The Spatiotemporal Correlation between Human Activity Intensity and the Evolution of Ecosystem Service Value in the Songnen Plain, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Land Use Data
2.2.2. Socio-Economic Data
2.2.3. The Normalized Difference Vegetation Index (NDVI)
2.2.4. Night-Time Light Data
2.2.5. Population Density Data
2.3. Methods
2.3.1. Evaluation of Ecosystem Service Value
2.3.2. Standard Deviational Ellipse Method
2.3.3. Assessment of Human Activity Intensity
2.3.4. Coupled Coordination Degree Model
2.3.5. Bivariate Spatial Autocorrelation Models
3. Results
3.1. Land Use Changes in 1990–2020
3.2. Temporal and Spatial Evolution of ESV
3.2.1. Temporal and Spatial Patterns of Change in ESV
3.2.2. The Spatial Pattern Evolution Characteristics of ESV
3.3. Temporal and Spatial Distribution Patterns of HAI
3.4. Analysis of Coupling Coordination Degree between HAI and ESV
3.5. Bivariate Spatial Autocorrelation Analysis of HAI and ESV
4. Discussion
4.1. Spatial–Temporal Change Characteristics of Land Use and ESV
4.2. The Feedback Mechanism between HAI and ESV
4.3. Policy Implications
5. Conclusions
- (1)
- The dominant land types in the Songnen Plain from 1990 to 2020 were dry land (about 49.2–52.4% of the total area), forestland (about 14.0–14.6% of the total area), grassland (about 7.5–10.7% of the total area), and wetland (about 7.0–8.9% of the total area); overall, the region represented the following characteristics: cropland converted into build-up land, ecological land converted into cropland, and dry land transformed into paddy fields.
- (2)
- From 1990 to 2020, ESV declined from 950.96 billion yuan in 1990 to 836.31 billion yuan in 2015, and increased to 864.60 billion yuan in 2020. The ESV of natural ecosystems showed a declining tendency, while artificial (semi-artificial) ones showed a rising trend. Except for the significant increase in ESV of food production (5.44%), the ESV of other ecosystem service functions showed a downward trend. Among them, the ESV of water supply decreased dramatically (31.23%). In terms of spatial distribution, the ESV in the western and northeastern regions was relatively high, and the ESV in other regions was the opposite. The high ESV areas were mainly distributed in the ecological areas such as water areas, wetlands, and forestland. The distribution of the low ESV areas coincided with the areas of intensive human activities and ecological fragility, such as dry land, build-up land, and unused land. Moreover, ESV increased significantly in the northeast during the study period.
- (3)
- During 1990–2020, HAI showed an upward trend, and the spatial distribution characteristic was generally low in the northeast and southwest, as well as high in the middle and southeast. The high HAI levels gradually shrank after reaching their peak in 2000 and were dispersed as dots in the urban centers, including Harbin, Changchun, and Daqing, which are relatively economically developed regions; the areas of medium-high HAI levels overlapped with the areas of medium HAI levels in a ‘7’ shape; the areas of low HAI levels were highly coincident with the ecological space.
- (4)
- HAI had a strong interaction with ESV (the coupling degree was between 0.7 and 0.8), and the degree of coordination was in a moderate disorder (from 0.2645 to 0.2670). Although human activities had a negative impact on ESV, they were transitioning from conflict to coordination. For the spatial dimension, the two systems were H-L and L-H clustering and H-H and L-L scattered distribution.
- (5)
- In the future, the decision makers should formulate differentiated policies. In economically developed areas (H-L areas) like Changchun, Harbin, and Qiqihar, strict control over land occupation and the promotion of green industries are crucial. For ecological zones (L-H areas), it is urgent to strictly abide by ecological red lines and construct ecological corridors. For fragile regions, it is essential to weaken the intensity of human disturbance and implement targeted restoration efforts. Additionally, they should control the scale of dry land-to-paddy conversion, promote water-saving irrigation technologies, and implement soil and water conservation measures to address climate warming.
