Use of an Adaptive-Vegetation Model to Restore Degraded Tropical Peat Swamp Forest to Support Climate Resilience
Abstract
:1. Introduction
2. Methods
3. A Developed Adaptive-Vegetation Model and Its Role in Increasing Resilience to Climate Change
4. Role of a Developed Adaptive-Vegetation Model in Supporting Biodiversity, Plant Growth, Soil Health, Peat Water-Table Level, Microclimate, and the Value of Benefits for Community Welfare
4.1. Role of a Developed Adaptive-Vegetation Model in Supporting Biodiversity
4.2. Role of a Developed Adaptive-Vegetation Model in Supporting Plant Growth
4.3. Role of a Developed Adaptive-Vegetation Model in Supporting Soil Health
4.4. Role of a Developed Adaptive-Vegetation Model in Sustaining the Peat Water-Table Level
4.5. Role of a Developed Adaptive-Vegetation Model in Supporting Microclimates
4.6. Role of the Developed Adaptive-Vegetation Model in Supporting the Value of Benefits for Community Welfare
5. The Way Forward
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritung, S.; Wahyunto, N.K.; Sukarman, H.; Suparto, T.C. Peta Lahan Gambut Indonesia Skala 1: 250.000; Balai Besar Litbang Sumberdaya Lahan Pertanian: Bogor, Indonesia, 2011. [Google Scholar]
- Anda, M.; Ritung, S.; Suryani, E.; Sukarman; Hikmat, M.; Yatno, E.; Mulyani, A.; Subandiono, R.E.; Suratman; Husnain. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma 2021, 402, 115235. [Google Scholar] [CrossRef]
- Harrison, M.E.; Ottay, J.B.; D’arcy, L.J.; Cheyne, S.M.; Anggodo; Belcher, C.; Cole, L.; Dohong, A.; Ermiasi, Y.; Feldpausch, T.; et al. Tropical forest and peatland conservation in Indonesia: Challenges and directions. People Nat. 2020, 2, 4–28. [Google Scholar] [CrossRef]
- Lampela, M.; Jauhiainen, J.; Vasander, H. Surface peat structure and chemistry in a tropical peat swamp forest. Plant Soil 2014, 382, 329–347. [Google Scholar] [CrossRef]
- Partomihardjo, T.; Hermawan, E.; Pradana, E.W.; Widiastuti, Y. Flora Riparian Dan Hutan Rawa Gambut Untuk Restorasi Area Dengan Nilai Konservasi Tinggi (NKT) Terdegradasi; Zoological Society of London (ZSL) Indonesia Programme: Jakarta, Indonesia, 2020; Available online: https://repository.zsl.org/media/publications/315852-flora-riparian-dan-hutan-rawa-gambut-unt-99ed62b6.pdf (accessed on 17 May 2024).
- Pratiwi. Konservasi Ekosistem Hutan Rawa Gambut dengan Pendekatan Lanskap untuk Kelestarian Lingkungan. In Bunga Rampai Kelestarian dan Konservasi Hutan Rawa Gambut di Indonesia; Mulyanto, B., Dharmawan, I.W.S., Sukmana, A., Undaharta, N.K.E., Narendra, B.H., Eds.; IPB Press: Bogor, Indonesia, 2023; pp. 5–20. [Google Scholar]
- Badan Pusat Statistik. Statistik Indonesia; Badan Pusat Statistik: Jakarta, Indonesia, 2023. Available online: https://www.bps.go.id/id/publication/2023/02/28/18018f9896f09f03580a614b/statistik-indonesia-2023.html (accessed on 18 May 2024).
- Dohong, A.; Aziz, A.A.; Dargusch, P. A Review of Techniques for Effective Tropical Peatland Restoration. Wetlands 2018, 38, 275–292. [Google Scholar] [CrossRef]
- Hansson, A.; Dargusch, P. An Estimate of the Financial Cost of Peatland Restoration in Indonesia. Case Stud. Env. 2018, 2, 1–8. [Google Scholar] [CrossRef]
- Lestari, N.S.; Rochmayanto, Y.; Salminah, M.; Novita, N.; Asyhari, A.; Gangga, A.; Ritonga, R.; Yeo, S.; Albar, I. Opportunities and risk management of peat restoration in Indonesia: Lessons learned from peat restoration actors. Restor. Ecol. 2024, 32, e14054. [Google Scholar] [CrossRef]
- Rainforest Action Network. Indonesia Climate Change and Rainforest. Available online: https://www.ran.org/wp-content/uploads/2018/06/indonesia_climatechange_rainforests.pdf (accessed on 25 May 2024).
