Uncertainty Assessment of Species Distribution Prediction Using Multiple Global Climate Models on the Tibetan Plateau: A Case Study of Gentiana yunnanensis and Gentiana siphonantha
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Data
2.3. Climate and Environment Data
2.4. Global Climate Models
2.5. Species Distribution Modeling
3. Results
3.1. Model Performance
3.2. Current Potential Distribution
3.3. Future Potential Distribution Simulations
3.3.1. Impacts of GCMs on SDM
3.3.2. Range Shift under Future Climate Change with MME-4
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
GCM | Period | SSP | PercLoss * | PercGain ** | SRC *** |
---|---|---|---|---|---|
ACCESS-CM2 | 2041–2060 | SSP2-4.5 | 48.044 | 31.524 | −16.52 |
2041–2060 | SSP5-8.5 | 52.977 | 31.693 | −21.284 | |
2081–2100 | SSP2-4.5 | 60.382 | 39.043 | −21.339 | |
2081–2100 | SSP5-8.5 | 82.395 | 79.704 | −2.691 | |
CMCC-ESM2 | 2041–2060 | SSP2-4.5 | 36.285 | 57.186 | +20.901 |
2041–2060 | SSP5-8.5 | 42.388 | 43.684 | +1.296 | |
2081–2100 | SSP2-4.5 | 56.526 | 55.463 | −1.063 | |
2081–2100 | SSP5-8.5 | 75.51 | 109.853 | +34.342 | |
MPI-ESM1-2-HR | 2041–2060 | SSP2-4.5 | 26.371 | 26.623 | +0.252 |
2041–2060 | SSP5-8.5 | 33.978 | 26.487 | −7.491 | |
2081–2100 | SSP2-4.5 | 38.659 | 32.557 | −6.102 | |
2081–2100 | SSP5-8.5 | 67.043 | 75.848 | +8.805 | |
UKESM1-0-LL | 2041–2060 | SSP2-4.5 | 52.019 | 49.915 | −2.104 |
2041–2060 | SSP5-8.5 | 61.284 | 62.254 | +0.969 | |
2081–2100 | SSP2-4.5 | 67.6 | 81.549 | +13.949 | |
2081–2100 | SSP5-8.5 | 90.564 | 87.737 | −2.827 |
GCM | Period | SSP | PercLoss * | PercGain ** | SRC *** |
---|---|---|---|---|---|
ACCESS-CM2 | 2041–2060 | SSP2-4.5 | 11.835 | 15.244 | +3.409 |
2041–2060 | SSP5-8.5 | 14.424 | 16.181 | +1.757 | |
2081–2100 | SSP2-4.5 | 18.563 | 16.316 | −2.247 | |
2081–2100 | SSP5-8.5 | 43.152 | 11.929 | −31.223 | |
CMCC-ESM2 | 2041–2060 | SSP2-4.5 | 9.645 | 12.267 | +2.622 |
2041–2060 | SSP5-8.5 | 10.643 | 13.915 | +3.272 | |
2081–2100 | SSP2-4.5 | 19.096 | 16.265 | −2.831 | |
2081–2100 | SSP5-8.5 | 40.618 | 13.833 | −26.784 | |
MPI-ESM1-2-HR | 2041–2060 | SSP2-4.5 | 5.414 | 12.431 | +7.016 |
2041–2060 | SSP5-8.5 | 7.447 | 14.406 | +6.959 | |
2081–2100 | SSP2-4.5 | 8.826 | 13.909 | +5.083 | |
2081–2100 | SSP5-8.5 | 20.353 | 15.44 | −4.912 | |
UKESM1-0-LL | 2041–2060 | SSP2-4.5 | 13.209 | 18.332 | +5.122 |
2041–2060 | SSP5-8.5 | 18.672 | 19.768 | +1.097 | |
2081–2100 | SSP2-4.5 | 25.129 | 18.764 | −6.365 | |
2081–2100 | SSP5-8.5 | 54.606 | 13.273 | −41.333 |
References
- Li, Q.; Xue, Y.K. Simulated impacts of land cover change on summer climate in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 12. [Google Scholar] [CrossRef]
- Shang, W.; Duan, K.Q.; Li, S.S.; Ren, X.J.; Huang, B. Simulation of the dipole pattern of summer precipitation over the Tibetan Plateau by CMIP6 models. Environ. Res. Lett. 2021, 16, 014047. [Google Scholar] [CrossRef]
- Cao, X.Y.; Zhou, B.R.; Zhou, H.K.; Qiao, B.; Yan, Y.Q.; Zhao, T.; Cheng, Q.; Zhao, H.F.; Yu, H.Y. Research progress on the impact of climate change on vegetation ecosystem in the Tibetan Plateau. J. Arid Meteorol. 2022, 40, 1068–1080. [Google Scholar] [CrossRef]
- Lu, C.X.; Xie, G.D.; Xiao, Y.; Yu, Y.J. Ecosystem diversity and economic valuation of Qinghai-Tibet Plateau. Acta Ecol. Sin. 2004, 24, 2749–2755. [Google Scholar]
- Li, Y.C.; Li, M.Y.; Li, C.; Liu, Z.Z. Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of Cunninghamia lanceolata in China. Forests 2020, 11, 302. [Google Scholar] [CrossRef]