- (6)
- The “assessment-correlation-policy” research framework proposed in this study is suitable for characterizing and understanding the mechanisms of ecosystem services and human activities. The approaches employed in this study, which fully consider regional uniqueness, data availability, and inter-regional comparability, can be applied to quantitatively studying the feedback relationship between ecosystem services and human activities in other similar regions. Additionally, the policies proposed in this study could be extended to other major grain-producing areas globally, offering Chinese theoretical insights and practical references for these regions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; Volume 34, p. 534. [Google Scholar]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef]
- Carpenter, S.; Mooney, H.; Agard, J.; Capistrano, D.; Defries, R.; Diaz, S.; Dietz, T.; Duraiappah, A.; Oteng-Yeboah, A.; Pereira, H.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, T.; Fu, B. The value of ecosystem services in China: A systematic review for twenty years. Ecosyst. Serv. 2021, 52, 101365. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Fu, B.; He, C.; Lü, Y. Variation of ecosystem services and human activities: A case study in the Yanhe Watershed of China. Acta Oecol. 2012, 44, 46–57. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.; Yang, J.; Chang, L.; Yang, H.; Bu, K. Effects of land use change on ecosystem services value in West Jilin since the reform and opening of China. Ecosyst. Serv. 2018, 31, 12–20. [Google Scholar]
- Wu, K.; Wang, D.; Lu, H.; Liu, G. Temporal and spatial heterogeneity of land use, urbanization, and ecosystem service value in China: A national-scale analysis. J. Clean. Prod. 2023, 418, 137911. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, F.; Yang, D.; Huo, J.; Wang, G.; Chen, H. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [Google Scholar] [CrossRef]
- Han, R.; Feng, C.; Xu, N.; Guo, L. Spatial heterogeneous relationship between ecosystem services and human disturbances: A case study in Chuandong, China. Sci. Total Environ. 2020, 721, 137818. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Jiang, W.; Ling, Z.; Hou, P.; Deng, Y. Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: A case study of the Wuhan Urban Agglomeration. J. Clean. Prod. 2021, 307, 127321. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Shi, F.; An, Y.; Li, M.; Liu, Y. Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Finnveden, G.; Moberg, Å. Environmental systems analysis tools—An overview. J. Clean. Prod. 2005, 13, 1165–1173. [Google Scholar] [CrossRef]
- Coscieme, L.; Pulselli, F.M.; Marchettini, N.; Sutton, P.C.; Anderson, S.; Sweeney, S. Emergy and ecosystem services: A national biogeographical assessment. Ecosyst. Serv. 2014, 7, 152–159. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. (In Chinese) [Google Scholar]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. (In Chinese) [Google Scholar]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 9. (In Chinese) [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, C.; Xiao, Y.; Lu, C. The Value of ecosystem services in China. Resour. Sci. 2015, 37, 7. (In Chinese) [Google Scholar]
- Fan, X.; Yu, H.; Tiando, D.S.; Rong, Y.; Luo, W.; Eme, C.; Ou, S.; Li, J.; Liang, Z. Impacts of human activities on ecosystem service value in Arid and Semi-Arid Ecological Regions of China. Int. J. Environ. Res. Public Health 2021, 18, 11121. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, X.; Tang, Q. Human activity intensity of land surface: Concept, methods and application in China. J. Geogr. Sci. 2016, 26, 1349–1361. [Google Scholar] [CrossRef]
- Liu, H.; Fan, J.; Zhou, K.; Xu, X.; Zhang, H.; Guo, R.; Chen, S. Assessing the dynamics of human activity intensity and its natural and socioeconomic determinants in Qinghai–Tibet Plateau. Geogr. Sustain. 2023, 4, 294–304. [Google Scholar] [CrossRef]