- Hooijer, A.; Page, S.; Canadell, J.G.; Silvius, M.; Kwadijk, J.; Wösten, H.; Jauhiainen, J. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 2010, 7, 1505–1514. [Google Scholar] [CrossRef]
- Yuwati, T.W.; Rachmanadi, D.; Pratiwi; Turjaman, M.; Indrajaya, Y.; Nugroho, H.Y.S.H.; Qirom, M.A.; Narendra, B.H.; Winarno, B.; Lestari, S.; et al. Restoration of Degraded Tropical Peatland in Indonesia: A Review. Land 2021, 10, 1170. [Google Scholar] [CrossRef]
- Miettinen, J.; Hooijer, A.; Vernimmen, R.; Liew, S.C.; Page, S.E. From carbon sink to carbon source: Extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 2017, 12, 024014. [Google Scholar] [CrossRef]
- Edwards, R.B.; Naylor, R.L.; Higgins, M.M.; Falcon, W.P. Causes of Indonesia’s forest fires. World Dev. 2020, 127, 104717. [Google Scholar] [CrossRef]
- Cooper, H.V.; Vane, C.H.; Evers, S.; Aplin, P.; Girkin, N.T.; Sjögersten, S. From peat swamp forest to oil palm plantations: The stability of tropical peatland carbon. Geoderma 2019, 342, 109–117. [Google Scholar] [CrossRef]
- Dariah, A.; Marwanto, S.; Agus, F. Root- and peat-based CO2 emissions from oil palm plantations. Mitig. Adapt. Strat. Glob. Chang. 2014, 19, 831–843. [Google Scholar] [CrossRef]
- Sjögersten, S.; Black, C.R.; Evers, S.; Hoyos-Santillan, J.; Wright, E.L.; Turner, B.L. Tropical wetlands: A missing link in the global carbon cycle? Glob. Biogeochem. Cycles 2014, 28, 1371–1386. [Google Scholar] [CrossRef] [PubMed]
- Uda, S.K.; Hein, L.; Atmoko, D. Assessing the health impacts of peatland fires: A case study for Central Kalimantan, Indonesia. Environ. Sci. Pollut. Res. 2019, 26, 31315–31327. [Google Scholar] [CrossRef] [PubMed]
- Kiely, L.; Spracklen, D.V.; Arnold, S.R.; Papargyropoulou, E.; Conibear, L.; Wiedinmyer, C.; Knote, C.; Adrianto, H.A. Assessing costs of Indonesian fires and the benefits of restoring peatland. Nat. Commun. 2021, 12, 7044. [Google Scholar] [CrossRef] [PubMed]
- Dinesen, L.; Hahn, P. Draft Ramsar Technical Report on Peatland Restoration and Rewetting Methodologies in Northern Bogs. In Proceedings of the 22nd Meeting of the Scientific and Technical Review Panel, Gland, Switzerland, 18–22 March 2019. STRP22 Doc.7.2. [Google Scholar]
- Badan Restorasi Gambut dan Mangrove. Rencana Strategis 2021–2024 Badan Restorasi Gambut dan Mangrove. Badan Restorasi Gambut dan Mangrove, Jakarta, Indonesia. 2021. Available online: https://brgm.go.id/publikasi/ (accessed on 16 May 2024).
- Terzano, D.; Attorre, F.; Parish, F.; Moss, P.; Bresciani, F.; Cooke, R.; Dargusch, P. Community-led peatland restoration in Southeast Asia: 5Rs approach. Restor. Ecol. 2022, 30, e13642. [Google Scholar] [CrossRef]
- Darusman, T.; Lestari, D.P.; Arriyadi, D. Management Practice and Restoration of the Peat Swamp Forest in Katingan-Mentaya, Indonesia. In Tropical Peatland Eco-management; Osaki, M., Tsuji, N., Foead, N., Rieley, J., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Bhomia, R.K.; Murdiyarso, D. Effective Monitoring and Management of Peatland Restoration; Center for International Forestry Research (CIFOR); World Agroforestry Centre (ICRAF): Bogor, Indonesia, 2021. [Google Scholar] [CrossRef]
- Interfaith Rainforest Inisiative. Tropical Forest and Climate Change: An Issue Primer for Religious Leaders and Faith Communities. Available online: https://www.interfaithrainforest.org/s/Interfaith_CountryPrimer_Indonesia.pdf (accessed on 25 May 2024).
