Eutrophication Risk Potential Assessment between Forest and Agricultural Sub-Catchments Using LCIA Principles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Specific Runoff Measurement
2.3. Hydrochemical Parameters Measurement
2.4. Eutrophication Risk Potential Assessment
- (1)
- Phosphorus (CZ) to water/river, CF 0.674 kg P eq per kg P, expressed in freshwater eutrophication potential impact category, Characterization/Midpoint level.
- (2)
- Nitrogen (CZ) to water/river, CF 0.297 kg N eq per kg N, expressed in marine eutrophication potential impact category, Characterization/Midpoint level.
- (3)
- Phosphorus (CZ) to water/river, CF 4.52·10−7 species·yr per kg P, expressed in freshwater eutrophication potential impact category, Damage assessment/Endpoint level.
- (4)
- Nitrogen (CZ) to water/river, CF 5.05·10−10 species·yr per kg N, expressed in marine eutrophication potential impact category, Damage assessment/Endpoint level.
3. Results
3.1. Specific Runoff Parameters
3.2. Freshwater and Marine Eutrophication Risk Potential Assessment (Midpoint Level)
3.3. Eutrophication Risk Potential for Ecosystems (Endpoint Level)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ekka, P.; Patra, S.; Upreti, M.; Kumar, G.; Kumar, A.; Saikia, P. Land Degradation and Its Impacts on Biodiversity and Ecosystem Services. In Land and Environmental Management through Forestry; Raj, A., Jhariya, M.K., Banerjee, A., Nema, S., Bargali, K., Eds.; Wiley: Hoboken, NJ, USA, 2023; pp. 77–101. ISBN 978-1-119-91040-4. [Google Scholar]
- Rey Benayas, J.M.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of Agricultural Land: An Overview of Drivers and Consequences. CABI Rev. 2007, 2, 1–14. [Google Scholar] [CrossRef]
- Kolawole, A.S.; Iyiola, A.O. Environmental Pollution: Threats, Impact on Biodiversity, and Protection Strategies. In Sustainable Utilization and Conservation of Africa’s Biological Resources and Environment; Izah, S.C., Ogwu, M.C., Eds.; Sustainable Development and Biodiversity; Springer Nature: Singapore, 2023; Volume 32, pp. 377–409. ISBN 978-981-19697-3-7. [Google Scholar]
- Angon, P.B.; Mondal, S.; Jahan, I.; Datto, M.; Antu, U.B.; Ayshi, F.J.; Islam, M.d.S. Integrated Pest Management (IPM) in Agriculture and Its Role in Maintaining Ecological Balance and Biodiversity. Adv. Agric. 2023, 2023, 5546373. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Demo, A.H.; Asefa Bogale, G. Enhancing Crop Yield and Conserving Soil Moisture through Mulching Practices in Dryland Agriculture. Front. Agron. 2024, 6, 1361697. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Patel, N.; Rani, L.; Kumar, P.; Dutt, I.; Maddodi, B.S.; Chaudhary, V.K. Sustainable Options for Fertilizer Management in Agriculture to Prevent Water Contamination: A Review. Environ. Dev. Sustain. 2023, 26, 8303–8327. [Google Scholar] [CrossRef]
- Aloo, B.N. Pollution of Ground and Surface Waters with Agrochemicals. In Handbook of Water Pollution; Inamuddin, Altalhi, T., Alrooqi, A., Eds.; Wiley: Hoboken, NJ, USA, 2024; pp. 65–96. ISBN 978-1-119-90480-9. [Google Scholar]
