.58 ± 21.35 | 73.97 ± 13.52 | 88.45 ± 13.84 |
Substrate B + Depth 12 cm | 95.83 ± 7.38 | 99.29 ± 2.43 | 75.57 ± 20.94 | 88.15 ± 14.71 | 44.60 ± 5.35 | 43.40 ± 16.07 | 67.40 ± 16.63 | 86.36 ± 13.87 |
Substrate C + Depth 17 cm | 92.53 ± 9.03 | 99.30 ± 1.96 | 67.20 ± 25.15 | 87.01 ± 14.91 | 40.74 ± 13.63 | 39.81 ± 18.06 | 63.01 ± 18.90 | 86.29 ± 14.69 |
Substrate C + Depth 12 cm | 89.25 ± 11.94 | 98.74 ± 4.10 | 61.00 ± 29.21 | 85.83 ± 17.66 | 41.49 ± 16.10 | 38.53 ± 21.37 | 60.51 ± 21.26 | 85.72 ± 15.18 |
Substrate D + Depth 17 cm | 95.62 ± 6.95 | 98.92 ± 4.51 | 77.06 ± 22.79 | 89.20 ± 14.93 | 45.18 ± 6.00 | 41.26 ± 16.00 | 72.62 ± 15.00 | 89.48 ± 11.80 |
Substrate D + Depth 12 cm | 93.52 ± 8.03 | 99.23 ± 3.72 | 72.56 ± 25.41 | 88.61 ± 15.14 | 42.53 ± 7.06 | 48.50 ± 13.49 | 69.47 ± 16.66 | 90.10 ± 11.32 |
All groups combined | 94.30 ± 7.98 | 99.03 ± 3.58 | 73.25 ± 23.58 | 87.30 ± 16.80 | 44.44 ± 11.60 | 44.36 ± 19.89 | 67.53 ± 17.07 | 87.34 ± 13.88 |
Model | K | Loglik | AICc | ΔAICc | wi | R2c | R2m |
---|---|---|---|---|---|---|---|
Retention | |||||||
~ RD *** + duration *** + imean *** + AVWC *** + ADWP *** + SR24 *** + RHo *** + SRo + (1|group:id) + (1|season) | 8 | −1059.83 | 2146.275 | 0 | 0.575 | 0.648 | 0.537 |
~ RD *** + duration *** + imean *** + AVWC *** + ADWP *** + SR24 *** + RHo *** + (1|group:id) + (1|season) | 7 | −1061.18 | 2146.878 | 0.604 | 0.425 | 0.669 | 0.546 |
Peak reduction | |||||||
~ RD *** + imean *** + AVWC *** + ADWP *** + TPe ** + RHe * + (1|group:id) + (1|season) | 6 | −855.844 | 1734.171 | 0 | 0.426 | 0.669 | 0.555 |
~ RD *** + duration + imean *** + AVWC ***+ ADWP *** + RHe * + TPe ** + (1|group:id) + (1|season) | 7 | −855.433 | 1735.438 | 1.267 | 0.226 | 0.667 | 0.562 |
~ RD *** + duration + imean *** + AVWC *** + ADWP *** + (1|group:id) + (1|season) | 5 | −857.733 | 1735.868 | 1.697 | 0.182 | 0.650 | 0.575 |
~ RD *** + imean *** + AVWC *** + ADWP *** + TPe ** + (1|group:id) + (1|season) | 5 | −857.826 | 1736.054 | 1.883 | 0.166 | 0.658 | 0.554 |
Retention (with design factors) | |||||||
~ RD *** + duration *** + imean *** + AVWC *** + ADWP *** + SR24 *** + RHo *** + SRo + type*depth + (1|group:id) + (1|season) | 9 | / | / | / | / | 0.661 | 0.568 |
Peak reduction (with design factors) | |||||||
~ RD *** + imean *** + AVWC *** + ADWP *** + TPe ** + RHe * + type × depth + (1|group:id) + (1|season) | 7 | / | / | / | / | 0.675 | 0.554 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Liu, J.; Li, Y. Effects of Design Factors and Multi-Stage Environmental Factors on Hydrological Performance of Subtropical Green Roofs. Land 2024, 13, 1129. https://doi.org/10.3390/land13081129
Liao Z, Liu J, Li Y. Effects of Design Factors and Multi-Stage Environmental Factors on Hydrological Performance of Subtropical Green Roofs. Land. 2024; 13(8):1129. https://doi.org/10.3390/land13081129
Chicago/Turabian StyleLiao, Zhongtang, Jialin Liu, and Yufei Li. 2024. "Effects of Design Factors and Multi-Stage Environmental Factors on Hydrological Performance of Subtropical Green Roofs" Land 13, no. 8: 1129. https://doi.org/10.3390/land13081129
APA StyleLiao, Z., Liu, J., & Li, Y. (2024). Effects of Design Factors and Multi-Stage Environmental Factors on Hydrological Performance of Subtropical Green Roofs. Land, 13(8), 1129. https://doi.org/10.3390/land13081129