- Bastoni, B.; Anjani, R.; Imanullah, A. Revegetation of Tropical Peat Swamp Forest of Former Fires Using Local Tree Species in South Sumatra (Indonesia). J. Lahan Suboptim. J. Suboptim. Lands 2023, 12, 209–218. [Google Scholar] [CrossRef]
- Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 2022, 608, 534–539. [Google Scholar] [CrossRef]
- Witno, W.; Maria, M.; Liana, L.; Wardi, W. Assessing Carbon Dioxide (CO2) Absorption Potential of Forests Around Landslides Along the Trans Palopo-Toraja Highways. J. Ilmu Kehutan. 2024, 18, 59–70. [Google Scholar] [CrossRef]
- Rachmat, H.H.; Adinugroho, W.C.; Imanudin, R.; Lestari, N.S.; Subiakto, A.; Purwanto; Bastoni, B.; Gaman, S.; Rossita, A. Promoting the 4N Concept for Tropical Peatland and Greenhouse Gas Reduction; IPB Press: Bogor, Indonesia, 2023. [Google Scholar]
- Smith, S.W.; Rahman NE, B.; Harrison, M.E.; Shiodera, S.; Giesen, W.; Lampela, M.; Wardle, D.A.; Chong, K.Y.; Randi, A.; Wijedasa, L.S. Tree Species That ‘Live Slow, Die Older’Enhance Tropical Peat Swamp Restoration: Evidence from a Systematic Review. J. Appl. Ecol. 2022, 59, 1950–1966. [Google Scholar] [CrossRef]
- Graham, L.L.B.; Giesen, W.; Page, S.E. A common-sense approach to tropical peat swamp forest restoration in Southeast Asia. Restor. Ecol. 2017, 25, 312–321. [Google Scholar] [CrossRef]
- Ramdzan, K.N.M.; Moss, P.T.; Jacobsen, G.; Gallego-Sala, A.; Charman, D.; Harrison, M.E.; Page, S.; Mishra, S.; Wardle, D.A.; Jaya, A.; et al. Insights for restoration: Reconstructing the drivers of long-term local fire events and vegetation turnover of a tropical peatland in Central Kalimantan. Palaeogeogr. Palaeoclim. Palaeoecol. 2023, 628, 111772. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; 1148p. [Google Scholar] [CrossRef]
- Gangle, G.R.; Bhatnagar, P. An In-Depth Examination of The Interplay between Economic and Ecological Factors in Biodiversity Preservation; IMRF Institute of Higher Education & Research: Vijayawada, India, 2023. [Google Scholar] [CrossRef]
- Fan, X.; Hao, X.; Hao, H.; Zhang, J.; Li, Y. Comprehensive Assessment Indicator of Ecosystem Resilience in Central Asia. Water 2021, 13, 124. [Google Scholar] [CrossRef]
- UN Environment Programme (UNEP). Economics of Peatlands Conservation, Restoration, and Sustainable Management—A Policy Report for the Global Peatlands Initiative; Barbier, E.B., Burgess, J.C., Eds.; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Busthanul, N.; Demmallino, E.B.; Sultani, H.R.; Lampe, M.; Ismail, A.; Yassi, A.; Daris, L.; Saudi, M.Y.; Zainuddin, A. Ecological adaptation of smallholders to tropical climate change in the highland zone of South Sulawesi, Indonesia. Biodiversitas J. Biol. Divers. 2023, 24, 5328–5335. [Google Scholar] [CrossRef]
- Afuye, G.A.; Kalumba, A.M.; Orimoloye, I.R. Characterisation of Vegetation Response to Climate Change: A Review. Sustainability 2021, 13, 7265. [Google Scholar] [CrossRef]
- Shivanna, K.R. Climate change and its impact on biodiversity and human welfare. Proc. Indian Natl. Sci. Acad. 2022, 88, 160–171. [Google Scholar] [CrossRef]
- Selwood, K.E.; Zimmer, H.C. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 2020, 245, 108502. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M.; Williams, D.R.; Kimmel, K.; Polasky, S.; Packer, C. Future threats to biodiversity and pathways to their prevention. Nature 2017, 546, 73–81. [Google Scholar] [CrossRef]
- Stange, M.; Barrett, R.D.H.; Hendry, A.P. The importance of genomic variation for biodiversity, ecosystems and people. Nat. Rev. Genet. 2021, 22, 89–105. [Google Scholar] [CrossRef]
- Dormann, C.F.; Bagnara, M.; Boch, S.; Hinderling, J.; Janeiro-Otero, A.; Schäfer, D.; Schall, P.; Hartig, F. Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecol. 2020, 20, 43. [Google Scholar] [CrossRef]
- Franklin, O.; Harrison, S.P.; Dewar, R.; Farrior, C.E.; Brännström, Å.; Dieckmann, U.; Pietsch, S.; Falster, D.; Cramer, W.; Loreau, M.; et al. Organizing principles for vegetation dynamics. Nat. Plants 2020, 6, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, S.J.; Roderick, M.L.; Sivapalan, M. Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2 concentrations. AoB Plants 2015, 7, plv060. [Google Scholar] [CrossRef]
- Scheiter, S.; Langan, L.; Higgins, S.I. Next-generation dynamic global vegetation models: Learning from community ecology. New Phytol. 2013, 198, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Schulze, E.D.; Beck, E.; Buchmann, N.; Clemens, S.; Müller-Hohenstein, K.; Scherer-Lorenzen, M. Dynamic Global Vegetation Models. In Plant Ecology; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Ministry of Environment and Forestry. The State of Indonesia’s Forests; Ministry of Environment and Forestry of Indonesia: Jakarta, Indonesia, 2018.