- Roth, D.; Moreno-Sanchez, R.; Torres-Rojo, J.M.; Moreno-Sanchez, F. Estimation of human induced disturbance of the environment associated with 2002, 2008 and 2013 land use/cover patterns in Mexico. Appl. Geogr. 2016, 66, 22–34. [Google Scholar] [CrossRef]
- Zhao, Y.; Qu, Z.; Zhang, Y.; Ao, Y.; Han, L.; Kang, S.; Sun, Y. Effects of human activity intensity on habitat quality based on nighttime light remote sensing: A case study of Northern Shaanxi, China. Sci. Total Environ. 2022, 851, 158037. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C.; Beazley, K.F. Changes in Human Population Density and Protected Areas in Terrestrial Global Biodiversity Hotspots, 1995–2015. Land 2018, 7, 136. [Google Scholar] [CrossRef]
- Elhatip, H.; Afşin, M.; Kuşçu, L.; Dirik, K.; Kurmaç, Y.; Kavurmacı, M. Influences of human activities and agriculture on groundwater quality of Kayseri-Incesu-Dokuzpınar springs, central Anatolian part of Turkey. Environ. Geol. 2003, 44, 490–494. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, D.; Jiang, G. Conflict or Coordination? Multiscale assessment of the spatio-temporal coupling relationship between urbanization and ecosystem services: The case of the Jingjinji Region, China. Ecol. Indic. 2020, 117, 106543. [Google Scholar] [CrossRef]
- Duan, Q.; Luo, L. Summary and prospect of spatialization method of human activity intensity: Taking the Qinghai-Tibet Plateau as an example. J. Glaciol. Geocryol. 2021, 43, 1582–1593. (In Chinese) [Google Scholar]
- Correa Ayram, C.A.; Etter, A.; Díaz-Timoté, J.; Rodríguez Buriticá, S.; Ramírez, W.; Corzo, G. Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecol. Indic. 2020, 117, 106630. [Google Scholar] [CrossRef]
- Chen, H.; Liu, L.; Zhang, Z.; Liu, Y.; Tian, H.; Kang, Z.; Wang, T.; Zhang, X. Spatiotemporal correlation between human activity intensity and surface temperature on the north slope of Tianshan Mountains. Acta Geogr. Sin. 2022, 77, 1244–1259. (In Chinese) [Google Scholar]
- Fang, L.; Fang, B.; Liu, Y.; Cai, J.; Li, C. Scale response and spatiotemporal correlations between landscape ecological risk and human activitiy intensity in the Yangtze River Delta region. Trans. Chin. Soc. Agric. Eng. 2022, 38, 210–219. (In Chinese) [Google Scholar]
- Yang, Y.; Song, G. Human disturbance changes based on spatiotemporal heterogeneity of regional ecological vulnerability: A case study of Qiqihaer city, northwestern Songnen Plain, China. J. Clean. Prod. 2021, 291, 125262. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Y.; Zheng, Z.; Wu, Z. Spatiotemporal coupling analysis between human footprint and ecosystem service value in the highly urbanized Pearl River Delta Urban Agglomeration, China. Ecol. Indic. 2023, 148, 110033. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Tengö, M.; Bennett, E.M.; Holland, T.; Benessaiah, K.; MacDonald, G.K.; Pfeifer, L. Untangling the Environmentalist’s Paradox: Why Is Human Well-being Increasing as Ecosystem Services Degrade? Bioscience 2010, 60, 576–589. [Google Scholar] [CrossRef]
- Arunyawat, S.; Shrestha, R.P. Assessing Land Use Change and Its Impact on Ecosystem Services in Northern Thailand. Sustainability 2016, 8, 768. [Google Scholar] [CrossRef]
- Ai, M.; Chen, X.; Yu, Q. Spatial correlation analysis between human disturbance intensity (HDI) and ecosystem services value (ESV) in the Chengdu-Chongqing Urban Agglomeration. Ecol. Indic. 2024, 158, 111555. [Google Scholar] [CrossRef]
- Kochtcheeva, L.; Singh, A. An Assessment of Risks and Threats to Human Health Associated with the Degradation of Ecosystems; UNEP: Nairobi, Kenney, 2000; pp. 2–27. [Google Scholar]