- Nunez, S.; Arets, E.; Alkemade, R.; Verwer, C.; Leemans, R. Assessing the impacts of climate change on biodiversity: Is below 2 °C enough? Clim. Chang. 2019, 154, 351–365. [Google Scholar] [CrossRef]
- Thuiller, W. Biodiversity—Climate change and the ecologist. Nature 2007, 448, 550–552. [Google Scholar] [CrossRef]
- Liu, H.Y.; Mi, Z.R.; Lin, L.; Wang, Y.H.; Zhang, Z.H.; Zhang, F.W.; Wang, H.; Liu, L.L.; Zhu, B.A.; Cao, G.M.; et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. USA 2018, 115, 4051–4056. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.G.; Piao, S.L.; Jeong, S.J.; Zhou, L.M.; Zeng, Z.Z.; Ciais, P.; Chen, D.L.; Huang, M.T.; Jin, C.S.; Li, L.Z.X.; et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef]
- Zhou, M.P.; Yu, Z.B.; Gu, H.H.; Ju, Q.; Gao, Y.Y.; Wen, L.; Huang, T.K.; Wang, W. Evaluation and projections of surface air temperature over the Tibetan Plateau from CMIP6 and CMIP5: Warming trend and uncertainty. Clim. Dyn. 2023, 60, 3863–3883. [Google Scholar] [CrossRef]
- Hu, H.W.; Wei, Y.Q.; Wang, W.Y.; Chen, Z.N. Potential spatial distributions of Tibetan antelope and protected areas on the Qinghai-Tibetan Plateau, China. Biodivers. Conserv. 2024, 33, 1845–1867. [Google Scholar] [CrossRef]
- Karuno, A.P.; Mi, X.; Chen, Y.H.; Zou, D.H.; Gao, W.; Zhang, B.L.; Xu, W.; Jin, J.Q.; Shen, W.J.; Huang, S.; et al. Impacts of climate change on herpetofauna diversity in the Qinghai-Tibetan Plateau. Conserv. Biol. 2023, 37, 15. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.T.; Chen, J.Y.; Sun, W.B. Distributional responses to climate change of two maple species in southern China. Ecol. Evol. 2023, 13, 11. [Google Scholar] [CrossRef]
- He, X.; Burgess, K.S.; Gao, L.M.; Li, D.Z. Distributional responses to climate change for alpine species of Cyananthus and Primulaendemic to the Himalaya-Hengduan Mountains. Plant Divers. 2019, 41, 26–32. [Google Scholar] [CrossRef] [PubMed]
- You, J.L.; Qin, X.P.; Ranjitkar, S.; Lougheed, S.C.; Wang, M.C.; Zhou, W.; Ouyang, D.X.; Zhou, Y.; Xu, J.C.; Zhang, W.J.; et al. Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci. Rep. 2018, 8, 12. [Google Scholar] [CrossRef]
- Cui, T.; Li, C.; Tian, F.Q. Evaluation of Temperature and Precipitation Simulations in CMIP6 Models Over the Tibetan Plateau. Earth Space Sci. 2021, 8, e2020EA001620. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Yang, S.N. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Chang. Res. 2020, 11, 239–251. [Google Scholar] [CrossRef]
- Hu, Q.; Hua, W.; Yang, K.Q.; Ming, J.; Ma, P.; Zhao, Y.; Fan, G.Z. An assessment of temperature simulations by CMIP6 climate models over the Tibetan Plateau and differences with CMIP5 climate models. Theor. Appl. Climatol. 2022, 148, 223–236. [Google Scholar] [CrossRef]
- Zhang, C.; Qi, W.; Dong, J.W.; Deng, Y. How the CMIP6 climate models project the historical terrestrial GPP in China. Int. J. Climatol. 2022, 42, 9449–9461. [Google Scholar] [CrossRef]
- Jin, C.X.; Jiang, C.; Zhang, X.Y. Evaluation and Projection of Temperature in Southwestern China by CMIP6 Models. Chin. J. Agrometeorol. 2022, 43, 597–611. [Google Scholar] [CrossRef]
- Liang, Q.L.; Xu, X.T.i.; Mao, K.S.; Wang, M.C.; Wang, K.; Xi, Z.X.; Liu, J.Q. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J. Biogeogr. 2018, 45, 1334–1344. [Google Scholar] [CrossRef]
- Yan, Y.J.; Li, Y.; Wang, W.J.; He, J.S.; Yang, R.H.; Wu, H.J.; Wang, X.L.; Jiao, L.; Tang, Z.Y.; Yao, Y.J. Range shifts in response to climate, change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biol. Conserv. 2017, 206, 143–150. [Google Scholar] [CrossRef]