- Tan, Z.D.; Lupascu, M.; Wijedasa, L.S. Paludiculture as a sustainable land use alternative for tropical peatlands: A review. Sci. Total Environ. 2021, 753, 142111. [Google Scholar] [CrossRef] [PubMed]
- Tanneberger, F.; Birr, F.; Couwenberg, J.; Kaiser, M.; Luthardt, V.; Nerger, M.; Pfister, S.; Oppermann, R.; Zeitz, J.; Beyer, C.; et al. Saving soil carbon, greenhouse gas emissions, biodiversity and the economy: Paludiculture as sustainable land use option in German fen peatlands. Reg. Environ. Chang. 2022, 22, 69. [Google Scholar] [CrossRef]
- Andersen, R.; Farrell, C.; Graf, M.; Muller, F.; Calvar, E.; Frankard, P.; Caporn, S.; Anderson, P. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 2017, 25, 271–282. [Google Scholar] [CrossRef]
- Taylor, N.G.; Grillas, P.; Fennessy, M.S.; Goodyer, E.; Graham, L.L.B.; Karofeld, E.; Lindsay, R.A.; Locky, D.A.; Ockendon, N.; Rial, A.; et al. A Synthesis of Evidence for the Effects of Interventions to Conserve Peatland Vegetation: Overview and Critical Discussion. Mires Peat 2019, 24, 1–21. [Google Scholar] [CrossRef]
- Wichtmann, W.; Schröder, C.; Joosten, H. Paludiculture—Productive Use of Wet Peatlands; E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller): Stuttgart, Germany, 2016. [Google Scholar]
- Budiman, I.; Bastoni; Sari, E.N.; Hadi, E.E.; Asmaliyah; Siahaan, H.; Januar, R.; Hapsari, R.D. Progress of paludiculture projects in supporting peatland ecosystem restoration in Indonesia. Glob. Ecol. Conserv. 2020, 23, e01084. [Google Scholar] [CrossRef]
- Tata, H.L. Paludiculture: Can it be a trade-off between ecology and economic benefit on peatland restoration? IOP Conf. Ser. Earth Environ. Sci. 2019, 394, 012061. [Google Scholar] [CrossRef]
- Junaedi, A. Growth performance of three native tree species for pulpwood plantation in drained peatland of pelalawan district, riau. Indones. J. For. Res. 2018, 5, 119–132. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Clymans, E.; Page, S.E.; Rieley, J.O.; Limin, S.H. Peat–Water Interrelationships in a Tropical Peatland Ecosystem in Southeast Asia. Catena 2008, 73, 212–224. [Google Scholar] [CrossRef]
- Tata, H.L.; Nuroniah, H.S.; Ahsania, D.A.; Anggunira, H.; Hidayati, S.N.; Pratama, M.; Istomo, I.; Chimner, R.A.; van Noordwijk, M.; Kolka, R. Flooding tolerance of four tropical peatland tree species in a nursery trial. PLoS ONE 2022, 17, e0262375. [Google Scholar] [CrossRef]
- Lampela, M.; Jauhiainen, J.; Sarkkola, S.; Vasander, H. Promising native tree species for reforestation of degraded tropical peatlands. For. Ecol. Manag. 2017, 394, 52–63. [Google Scholar] [CrossRef]
- Lampela, M.; Jauhiainen, J.; Sarkkola, S.; Vasander, H. To treat or not to treat? The seedling performance of native tree species for reforestation on degraded tropical peatlands of SE Asia. For. Ecol. Manag. 2018, 429, 217–225. [Google Scholar] [CrossRef]
- Rachmanadi, D.; Faridah, E.; Sumardi, S.; van der Meer, P.; Qirom, M.A. The effect of flooding and light competition on the planting success of degraded tropical peatland. J. Galam 2021, 1, 123–140. [Google Scholar] [CrossRef]
- Kalinganire, A. Promoting Indigenous Tree Species in the Sahel—Information on Growth and Management of Priority Species in the Sahel; CIFOR-ICRAF: Nairobi, Kenya, 2022. [Google Scholar]
- Bare, M.C.; Ashton, M.S. Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New For. 2015, 47, 333–355. [Google Scholar] [CrossRef]
- Lestari, D.A.; Fiqa, A.P.; Fauziah, F.; Budiharta, S. Growth evaluation of native tree species planted on post coal mining reclamation site in East Kalimantan, Indonesia. Biodiversitas J. Biol. Divers. 2019, 20, 134–143. [Google Scholar] [CrossRef]