- Rajasekar, A.; Murava, R.T.; Norgbey, E.; Zhu, X. Spatial Distribution, Risk Index, and Correlation of Heavy Metals in the Chuhe River (Yangtze Tributary): Preliminary Research Analysis of Surface Water and Sediment Contamination. Appl. Sci. 2024, 14, 904. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Patel, N.; Prajapati, U.B.; Chaudhary, V.K. Nitrate Pollution in Groundwater and Their Possible Remediation Through Adsorption. In Groundwater Geochemistry; Madhav, S., Singh, P., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 105–119. ISBN 978-1-119-70969-5. [Google Scholar]
- Qi, D.; Wu, Q.; Zhu, J. Nitrogen and Phosphorus Losses from Paddy Fields and the Yield of Rice with Different Water and Nitrogen Management Practices. Sci. Rep. 2020, 10, 9734. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Cai, M.; Zhang, X.; Abdelhafez, A.A.; Zhou, L.; Sun, H.; Chen, G.; Zou, G.; Zhou, S. Runoff Loss of Nitrogen and Phosphorus from a Rice Paddy Field in the East of China: Effects of Long-Term Chemical N Fertilizer and Organic Manure Applications. Glob. Ecol. Conserv. 2020, 22, e01011. [Google Scholar] [CrossRef]
- Guo, C.; Liu, X.; He, X. A Global Meta-Analysis of Crop Yield and Agricultural Greenhouse Gas Emissions under Nitrogen Fertilizer Application. Sci. Total Environ. 2022, 831, 154982. [Google Scholar] [CrossRef]
- Lu, J.; Hu, T.; Zhang, B.; Wang, L.; Yang, S.; Fan, J.; Yan, S.; Zhang, F. Nitrogen Fertilizer Management Effects on Soil Nitrate Leaching, Grain Yield and Economic Benefit of Summer Maize in Northwest China. Agric. Water Manag. 2021, 247, 106739. [Google Scholar] [CrossRef]
- Frerichs, C.; Glied-Olsen, S.; De Neve, S.; Broll, G.; Daum, D. Crop Residue Management Strategies to Reduce Nitrogen Losses during the Winter Leaching Period after Autumn Spinach Harvest. Agronomy 2022, 12, 653. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, J.-L.; Zhao, X.-R.; Yang, S.-H.; Mulder, J.; Dörsch, P.; Zhang, G.-L. Nitrate Leaching and N Accumulation in a Typical Subtropical Red Soil with N Fertilization. Geoderma 2022, 407, 115559. [Google Scholar] [CrossRef]
- Frick, H.; Oberson, A.; Frossard, E.; Bünemann, E.K. Leached Nitrate under Fertilised Loamy Soil Originates Mainly from Mineralisation of Soil Organic N. Agric. Ecosyst. Environ. 2022, 338, 108093. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Askegaard, M.; Lægdsmand, M.; Olesen, J.E. Effects of Catch Crop Type and Root Depth on Nitrogen Leaching and Yield of Spring Barley. Field Crops Res. 2012, 125, 129–138. [Google Scholar] [CrossRef]
- Askegaard, M.; Eriksen, J. Growth of Legume and Nonlegume Catch Crops and residual-N Effects in Spring Barley on Coarse Sand. J. Plant Nutr. Soil Sci. 2007, 170, 773–780. [Google Scholar] [CrossRef]
- Weihrauch, C.; Weber, C.J. Phosphorus Enrichment in Floodplain Subsoils as a Potential Source of Freshwater Eutrophication. Sci. Total Environ. 2020, 747, 141213. [Google Scholar] [CrossRef] [PubMed]
- Jarvie, H.P.; Pallett, D.W.; Schäfer, S.M.; Macrae, M.L.; Bowes, M.J.; Farrand, P.; Warwick, A.C.; King, S.M.; Williams, R.J.; Armstrong, L.; et al. Biogeochemical and Climate Drivers of Wetland Phosphorus and Nitrogen Release: Implications for Nutrient Legacies and Eutrophication Risk. J. Environ. Qual. 2020, 49, 1703–1716. [Google Scholar] [CrossRef] [PubMed]
- Geletu, T.T. Lake Eutrophication: Control of Phytoplankton Overgrowth and Invasive Aquatic Weeds. Lakes Reserv. 2023, 28, e12425. [Google Scholar] [CrossRef]