- Yan, Y.J.; Tang, Z.Y. Protecting endemic seed plants on the Tibetan Plateau under future climate change: Migration matters. J. Plant Ecol. 2019, 12, 962–971. [Google Scholar] [CrossRef]
- Li, J.M.; Ehlers, T.A.; Werner, M.; Mutz, S.G.; Steger, C.; Paeth, H. Late quaternary climate, precipitation δ18O, and Indian monsoon variations over the Tibetan Plateau. Earth Planet. Sci. Lett. 2017, 457, 412–422. [Google Scholar] [CrossRef]
- Lamsal, P.; Kumar, L.; Aryal, A.; Atreya, K. Future climate and habitat distribution of Himalayan Musk Deer Moschus chrysogaster. Ecol. Inform. 2018, 44, 101–108. [Google Scholar] [CrossRef]
- Peng, Y.Z.; Duan, A.; Hu, W.T.; Tang, B.; Li, X.Y.; Yang, X.Y. Observational constraint on the future projection of temperature in winter over the Tibetan Plateau in CMIP6 models. Environ. Res. Lett. 2022, 17, 034023. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, Z.M.; Wang, W.H.; Peng, X.J. Advances in chemical components and pharmacology of genus Gentiana. China J. Chin. Mater. Medica 2009, 34, 2987–2994. [Google Scholar]
- Mirzaee, F.; Hosseini, A.; Jouybari, H.B.; Davoodi, A.; Azadbakht, M. Medicinal, biological and phytochemical properties of Gentiana species. J. Tradit. Complement. Med. 2017, 7, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D. The system of physico-geographical regions of the Qinghai-Xizang (Tibet) Plateau. Sci. China Ser. D 1996, 39, 410–417. [Google Scholar]
- Zhang, H.; Sun, J.; Xiong, J.N. Spatial-Temporal Patterns and Controls of Evapotranspiration across the Tibetan Plateau (2000–2012). Adv. Meteorol. 2017, 2017, 7082606. [Google Scholar] [CrossRef]
- Editorial Committee of Flora of China, Chinese Academy of Sciences. Gentianaceae in Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1988; Volume 62, pp. 14–75. [Google Scholar]
- Zhou, W.; Qin, Y.M.; Liu, X.L. Distribution and Evaluation of Medicinal Gentian Resources in Yunnan. Yunnan J. Tradit. Chin. Med. Mater. Medica 2015, 36, 81–83. [Google Scholar]
- Zhao, Z.L.; Su, J.; Wang, Z.H. Pharmacognostical studies on root of Gentiana siphonantha. Chin. Tradit. Herb. Drugs 2006, 37, 1875–1878. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R package version 3.6.23. 2023. Available online: https://cran.r-project.org/package=raster (accessed on 22 August 2024).
- Wai, T.H.; Liang, X.; Xie, H.; Liu, L.; Pan, Y.; Xu, Y.; Zhao, L.; Xu, X. Global richness patterns of alpine genus Gentiana depend on multiple factors. Ecol. Evol. 2024, 14, e11366. [Google Scholar] [CrossRef] [PubMed]
- Breiner, F.T.; Guisan, A.; Bergamini, A.; Nobis, M.P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 2015, 6, 1210–1218. [Google Scholar] [CrossRef]
- Di Cola, V.; Broennimann, O.; Petitpierre, B.; Breiner, F.T.; D’Amen, M.; Randin, C.; Engler, R.; Pottier, J.; Pio, D.; Dubuis, A.; et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 2017, 40, 774–787. [Google Scholar] [CrossRef]
- Lee, S.; Qi, J.Y.; McCarty, G.W.; Yeo, I.Y.; Zhang, X.S.; Moglen, G.E.; Du, L. Uncertainty assessment of multi-parameter, multi-GCM, and multi-RCP simulations for streamflow and non-floodplain wetland (NFW) water storage. J. Hydrol. 2021, 600, 126564. [Google Scholar] [CrossRef]
- Chauvier, Y.; Descombes, P.; Gueguen, M.; Boulangeat, L.; Thuiller, W.; Zimmermann, N.E. Resolution in species distribution models shapes spatial patterns of plant multifaceted diversity. Ecography 2022, 2022, e05973. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M. The effect of sample size on the accuracy of species distribution models: Considering both presences and pseudo-absences or background sites. Ecography 2019, 42, 535–548. [Google Scholar] [CrossRef]