- Bastoni; Syabana, T.A.A. Implementation of revegetation in Burnai River—Sibumbung River Ogan komering Ilir District South Sumatra. In Pembelajaran Restorasi Gambut dari Region Sumatera; Lisnawati, Y., Nasrul, B., Eds.; IPB Press: Bogor, Indonesia, 2022; ISBN 978-623-467-029-5, 978-623-467-028-8. [Google Scholar]
- Liu, H.; Price, J.; Rezanezhad, F.; Lennartz, B. Centennial-Scale Shifts in Hydrophysical Properties of Peat Induced by Drainage. Water Resour. Res. 2020, 56, e2020WR027538. [Google Scholar] [CrossRef]
- Astiani, D.; Widiastuti, T.; Latifah, S.; Simatupang, D. Soil characteristics and CO2 emissions of ex-burnt peatland in Kubu Raya District, West Kalimantan, Indonesia. Biodiversitas J. Biol. Divers. 2020, 21, 3691–3698. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, M.; Zhao, Y.; Hu, N.; Qin, L.; Ren, Z.; Wang, G.; Jiang, M. Soil microbial abundance was more affected by soil depth than the altitude in peatlands. Front. Microbiol. 2022, 13, 1068540. [Google Scholar] [CrossRef]
- Sulaeman, D.; Sari, E.N.N.; Westhoff, T.P. Effects of peat fires on soil chemical and physical properties: A case study in South Sumatra. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012146. [Google Scholar] [CrossRef]
- Pereira, A.P.A.; Cherubin, M.R.; de Araujo, A.S.F.; Santana, M.C.; de Medeiros, E.V.; da Costa, D.P.; de Souza, A.J.; Lima, A.Y.V.; da Silva, D.F.; Estrada, P.A.C.; et al. Soil Quality Evaluation in Mono and Mixed Eucalypt Plantation. Sustainability 2024, 16, 2534. [Google Scholar] [CrossRef]
- Decker, H.L.; Gamble, A.V.; Balkcom, K.S.; Johnson, A.M.; Hull, N.R. Cover crop monocultures and mixtures affect soil health indicators and crop yield in the southeast United States. Soil Sci. Soc. Am. J. 2022, 86, 1312–1326. [Google Scholar] [CrossRef]
- Fortini, L.B.; Kaiser, L.R.; Perkins, K.S.; Xue, L.; Wang, Y. Estimating the Impact of Climate and Vegetation Changes on Runoff Risk across the Hawaiian Landscape. Conservation 2023, 3, 291–302. [Google Scholar] [CrossRef]
- Page, S.; Baird, A. Peatlands and Global Change: Response and Resilience. Annu. Rev. Environ. Resour. 2016, 41, 35–57. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Upton, A.; Vane, C.H.; Girkin, N.; Turner, B.L.; Sjögersten, S. Does litter input determine carbon storage and peat organic chemistry in tropical peatlands? Geoderma 2018, 326, 76–87. [Google Scholar] [CrossRef]
- León, J.D.; Osorio, N.W. Role of Litter Turnover in Soil Quality in Tropical Degraded Lands of Colombia. Sci. World J. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Kooijman, A.M.; van Til, M.; Noordijk, E.; Remke, E.; Kalbitz, K. Nitrogen deposition and grass encroachment in calcareous and acidic Grey dunes (H2130) in NW-Europe. Biol. Conserv. 2017, 212, 406–415. [Google Scholar] [CrossRef]
- Fiqa, A.P.; Sofiah, S. Impact of Litter Quality and Earthworm Populations on Seruk Spring Forest’s Soil Characteristic. J. Penelit. Hutan dan Konserv. Alam 2021, 18, 83–95. [Google Scholar] [CrossRef]
- Turjaman, M.; Herdyantara, B.; Faulina, S.A.; Agustini, L.; Irianto, R.S.B.; Hidayat, A.; Wahno, I.; Murdani; Tjahyono, B.; Indrayadi, H. Mycorrhizal colonization of indigenous tropical tree species grown in peat swamp forests of Sumatera, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 308, 012049. [Google Scholar] [CrossRef]
- Junaedi, A.; Mindawati, N.; Pribadi, A.; Hardiwinoto, S. Leaf Litter Decomposition and Nutrient Release of Three Native Tree Species in a Drained Tropical Peatland in Riau, Indonesia. Hayati J. Biosci. 2022, 29, 182–191. [Google Scholar] [CrossRef]