- Sundblad, G.; Bergström, L.; Söderqvist, T.; Bergström, U. Predicting the Effects of Eutrophication Mitigation on Predatory Fish Biomass and the Value of Recreational Fisheries. Ambio 2020, 49, 1090–1099. [Google Scholar] [CrossRef]
- Mishra, R.K. The Effect of Eutrophication on Drinking Water. BJMAS 2023, 4, 7–20. [Google Scholar] [CrossRef]
- Lürling, M.; Mucci, M. Mitigating Eutrophication Nuisance: In-Lake Measures Are Becoming Inevitable in Eutrophic Waters in the Netherlands. Hydrobiologia 2020, 847, 4447–4467. [Google Scholar] [CrossRef]
- Lapierre, J.; Seekell, D.A.; Filstrup, C.T.; Collins, S.M.; Emi Fergus, C.; Soranno, P.A.; Cheruvelil, K.S. Continental-scale Variation in Controls of Summer CO 2 in United States Lakes. JGR Biogeosci. 2017, 122, 875–885. [Google Scholar] [CrossRef]
- Yang, H.; Andersen, T.; Dörsch, P.; Tominaga, K.; Thrane, J.-E.; Hessen, D.O. Greenhouse Gas Metabolism in Nordic Boreal Lakes. Biogeochemistry 2015, 126, 211–225. [Google Scholar] [CrossRef]
- Preisner, M.; Neverova-Dziopak, E.; Kowalewski, Z. Mitigation of Eutrophication Caused by Wastewater Discharge: A Simulation-Based Approach. Ambio 2021, 50, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Garske, B.; Stubenrauch, J.; Ekardt, F. Sustainable Phosphorus Management in European Agricultural and Environmental Law. Rev. Eur. Comp. Int. Environ. 2020, 29, 107–117. [Google Scholar] [CrossRef]
- Rosenbaum, R.K.; Hauschild, M.Z.; Boulay, A.-M.; Fantke, P.; Laurent, A.; Núñez, M.; Vieira, M. Life Cycle Impact Assessment. In Life Cycle Assessment; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 167–270. ISBN 978-3-319-56474-6. [Google Scholar]
- Bulle, C.; Margni, M.; Patouillard, L.; Boulay, A.-M.; Bourgault, G.; De Bruille, V.; Cao, V.; Hauschild, M.; Henderson, A.; Humbert, S.; et al. IMPACT World+: A Globally Regionalized Life Cycle Impact Assessment Method. Int. J. Life Cycle Assess. 2019, 24, 1653–1674. [Google Scholar] [CrossRef]
- Dekker, E.; Zijp, M.C.; Van De Kamp, M.E.; Temme, E.H.M.; Van Zelm, R. A Taste of the New ReCiPe for Life Cycle Assessment: Consequences of the Updated Impact Assessment Method on Food Product LCAs. Int. J. Life Cycle Assess. 2020, 25, 2315–2324. [Google Scholar] [CrossRef]
- Rybaczewska-Błażejowska, M.; Jezierski, D. Comparison of ReCiPe 2016, ILCD 2011, CML-IA Baseline and IMPACT 2002+ LCIA Methods: A Case Study Based on the Electricity Consumption Mix in Europe. Int. J. Life Cycle Assess. 2024. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Cosme, N.; Koski, M.; Hauschild, M.Z. Exposure Factors for Marine Eutrophication Impacts Assessment Based on a Mechanistic Biological Model. Ecol. Model. 2015, 317, 50–63. [Google Scholar] [CrossRef]
- Calder, I.R. Forests and Water—Ensuring Forest Benefits Outweigh Water Costs. For. Ecol. Manag. 2007, 251, 110–120. [Google Scholar] [CrossRef]
- Gajic, B.; Dugalic, G.; Sredojevic, Z.; Tomic, Z. Proceedings of the VII. Alps-Adria Scientific Workshop, 28 April-2 May 2008, Stara Lesna, Slovakia. Part II. Cereal Res. Commun. 2008, 36, 675–1394. [Google Scholar] [CrossRef]
- Gray, D.M. Handbook on the Principles of Hydrology; Water Information Center: New York, NY, USA, 1973. [Google Scholar]
- Wood, H.B. Hydrologic Differences between Selected Forested and Agricultural Soils in Hawaii. Soil Sci. Soc. Am. J. 1977, 41, 132–136. [Google Scholar] [CrossRef]