- Trew, B.T.; Maclean, I.M.D. Vulnerability of global biodiversity hotspots to climate change. Glob. Ecol. Biogeogr. 2021, 30, 768–783. [Google Scholar] [CrossRef]
- Zu, K.L.; Wang, Z.H.; Zhu, X.Y.; Lenoir, J.; Shrestha, N.; Lyu, T.; Luo, A.; Li, Y.Q.; Ji, C.J.; Peng, S.J.; et al. Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Sci. Total Environ. 2021, 783, 146896. [Google Scholar] [CrossRef]
- Gholami, H.; Lotfirad, M.; Ashrafi, S.M.; Biazar, S.M.; Singh, V.P. Multi-GCM ensemble model for reduction of uncertainty in runoff projections. Stoch. Environ. Res. Risk Assess. 2023, 37, 953–964. [Google Scholar] [CrossRef]
- Keilman, N. Modelling education and climate change. Nat. Sustain. 2020, 3, 497–498. [Google Scholar] [CrossRef]
- Della Rocca, F.; Bogliani, G.; Breiner, F.T.; Milanesi, P. Identifying hotspots for rare species under climate change scenarios: Improving saproxylic beetle conservation in Italy. Biodivers. Conserv. 2019, 28, 433–449. [Google Scholar] [CrossRef]
- Garza, G.; Rivera, A.; Barrera, C.S.V.; Martinez-Avalos, J.G.; Dale, J.; Arroyo, T.P.F. Potential Effects of Climate Change on the Geographic Distribution of the Endangered Plant Species Manihot walkerae. Forests 2020, 11, 689. [Google Scholar] [CrossRef]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
Bio1 (°C) | Bio5 (°C) | Bio6 (°C) | Bio12 (mm) | Bio16 (mm) | Bio17 (mm) | |
---|---|---|---|---|---|---|
G. yunnanensis | 6.70 (−0.14~15.40) | 17.53 (11.00~25.10) | −7.71 (−15.40~1.80) | 803.58 (638.00~943.00) | 406.55 (311.00~525.00) | 33.81 (10~60) |
G. siphonantha | −0.40 (−5.35~5.63) | 15.43 (−16.1~26.30) | −21.04 (−25.20~−16.30) | 397.26 (115.00~616.00) | 240.93 (70.00~375.00) | 6.26 (2.00~13.00) |
Species | Period | SSP | PercLoss * | PercGain ** | SRC *** |
---|---|---|---|---|---|
G. yunnanensis | 2041–2060 | SSP2-4.5 | 40.866 | 38.871 | −1.995 |
2041–2060 | SSP5-8.5 | 46.854 | 38.671 | −8.183 | |
2081–2100 | SSP2-4.5 | 55.218 | 51.176 | −4.042 | |
2081–2100 | SSP5-8.5 | 78.872 | 99.762 | +20.89 | |
G. siphonantha | 2041–2060 | SSP2-4.5 | 9.045 | 14.733 | +5.688 |
2041–2060 | SSP5-8.5 | 11.468 | 16.391 | +4.922 | |
2081–2100 | SSP2-4.5 | 16.657 | 16.572 | −0.085 | |
2081–2100 | SSP5-8.5 | 39.276 | 13.642 | −25.634 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Xu, X.; Zhang, S.; Chi, X. Uncertainty Assessment of Species Distribution Prediction Using Multiple Global Climate Models on the Tibetan Plateau: A Case Study of Gentiana yunnanensis and Gentiana siphonantha. Land 2024, 13, 1376. https://doi.org/10.3390/land13091376
Song Y, Xu X, Zhang S, Chi X. Uncertainty Assessment of Species Distribution Prediction Using Multiple Global Climate Models on the Tibetan Plateau: A Case Study of Gentiana yunnanensis and Gentiana siphonantha. Land. 2024; 13(9):1376. https://doi.org/10.3390/land13091376
Chicago/Turabian StyleSong, Yuxin, Xiaoting Xu, Shuoying Zhang, and Xiulian Chi. 2024. "Uncertainty Assessment of Species Distribution Prediction Using Multiple Global Climate Models on the Tibetan Plateau: A Case Study of Gentiana yunnanensis and Gentiana siphonantha" Land 13, no. 9: 1376. https://doi.org/10.3390/land13091376
APA StyleSong, Y., Xu, X., Zhang, S., & Chi, X. (2024). Uncertainty Assessment of Species Distribution Prediction Using Multiple Global Climate Models on the Tibetan Plateau: A Case Study of Gentiana yunnanensis and Gentiana siphonantha. Land, 13(9), 1376. https://doi.org/10.3390/land13091376