- Junaedi, A.; Pribadi, A.; Mindawati, N.; Dharmawan, I.W.S.; Octavia, D.; Kurniawan, H.; Fauzi, R.; Siahaan, H.; Premono, B.T.; Nugroho, A.W.; et al. Nutrient Resorption in Young Stands of Three Native Tree Species to Support Restoration of Degraded Tropical Peatland in Indonesia. Land 2024, 13, 1169. [Google Scholar] [CrossRef]
- Imolore, D. Diversity of Tropical Rainforests: Types, Ecosystem Services, and Ecological Importance. Available online: https://fundtheplanet.net/rainforest-conservation/diversity-of-tropical-rainforests-types-ecosystem-services-ecological-importance/ (accessed on 24 May 2024).
- Gunawan, H.; Tryanto, D.; Mizuno, K.; Kozan, O. Toward Climate Change Mitigation: Restoration of the Indonesian Peat Swamp. In Vulnerability and Transformation of Indonesian Peatlands; Gunawan, H., Kozan, O., Mizuno, K., Eds.; Springer Nature: Singapore, 2023; pp. 141–157. [Google Scholar] [CrossRef]
- Hooijer, A.; Vernimmen, R.; Mulyadi, D.; Triantomo, V.; Hamdani; Lampela, M.; Agusti, R.; Page, S.E.; Doloksaribu, J.; Setiawan, I.; et al. Benefits of tropical peatland rewetting for subsidence reduction and forest regrowth: Results from a large-scale restoration trial. Sci. Rep. 2024, 14, 10721. [Google Scholar] [CrossRef] [PubMed]
- Haldan, K.; Köhn, N.; Hornig, A.; Wichmann, S.; Kreyling, J. Typha for paludiculture—Suitable water table and nutrient conditions for potential biomass utilization explored in mesocosm gradient experiments. Ecol. Evol. 2022, 12, e9191. [Google Scholar] [CrossRef]
- Anjani, R.; Siahaan, H. Initial Growth of Four Endemic Species in Degraded Peatland Revegetation in Ogan Komering Ilir, South Sumatra. IOP Conf. Ser. Earth Environ. Sci. 2023, 1201, 012056. [Google Scholar] [CrossRef]
- Ritzema, H.; Limin, S.; Kusin, K.; Jauhiainen, J.; Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. CATENA 2014, 114, 11–20. [Google Scholar] [CrossRef]
- Evans, M.; Stimson, A.; Allott, T.; Pilkington, M.; Shuttleworth, E.; Holland, N.; Spencer, T.; Walker, J. Final Report of the Making Space for Water Project Annex 4. Dissolved Organic Carbon Concentrations; Moors for the Future Partnership: Edale, UK, 2015. [Google Scholar]
- Renou-Wilson, F.; Barry, C.; Müller, C.; Wilson, D. The impacts of drainage, nutrient status and management practice on the full carbon balance of grasslands on organic soils in a maritime temperate zone. Biogeosciences 2014, 11, 4361–4379. [Google Scholar] [CrossRef]
- Page, S.E.; Hooijer, A. In the line of fire: The peatlands of Southeast Asia. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150176. [Google Scholar] [CrossRef]
- Kettridge, N.; Turetsky, M.R.; Sherwood, J.H.; Thompson, D.K.; Miller, C.A.; Benscoter, B.W.; Flannigan, M.D.; Wotton, B.M.; Waddington, J.M. Moderate drop in water table increases peatland vulnerability to post-fire regime shift. Sci. Rep. 2015, 5, srep08063. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; van der Werf, G.R.; Watts, A. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 2015, 8, 11–14. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Hergoualc’h, K.; Basuki, I.; Sasmito, S.; Hanggara, B. Cadangan Karbon di Lahan Gambut; Center for International Forestry Research (CIFOR); World Agroforestry Centre (ICRAF): Bogor, Indonesia, 2017. [Google Scholar]
- Kementerian Lingkungan Hidup dan Kehutanan. Pedoman Pemulihan Ekosistem Gambut; Direktorat Pengendalian Kerusakan Gambut: Jakarta, Indonesia, 2015.