- Xu, Z.; Wei, H.; Fan, W.; Wang, X.; Zhang, P.; Ren, J.; Lu, N.; Gao, Z.; Dong, X.; Kong, W. Relationships between ecosystem services and human well-being changes based on carbon flow—A case study of the Manas River Basin, Xinjiang, China. Ecosyst. Serv. 2019, 37, 100934. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Zhao, T.; Pan, J.; Bi, F. Can human activities enhance the trade-off intensity of ecosystem services in arid inland river basins? Taking the Taolai River asin as an example. Sci. Total Environ. 2023, 861, 160662. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, C.; Yao, X.; Yun, W.; Ma, J.; Gao, L.; Li, P. Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China. Land Use Policy 2022, 114, 105991. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, J.; Wang, Z.; Mao, D. Relationships between Supply and Demand of Ecosystem Services in the Songnen Plain. Ecol. Environ. Sci. 2021, 30, 1769–1776. (In Chinese) [Google Scholar]
- Song, C.; Xiang, H.; Chen, M.; Du, H. Spatiotemporal Variability in Ecological Vulnerability of Songnen Plain from 1980 to 2020. Bull. Soil Water Conserv. 2023, 43, 366–374. (In Chinese) [Google Scholar]
- Wang, Z.; Zhang, B.; Song, K.; Liu, D.; Zhang, S.; Li, F.; Guo, Z. Research on Effects of Land Use Change on Regional Ecosystem Service Values of Songnen Plain, China. Chin. J. Popul. Resour. Environ. 2008, 18, 149–154. (In Chinese) [Google Scholar]
- Mao, D.; Wang, Z.; Luo, L.; Ren, C.; Jia, M. Monitoring the Evolution of Wetland Ecosystem pattern in Northeast China from 1990 to 2013 Based on Remote Sensing. J. Nat. Resour. 2016, 31, 1253–1263. (In Chinese) [Google Scholar]
- Kang, H.; Na, X.; Zang, S. Research on the evaluation of wetland ecosystem services of the Songnen Plain during 1980—2010. Remote Sens. Nat. Resour. 2017, 29, 193–200. (In Chinese) [Google Scholar]
- RESDC. Available online: http://www.resdc.cn/ (accessed on 10 September 2023).
- Li, L.; Tang, H.; Lei, J.; Song, X. Spatial autocorrelation in land use type and ecosystem service value in Hainan Tropical Rain Forest National Park. Ecol. Indic. 2022, 137, 108727. [Google Scholar] [CrossRef]
- CNKI. Available online: http://data.cnki.net/ (accessed on 15 October 2023).
- Harvard Dataverse. Available online: https://dataverse.harvard.edu/ (accessed on 20 September 2023).
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, Z.; Jin, Y.; Wang, P.; Wang, X. Regionalization and distribution pattern of vegetation Northeast China. J. Plant. Ecol. 2010, 34, 1359–1368. (In Chinese) [Google Scholar]
- Liu, D.; Yu, C. Effects of climate change on the distribution of the main vegetation types in Northeast China. Acta Ecol. Sin. 2017, 37, 6511–6522. (In Chinese) [Google Scholar]
- Wang, Z.; Song, K.; Zhang, B.; Liu, D.; Ren, C.; Luo, L.; Yang, T.; Huang, N.; Hu, L.; Yang, H.; et al. Shrinkage and fragmentation of grasslands in the West Songnen Plain, China. Agric. Ecosyst. Environ. 2009, 129, 315–324. [Google Scholar] [CrossRef]
- Chu, X.; Lu, Z.; Wei, D.; Lei, G. Effects of land use/cover change (LUCC) on the spatiotemporal variability of precipitation and temperature in the Songnen Plain, China. J. Integr. Agric. 2022, 21, 235–248. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, T.; Yan, D.; Liu, S.; Feng, J.; Wang, Q.; Liu, H.; Gao, H. Analysis of the evolution of ecosystem service value and its driving factors in the Yellow River Source Area, China. Ecol. Indic. 2024, 158, 111344. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Dong, Y.; An, Y.; Shi, F.; Dong, S.; Liu, G. Spatio-temporal evolution scenarios and the coupling analysis of ecosystem services with land use change in China. Sci. Total Environ. 2019, 681, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fan, Z.; Feng, W.; Yuxin, C.; Keyu, Q. Coupling coordination degree spatial analysis and driving factor between socio-economic and eco-environment in Northern China. Ecol. Indic. 2022, 135, 108555. [Google Scholar] [CrossRef]
- Heilongjiang Statistical Yearbook. 2021. Available online: http://tjj.hlj.gov.cn/tjj/c106782/common_zfxxgk.shtml (accessed on 11 February 2022).