- Bharati, L.; Lee, K.-H.; Isenhart, T.M.; Schultz, R.C. Soil-Water Infiltration under Crops, Pasture, and Established Riparian Buffer in Midwestern USA. Agrofor. Syst. 2002, 56, 249–257. [Google Scholar] [CrossRef]
- Seobi, T.; Anderson, S.H.; Udawatta, R.P.; Gantzer, C.J. Influence of Grass and Agroforestry Buffer Strips on Soil Hydraulic Properties for an Albaqualf. Soil Sci. Soc Am. J. 2005, 69, 893–901. [Google Scholar] [CrossRef]
- Kvítek, T. (Ed.) Retence a Jakost Vody v Povodí Vodárenské Nádrže Švihov na Želivce (Retention and Water Quality in the Catchment of the Švihov Water Reservoir on Želivka River), 1st ed.; Povodí Vltavy, státní podnik: Praha, Czech Republic, 2018; ISBN 978-80-270-5244-8. [Google Scholar]
- Bormann, F.; Likens, G.E. Pattern and Process in a Forested Ecosystem; Springer: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- PRé Sustainability. SimaPro, Version 9.6.0.1 Analyst; PRé Sustainability: Amersfoort, The Netherlands, 2024.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Henryson, K.; Hansson, P.-A.; Sundberg, C. Spatially Differentiated Midpoint Indicator for Marine Eutrophication of Waterborne Emissions in Sweden. Int. J. Life Cycle Assess 2018, 23, 70–81. [Google Scholar] [CrossRef]
- Payen, S.; Ledgard, S.F. Aquatic Eutrophication Indicators in LCA: Methodological Challenges Illustrated Using a Case Study in New Zealand. J. Clean. Prod. 2017, 168, 1463–1472. [Google Scholar] [CrossRef]
- Morelli, B.; Hawkins, T.R.; Niblick, B.; Henderson, A.D.; Golden, H.E.; Compton, J.E.; Cooter, E.J.; Bare, J.C. Critical Review of Eutrophication Models for Life Cycle Assessment. Environ. Sci. Technol. 2018, 52, 9562–9578. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Reyes, E.; Anex, R.P. A Life Cycle Impact Assessment Method for Freshwater Eutrophication Due to the Transport of Phosphorus from Agricultural Production. J. Clean. Prod. 2018, 177, 474–482. [Google Scholar] [CrossRef]
- Wahl, A. Life Cycle Impact Assessment—The Most Widely Used LCIA Methods; iPoint: Reutlingen, Germany, 2018. [Google Scholar]
- Trenčiansky, M.; Šterbová, M.; Výbošťok, J.; Lieskovský, M. Impacts of Forest Cover on Surface Runoff Quality in Small Catchments. BioResources 2021, 16, 7830–7845. [Google Scholar] [CrossRef]
- Raulund-Rasmussen, K.; Hansen, K.; Katzensteiner, K.; Loustau, D.; de Jong, J.; Gundersen, P.; Humphrey, J.W.; Ravn, H.P.; Klimo, E. Synthesis Report on Impact of Forest Management on Environmental Services; European Forest Institute: Joensuu, Finland, 2011; p. 125. [Google Scholar]
- Ogden, F.L.; Crouch, T.D.; Stallard, R.F.; Hall, J.S. Effect of Land Cover and Use on Dry Season River Runoff, Runoff Efficiency, and Peak Storm Runoff in the Seasonal Tropics of Central Panama: Sponge Effect Paper. Water Resour. Res. 2013, 49, 8443–8462. [Google Scholar] [CrossRef]
- Veselá, T.; Nedbal, V.; Brom, J. Detection of Pesticide in a Small Agricultural Basin after 15 Years of Application Ban. In Proceedings of the 20th International Multidisciplinary Scientific GeoConference SGEM 2020, Albena, Bulgaria, 18–24 August 2020; Volume 20, pp. 75–82. [Google Scholar]
- Ghimire, C.P.; Bruijnzeel, L.A.; Lubczynski, M.W.; Bonell, M. Rainfall Interception by Natural and Planted Forests in the Middle Mountains of Central Nepal. J. Hydrol. 2012, 475, 270–280. [Google Scholar] [CrossRef]