- Alfarisyi, H.; Sutikno, S.; Rinaldi. Analisis Pembasahan Lahan Gambut Akibat Pembangunan Sekat Kanal (Studi Kasus: Desa Lukun, Kabupaten Kepulauan Meranti). J. Tek. 2020, 14, 45–52. [Google Scholar] [CrossRef]
- Khotimah, S.; Suharjono, S.; Ardyati, T.; Nuraini, Y. The Isolation and identification of cellulolytic bacteria at fibric, hemic and sapric peat in Teluk Bakung Peatland, Kubu Raya District, Indonesia. Biodiversitas J. Biol. Divers. 2020, 21, 2103–2112. [Google Scholar] [CrossRef]
- Nurulita, Y.; Adetutu, E.M.; Gunawan, H.; Zul, D.; Ball, A.S. Restoration of tropical peat soils: The application of soil microbiology for monitoring the success of the restoration process. Agric. Ecosyst. Environ. 2016, 216, 293–303. [Google Scholar] [CrossRef]
- Safitri, R.; Varih, S.; Fathul, M.; Indira, N. Paludikultur Pengembangan Model Bisnis Sagu Terintegrasi Berbasis Masyarakat di Kilang Sagu Mini di Desa Bunsur. In Pembelajaran dari Aksi Restorasi gambut Berbasis Masyarakat di Indonesia dan Asia Tenggara; Purnomo, H., Puspitaloka, D., Junandi, B., Lila, J., Dharmawan, I.W.S., Eds.; CIFOR-ICRAF, 2023; pp. 143–145. Available online: https://www.researchgate.net/publication/379153392_Pembelajaran_dari_Aksi_Restorasi_Gambut_Berbasis_Masyarakat_di_Indonesia_dan_Asia_Tenggara (accessed on 30 May 2024).
- De Frenne, P.; Lenoir, J.; Luoto, M.; Scheffers, B.R.; Zellweger, F.; Aalto, J.; Ashcroft, M.B.; Christiansen, D.M.; Decocq, G.; De Pauw, K.; et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Chang. Biol. 2021, 27, 2279–2297. [Google Scholar] [CrossRef] [PubMed]
- Aussenac, G. Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann. For. Sci. 2000, 57, 287–301. [Google Scholar] [CrossRef]
- Tata, H.L.; Pradjadinata, S. Native species for degraded peat swamp forest rehabilitation. J. Trop. Silvic. 2016, 7, S80–S82. [Google Scholar] [CrossRef]
- Baker, T.P.; Jordan, G.J.; Steel, E.A.; Fountain-Jones, N.M.; Wardlaw, T.J.; Baker, S.C. Microclimate through space and time: Microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. For. Ecol. Manag. 2014, 334, 174–184. [Google Scholar] [CrossRef]
- Wijedasa, L.S.; Vernimmen, R.; Page, S.E.; Mulyadi, D.; Bahri, S.; Randi, A.; Evans, T.A.; Lasmito; Priatna, D.; Jensen, R.M.; et al. Distance to forest, mammal and bird dispersal drive natural regeneration on degraded tropical peatland. For. Ecol. Manag. 2020, 461, 117868. [Google Scholar] [CrossRef]
- Anamulai, S.; Sanusi, R.; Zubaid, A.; Lechner, A.M.; Ashton-Butt, A.; Azhar, B. Land use conversion from peat swamp forest to oil palm agriculture greatly modifies microclimate and soil conditions. PeerJ 2019, 7, e7656. [Google Scholar] [CrossRef]
- Aswandi, R.; Sadono, H.; Supriyo, H. Tropical Peat Swamp Management Options: A Case Study Using System Dynamic in Southern Aceh. J. Manaj. Hutan Trop. 2015, 21, 173–183. [Google Scholar] [CrossRef]
- Jaya, A.; Dohong, S.; Page, S.E.; Saptono, M.; Supriati, L.; Winerungan, S.; Sutriadi, M.T.; Widiastuti, L. Agroforestry as an approach to rehabilitating degraded tropical peatland in Indonesia. J. Degraded Min. Lands Manag. 2024, 11, 5453–5474. [Google Scholar] [CrossRef]