- Jilin Statistical Yearbook. 2021. Available online: http://tjj.jl.gov.cn/tjsj/tjnj/ (accessed on 11 January 2022).
- Wang, N.; Guo, J.; Zhang, J.; Fan, Y. Comparing eco-civilization theory and practice: Big-data evidence from China. J. Clean. Prod. 2022, 380, 134754. [Google Scholar] [CrossRef]
- Hou, P.G.; Chen, Y.; Zhai, J.; Xiao, R.; Zhang, W.; Sun, C.; Wang, Y.; Hou, J. Development process and characteristics of China’s ecological protection policy. Acta Ecol. Sin. 2021, 41, 1656–1667. (In Chinese) [Google Scholar]
- Li, S.; Liu, M. The Development Process, Current Situation and Prospects of the Conversion of Farmland to Forests and Grasses Project in China. J. Resour. Ecol. 2022, 13, 120–128. [Google Scholar]
- Wang, H.; Wang, W.; Liu, Z.; Wang, L.; Zhang, W.; Zou, Y.; Jiang, M. Combined effects of multi-land use decisions and climate change on water-related ecosystem services in Northeast China. J. Environ. Manag. 2022, 315, 115131. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Liu, Z. Effects of climate change on paddy expansion and potential adaption strategies for sustainable agriculture development across Northeast China. Appl. Geogr. 2022, 141, 102667. [Google Scholar] [CrossRef]
- Liu, X.; Cao, K.; Li, M. Assessing the impact of meteorological and agricultural drought on maize yields to optimize irrigation in Heilongjiang Province, China. J. Clean. Prod. 2024, 434, 139897. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Bell, V.A.; Davies, H.N.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The impact of projected increases in urbanization on ecosystem services. Proc. Biol. Sci. 2011, 278, 3201–3208. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Ecosystem and Human Well-Being-Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Metzger, M.J.; Rounsevell, M.D.A.; Acosta-Michlik, L.; Leemans, R.; Schröter, D. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Sebastiani, A.; Marando, F.; Manes, F. Mismatch of regulating ecosystem services for sustainable urban planning: PM10 removal and urban heat island effect mitigation in the municipality of Rome (Italy). Urban For. Urban Green 2021, 57, 126938. [Google Scholar] [CrossRef]
- Stevenson, R.J. A revised framework for coupled human and natural systems, propagating thresholds, and managing environmental problems. Phys. Chem. Earth 2011, 36, 342–351. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Sinchembe, M.; Ellery, W. Human impacts on hydrological health and the provision of ecosystem services: A case study of the eMthonjeni-Fairview Spring Wetland, Grahamstown, South Africa. Afr. J. Aquat. Sci 2010, 35, 227–239. [Google Scholar] [CrossRef]
- Serra, P.; Vera, A.; Tulla, A.F.; Salvati, L. Beyond urban–rural dichotomy: Exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl. Geogr. 2014, 55, 71–81. [Google Scholar] [CrossRef]
- Zhou, W.; Li, C.; Wang, S.; Ren, Z.; Stringer, L.C. Effects of grazing and enclosure management on soil physical and chemical properties vary with aridity in China’s drylands. Sci. Total Environ. 2023, 877, 162946. [Google Scholar] [CrossRef] [PubMed]