- Gardon, F.R.; Toledo, R.M.D.; Brentan, B.M.; Santos, R.F.D. Rainfall Interception and Plant Community in Young Forest Restorations. Ecol. Indic. 2020, 109, 105779. [Google Scholar] [CrossRef]
- Mendes, T.A.; Alves, R.D.; Gitirana, G.D.F.N.; Pereira, S.A.D.S.; Rebolledo, J.F.R.; Da Luz, M.P. Evaluation of Rainfall Interception by Vegetation Using a Rainfall Simulator. Sustainability 2021, 13, 5082. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd ed.; Horticulture Research International: Warwick, UK, 1992. [Google Scholar]
- Zhang, Y.; Wang, X.; Hu, R.; Pan, Y.; Paradeloc, M. Rainfall Partitioning into Throughfall, Stemflow and Interception Loss by Two Xerophytic Shrubs within a Rain-Fed Re-Vegetated Desert Ecosystem, Northwestern China. J. Hydrol. 2015, 527, 1084–1095. [Google Scholar] [CrossRef]
- Zhang, X.; Li, P.; Li, Z.B.; Yu, G.Q.; Li, C. Effects of Precipitation and Different Distributions of Grass Strips on Runoff and Sediment in the Loess Convex Hillslope. CATENA 2018, 162, 130–140. [Google Scholar] [CrossRef]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of Soil Organic Carbon on Soil Water Retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Ankenbauer, K.J.; Loheide, S.P. The Effects of Soil Organic Matter on Soil Water Retention and Plant Water Use in a Meadow of the Sierra Nevada, CA: Soil Organic Matter Affects Plant Water Use. Hydrol. Process. 2017, 31, 891–901. [Google Scholar] [CrossRef]
- Ma, K.; Huang, X.; Liang, C.; Zhao, H.; Zhou, X.; Wei, X. Effect of Land Use/Cover Changes on Runoff in the Min River Watershed. River Res. Apps 2020, 36, 749–759. [Google Scholar] [CrossRef]
- Chen, L.; Fu, B.; Zhang, S.; Qiu, J.; Guo, X.; Yang, F. A Comparative Study on Nitrogen-Concentration Dynamics in Surface Water in a Heterogeneous Landscape. Environ. Geol. 2002, 42, 424–432. [Google Scholar] [CrossRef]
- De Oliveira, L.M.; Maillard, P.; De Andrade Pinto, É.J. Modeling the Effect of Land Use/Land Cover on Nitrogen, Phosphorous and Dissolved Oxygen Loads in the Velhas River Using the Concept of Exclusive Contribution Area. Environ. Monit. Assess. 2016, 188, 333. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, K.; Lovett, A.; Saich, A.; Dockerty, T.; Johnson, P.; Sandhu, C.; Sünnenberg, G.; Appleton, K.; Harris, B.; Greaves, J. Modelling Land-Use Scenarios to Reduce Groundwater Nitrate Pollution: The European Water4All Project. Q. J. Eng. Geol. Hydrogeol. 2007, 40, 417–434. [Google Scholar] [CrossRef]
- Allan, J.D. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Carvalho, C.R.; de Snoo, G.R.; Eden, P. Ecological Impacts of Arable Intensification in Europe. J. Environ. Manag. 2001, 63, 337–365. [Google Scholar] [CrossRef]
- Chen, Q.; Mei, K.; Dahlgren, R.A.; Wang, T.; Gong, J.; Zhang, M. Impacts of Land Use and Population Density on Seasonal Surface Water Quality Using a Modified Geographically Weighted Regression. Sci. Total Environ. 2016, 572, 450–466. [Google Scholar] [CrossRef]
- Milazzo, F.; Francksen, R.M.; Zavattaro, L.; Abdalla, M.; Hejduk, S.; Enri, S.R.; Pittarello, M.; Price, P.N.; Schils, R.L.M.; Smith, P.; et al. The Role of Grassland for Erosion and Flood Mitigation in Europe: A Meta-Analysis. Agric. Ecosyst. Environ. 2023, 348, 108443. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Li, S.-X. Nitrate N Loss by Leaching and Surface Runoff in Agricultural Land: A Global Issue (a Review). In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 156, pp. 159–217. ISBN 978-0-12-817598-9. [Google Scholar]