- Calzolari, C.; Tarocco, P.; Lombardo, N.; Marchi, N.; Ungaro, F. Assessing soil ecosystem services in urban and peri-urban areas: From urban soils survey to providing support tool for urban planning. Land Use Policy 2020, 99, 105037. [Google Scholar] [CrossRef]
- Tsai, H.; Lee, Y. Effects of land use change and crop rotation practices on farmland ecosystem service valuation. Ecol. Indic. 2023, 155, 110998. [Google Scholar] [CrossRef]
- Deng, G.; Jiang, H.; Zhu, S.; Wen, Y.; He, C.; Wang, X.; Sheng, L.; Guo, Y.; Cao, Y. Projecting the response of ecological risk to land use/land cover change in ecologically fragile regions. Sci. Total Environ. 2024, 914, 169908. [Google Scholar] [CrossRef] [PubMed]
- Disse, M. Sustainable land and water management of River Oases along the Tarim River. Proc. Int. Assoc. Hydrol. Sci. 2016, 373, 25–29. [Google Scholar] [CrossRef]
- Han, X.; Li, N. Research Progress of Black Soil in Northeast China. Sci. Geol. Sin. 2018, 38, 1032–1041. [Google Scholar]
- Liu, X.; Burras, C.; Kravchenko, Y.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.; Zhang, X.; Cruse, R.; Yuan, X. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 2012, 92, 383–402. [Google Scholar] [CrossRef]
- Basche, A.; Archontoulis, S.; Kaspar, T.; Jaynes, D.; Parkin, T.; Miguez, F. Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the Midwestern United States. Agric. Ecosyst. Environ. 2016, 218, 95–106. [Google Scholar] [CrossRef]
- Sano, E.; Rodrigues, A.; Martins, E.; Bettiol, G.; Bustamante, M.; Bezerra, A.; Couto, A.; Vasconcelos, V.; Schüler, J.; Bolfe, E. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J. Environ. Manag. 2019, 232, 818–828. [Google Scholar] [CrossRef]
Data | Description | Resolution | Time Period |
---|---|---|---|
Land use data | Land use data types included cropland (dry land and paddy field), forestland (broad-leaved and shrub), grassland, water area, wetland, build-up land, and unused land | 30 m | Every five years from 1990 to 2020 |
NDVI | Reflecting changes in vegetation coverage and biomass | 1 km | Every five years from 1990 to 2020 |
Night-time light data | Revealing the intensity of human social and economic activities on the land surface | 1 km | Every five years from 1990 to 2020 |
Population density data | Spatial distribution of population | 1 km | Every five years from 1990 to 2020 |
Crops | Calculation of the value of a standardized equivalence factor based on sown area and yield data | City scale | 1990–2020 |
Primary Types | Secondary Types | Pf | Dl | Bl | Su | Gl | Wa | Wl | Bl | Ul |
---|---|---|---|---|---|---|---|---|---|---|
Provision services | FP | 3777.90 | 2361.19 | 805.58 | 527.79 | 611.13 | 2222.29 | 1416.71 | 27.78 | 0.00 |
MP | 250.01 | 1111.15 | 1833.39 | 1194.48 | 916.70 | 638.91 | 1388.93 | 83.34 | 0.00 | |
WS | −7305.79 | 55.56 | 944.47 | 611.13 | 500.02 | 23,028.51 | 7194.67 | 55.56 | 0.00 | |
Regulation services | GR | 3083.43 | 1861.17 | 6027.97 | 3916.79 | 3166.77 | 2138.96 | 5277.95 | 305.57 | 55.56 |
CR | 1583.38 | 1000.03 | 18,056.13 | 11,750.37 | 8389.16 | 6361.31 | 10,000.32 | 277.79 | 0.00 | |
EP | 472.24 | 277.79 | 5361.28 | 3555.67 | 2777.87 | 15,417.16 | 10,000.32 | 861.14 | 277.79 | |
HR | 7555.80 | 750.02 | 13,167.08 | 9305.85 | 6139.08 | 284,009.02 | 67,307.69 | 583.35 | 83.34 | |
Support services | SR | 27.78 | 2861.20 | 7361.34 | 4777.93 | 3861.23 | 2583.42 | 6416.87 | 361.12 | 55.56 |
NC | 527.79 | 333.34 | 555.57 | 361.12 | 305.57 | 194.45 | 500.02 | 27.78 | 0.00 | |
BP | 583.35 | 361.12 | 6694.66 | 4361.25 | 3527.89 | 7083.56 | 21,861.81 | 333.34 | 55.56 | |
Cultural services | AL | 250.01 | 166.67 | 2944.54 | 1916.73 | 1555.60 | 5250.17 | 13,139.31 | 138.89 | 27.78 |
Land Use Types | Explanations of Characteristic Signs | ||
---|---|---|---|
Cropland | Paddy field Dry land | Natural cover of land surface changes and annual crops are planted. | 0.2 |
Forestland | / | Natural cover of land surface does not change and is not used. | 0 |
Grassland | / | Natural cover of land surface does not change but is used. | 0.067 |
Water area | River/lake | Natural cover of land surface does not change and is not used. | 0 |
Reservoir | Natural cover of land surface changes. The exchanges of air and heat are blocked. | 0.6 | |
Wetland | / | Natural cover of land surface does not change and is not used. | 0 |
Built-up land | / | There are artificial insulation layers on the surface. The exchanges of water, nutrients, air, and heat are blocked. | 1 |
Unused land | / | Natural cover of land surface does not change and is not used. | 0 |
Year | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | 1990–2020 | |
---|---|---|---|---|---|---|---|---|---|
Land Use Types | Area (km2) | Area (km2) | Area (km2) | Area (km2) | Area (km2) | Area (km2) | Area (km2) | Change (km2) | Change Rate (%) |
Pf | 9932.76 | 15,428.62 | 14,394.68 | 13,944.07 | 13,380.99 | 14,249.07 | 15,537.7 | 5604.94 | 56.43 |
DL | 113,205.15 | 115,627.89 | 117,921.7 | 119,246.69 | 120,671 | 120,111.22 | 117,663.46 | 4458.30 | 3.94 |
Fl | 33,699.9 | 32,750.95 | 32,795.18 | 32,737.8 | 32,331.93 | 32,291.23 | 33,093.11 | −606.79 | −1.80 |
Gl | 24,692.52 | 23,727.24 | 18,589 | 18,565.31 | 19,106.9 | 18,940.74 | 17,373.05 | −7319.47 | −29.64 |
Wa | 6600.36 | 6090.28 | 5662.97 | 5347.84 | 5430.60 | 5424.73 | 5471.97 | −1128.39 | −17.10 |
Wl | 20,560.04 | 18,386.98 | 19,090.21 | 18,486.14 | 16,389.79 | 16,224.22 | 18,392.06 | −2167.97 | −10.54 |
Bl | 9511.35 | 9614.69 | 9707.92 | 9807.06 | 10,482.53 | 10,688.42 | 10,988.51 | 1477.16 | 15.53 |
Ul | 12,120.48 | 8696.16 | 12,161.02 | 12,188.61 | 12,530.07 | 12,393.71 | 11,781.35 | −339.13 | −2.80 |
Year | 2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Land Use Types | Pf | DL | Fl | Gl | Wa | Wl | Bl | Ul | Decreased | |
Paddy field | - | 1694.65 | 28.35 | 53.00 | 22.64 | 349.63 | 176.28 | 3.82 | 2328.37 | |
Dry land | 4375.20 | - | 2066.61 | 861.61 | 241.58 | 524.81 | 2328.59 | 314.37 | 10,712.77 | |
Forestland | 93.25 | 3140.08 | - | 402.53 | 96.49 | 391.30 | 78.49 | 30.72 | 4232.86 | |
1990 | Grassland | 1190.63 | 6415.21 | 951.48 | - | 101.83 | 659.33 | 168.61 | 1296.17 | 10,783.25 |
Water area | 119.34 | 263.73 | 58.46 | 238.80 | - | 902.77 | 16.11 | 655.60 | 2254.80 | |
Wetland | 1861.87 | 1286.72 | 214.09 | 867.03 | 514.73 | - | 67.25 | 401.14 | 5212.83 | |
Built-up land | 152.88 | 1199.48 | 60.47 | 38.29 | 13.64 | 14.48 | - | 31.50 | 1510.75 | |