- Kvítek, T. Zemědělské Meliorace, 1st ed.; Zemědělská Fakulta, Jihočeská Univerzita: Budějovicích, Czech Republic, 2006; ISBN 978-80-7040-858-2. [Google Scholar]
- Hanrahan, B.R.; King, K.W.; Duncan, E.W.; Shedekar, V.S. Cover Crops Differentially Influenced Nitrogen and Phosphorus Loss in Tile Drainage and Surface Runoff from Agricultural Fields in Ohio, USA. J. Environ. Manag. 2021, 293, 112910. [Google Scholar] [CrossRef]
- Nemecek, T.; Bengoa, X.; Lansche, J.; Roesch, A.; Faist-Emmenegger, M.; Rossi, V.; Humbert, S. Methodological Guidelines for the Life Cycle Inventory of Agricultural Products. Version 3.5; World Food LCA Database (WFLDB): Zurich, Switzerland, 2019. [Google Scholar]
Land Cover Features | UFS (ha) | LAS (ha) |
---|---|---|
Arable land | 0 | 47.9 |
Grassland | 31.3 | 139.8 |
Wetland | 0 | 9.2 |
Shrub | 2.3 | 17 |
Forest | 271.3 | 139.5 |
Others | 1.9 | 9.5 |
Sum | 306.8 | 362.9 |
Date | Specific Runoff N-NO3− (kg ha−1 month−1) | Specific Runoff P-PO43− (kg ha−1 month−1) | Specific Runoff of Water (m3 ha−1 month−1) |
---|---|---|---|
UFS | |||
November-2017 | 0.0672 | 0.0033 | 97.027 |
December-2017 | 0.0633 | 0.0050 | 88.461 |
January-2018 | 0.0726 | 0.0077 | 98.401 |
February-2018 | 0.0531 | 0.0023 | 63.169 |
March-2018 | 0.0770 | 0.0036 | 97.524 |
April-2018 | 0.0476 | 0.0024 | 64.618 |
May-2018 | 0.0311 | 0.0013 | 75.607 |
June-2018 | 0.1526 | 0.0144 | 340.585 |
July-2018 | 0.0337 | 0.0033 | 75.897 |
August-2018 | 0.0359 | 0.0031 | 67.352 |
September-2018 | 0.0531 | 0.0049 | 93.657 |
October-2018 | 0.0396 | 0.0033 | 83.098 |
LAS | |||
November-2017 | 0.3931 | 0.0162 | 231.374 |
December-2017 | 0.2919 | 0.0109 | 147.502 |
January-2018 | 0.5481 | 0.0189 | 242.623 |
February-2018 | 0.2737 | 0.0036 | 102.658 |
March-2018 | 0.2952 | 0.0033 | 111.773 |
April-2018 | 0.1803 | 0.0016 | 68.931 |
May-2018 | 0.1912 | 0.0050 | 122.880 |
June-2018 | 0.5541 | 0.0297 | 532.830 |
July-2018 | 0.4573 | 0.0192 | 309.208 |
August-2018 | 0.1585 | 0.0053 | 111.437 |
September-2018 | 0.2159 | 0.0073 | 153.212 |
October-2018 | 0.1701 | 0.0046 | 144.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernasová, T.; Nedbal, V.; Ghorbani, M.; Brom, J.; Amirahmadi, E.; Bernas, J. Eutrophication Risk Potential Assessment between Forest and Agricultural Sub-Catchments Using LCIA Principles. Land 2024, 13, 1150. https://doi.org/10.3390/land13081150
Bernasová T, Nedbal V, Ghorbani M, Brom J, Amirahmadi E, Bernas J. Eutrophication Risk Potential Assessment between Forest and Agricultural Sub-Catchments Using LCIA Principles. Land. 2024; 13(8):1150. https://doi.org/10.3390/land13081150
Chicago/Turabian StyleBernasová, Tereza, Václav Nedbal, Mohammad Ghorbani, Jakub Brom, Elnaz Amirahmadi, and Jaroslav Bernas. 2024. "Eutrophication Risk Potential Assessment between Forest and Agricultural Sub-Catchments Using LCIA Principles" Land 13, no. 8: 1150. https://doi.org/10.3390/land13081150
APA StyleBernasová, T., Nedbal, V., Ghorbani, M., Brom, J., Amirahmadi, E., & Bernas, J. (2024). Eutrophication Risk Potential Assessment between Forest and Agricultural Sub-Catchments Using LCIA Principles. Land, 13(8), 1150. https://doi.org/10.3390/land13081150