Unused land | 140.15 | 1172.22 | 250.79 | 1003.44 | 148.74 | 205.00 | 152.50 | - | 3072.82 | |
Increased | 7933.31 | 15,172.08 | 3630.25 | 3464.69 | 1139.66 | 3047.33 | 2987.81 | 2733.33 | 40,108.46 |
Land Use Types | ESV/(1010 CNY·hm−2) | ESV Change 1990–2020 (%) | ESV (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | 1990–1995 | 1995–2000 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2020 | |
Pf | 1.07 | 1.67 | 1.56 | 1.51 | 1.45 | 1.54 | 1.68 | 55.33 | −6.70 | −3.13 | −4.04 | 6.49 | 9.04 | 1.94 |
DL | 12.61 | 12.88 | 13.14 | 13.28 | 13.44 | 13.38 | 13.11 | 2.14 | 1.98 | 1.12 | 1.19 | −0.46 | −2.04 | 15.16 |
Fl | 20.47 | 19.33 | 19.80 | 19.76 | 19.95 | 19.93 | 20.09 | −5.60 | 2.45 | −0.21 | 0.98 | −0.12 | 0.79 | 23.23 |
Gl | 7.84 | 7.53 | 5.90 | 5.89 | 6.07 | 6.01 | 5.52 | −3.91 | −21.66 | −0.13 | 2.92 | −0.87 | −8.28 | 6.38 |
Wa | 23.03 | 21.25 | 19.76 | 18.66 | 18.95 | 18.93 | 19.09 | −7.73 | −7.02 | −5.56 | 1.55 | −0.11 | 0.87 | 22.08 |
Wl | 29.71 | 26.57 | 27.59 | 26.71 | 23.68 | 23.44 | 26.58 | −10.57 | 3.82 | −3.16 | −11.34 | −1.01 | 13.36 | 30.74 |
Bl | 0.29 | 0.29 | 0.30 | 0.30 | 0.32 | 0.33 | 0.34 | 1.09 | 0.97 | 1.02 | 6.89 | 1.96 | 2.81 | 0.39 |
Ul | 0.07 | 0.05 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | −28.25 | 39.84 | 0.23 | 2.80 | −1.09 | −4.94 | 0.08 |
Total | 95.10 | 89.57 | 88.10 | 86.18 | 83.93 | 83.63 | 86.46 | −5.81 | −1.64 | −2.18 | −2.62 | −0.36 | 3.38 | 100 |
Year | Center of Gravity Longitude | Center of Gravity Latitude | Long Semi-Axis (km) | Short Semi-Axis (km) | Rotation (°) | Area (104 km2) |
---|---|---|---|---|---|---|
1990 | 125.42 | 46.43 | 157.80 | 241.09 | 14.87 | 11.95 |
1995 | 125.43 | 46.41 | 156.28 | 246.25 | 14.54 | 12.08 |
2000 | 125.49 | 46.45 | 158.70 | 242.64 | 14.56 | 12.09 |
2005 | 125.51 | 46.46 | 158.63 | 243.76 | 14.41 | 12.14 |
2010 | 125.50 | 46.45 | 161.15 | 244.10 | 14.45 | 12.35 |
2015 | 125.50 | 46.45 | 161.28 | 244.33 | 14.46 | 12.37 |
2020 | 125.52 | 46.47 | 160.06 | 244.39 | 13.51 | 12.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Yang, Y.; Zhang, Y.; Kalantari, M.; Sun, J.; Sun, W.; Guan, G.; Du, G. The Spatiotemporal Correlation between Human Activity Intensity and the Evolution of Ecosystem Service Value in the Songnen Plain, China. Land 2024, 13, 1158. https://doi.org/10.3390/land13081158
Guo X, Yang Y, Zhang Y, Kalantari M, Sun J, Sun W, Guan G, Du G. The Spatiotemporal Correlation between Human Activity Intensity and the Evolution of Ecosystem Service Value in the Songnen Plain, China. Land. 2024; 13(8):1158. https://doi.org/10.3390/land13081158
Chicago/Turabian StyleGuo, Xinxin, Yang Yang, Yi Zhang, Mohsen Kalantari, Jiali Sun, Weize Sun, Guofeng Guan, and Guoming Du. 2024. "The Spatiotemporal Correlation between Human Activity Intensity and the Evolution of Ecosystem Service Value in the Songnen Plain, China" Land 13, no. 8: 1158. https://doi.org/10.3390/land13081158
APA StyleGuo, X., Yang, Y., Zhang, Y., Kalantari, M., Sun, J., Sun, W., Guan, G., & Du, G. (2024). The Spatiotemporal Correlation between Human Activity Intensity and the Evolution of Ecosystem Service Value in the Songnen Plain, China. Land, 13(8), 1158. https://doi.org/10.3390/land13081158