- Adriani, D.; Yazid, M.; Riswani; Damayanthy, D.; Choi, E.; Yang, H. Livelihood Alternatives in Restored Peatland Areas in South Sumatra Province, Indonesia. Land 2024, 13, 643. [Google Scholar] [CrossRef]
- Wim, G. Tropical Peatland Restoration in Indonesia by Replanting with Useful Indigenous Peat Swamp Species: Paludiculture. In Tropical Peatland Eco-Management; Osaki, M., Tsuji, N., Foead, N., Rieley, J., Eds.; Springer Nature: Singapore, 2021; pp. 411–441. [Google Scholar]
- Dharmawan, I.W.S.; Pratiwi; Siregar, C.A.; Narendra, B.H.; Undaharta, N.K.E.; Sitepu, B.S.; Sukmana, A.; Wiratmoko, M.D.E.; Abywijaya, I.K.; Sari, N. Implementation of Soil and Water Conservation in Indonesia and Its Impacts on Biodiversity, Hydrology, Soil Erosion and Microclimate. Appl. Sci. 2023, 13, 7648. [Google Scholar] [CrossRef]
- Rehfeldt, G.E.; Worrall, J.J.; Marchetti, S.B.; Crookston, N.L. Adapting forest management to climate change using bioclimate models with topographic drivers. For. Int. J. For. Res. 2015, 88, 528–539. [Google Scholar] [CrossRef]
- Słowińska, S.; Słowiński, M.; Marcisz, K.; Lamentowicz, M. Long-term microclimate study of a peatland in Central Europe to understand microrefugia. Int. J. Biometeorol. 2022, 66, 817–832. [Google Scholar] [CrossRef]
- Mughal, M.O.; Kubilay, A.; Fatichi, S.; Meili, N.; Carmeliet, J.; Edwards, P.; Burlando, P. Detailed investigation of vegetation effects on microclimate by means of computational fluid dynamics (CFD) in a tropical urban environment. Urban Clim. 2021, 39, 100939. [Google Scholar] [CrossRef]
- Van der Meer, P.J.; Tata, H.; Rachmanadi, D.; Arifin, Y.F.; Suwarno, A.; van Arensbergen, P. Developing sustainable and profitable solutions for peatland restoration. IOP Conf. Ser. Earth Environ. Sci. 2021, 914, 012032. [Google Scholar] [CrossRef]
- Sakuntaladewi, N.; Rachmanadi, D.; Mendham, D.; Yuwati, T.W.; Winarno, B.; Premono, B.T.; Lestari, S.; Ardhana, A.; Ramawati; Budiningsih, K.; et al. Can We Simultaneously Restore Peatlands and Improve Livelihoods? Exploring Community Home Yard Innovations in Utilizing Degraded Peatland. Land 2022, 11, 150. [Google Scholar] [CrossRef]
- Widiyanto, A.; Sanudin, S.; Hani, A. Agroforestry on peatland: Livelihood options for community resilience to climate change adaptation. Sustain. For. 2023, 6, 2714. [Google Scholar] [CrossRef]
- Gunawan, H.; Afriyanti, D. Potensi Perhutanan Sosial dalam Meningkatkan Partisipasi Masyarakat dalam Restorasi Gambut. J. Ilmu Kehutan. 2019, 13, 227–236. [Google Scholar] [CrossRef]
- Rozaki, Z.; Nopembereni, E.D.; Rahayu, L.; Rahmawati, N.; Murhidayah, M.L.; Rejeki, T.M.; Ariffin, A.S.; Azizah, S.N.; Tjale, M.M. Farmers’ lives and adaptation strategies toward the forest and peatland fires in Indonesia: Evidence from Central and South Kalimantan, Indonesia. Biodiversitas J. Biol. Divers. 2022, 23, 2379–2388. [Google Scholar] [CrossRef]
- Premono, B.T.; Wakhid, N.; Handayani, D.; Nurzakiah, S.; Tata, H.L. Home garden mixed cropping practice by communities living on peatland in household’s income resilience and climate adaptation. IOP Conf. Ser. Earth Environ. Sci. 2024, 1315, 012003. [Google Scholar] [CrossRef]
- Sakuntaladewi, N.; Mendham, D.S.; Subarudi; Rochmayanto, Y.; Jalilov, S.M.; Djaenudin, D.; Effendi, R.; Astana, S.; Wibowo, A. Vulnerability of Communities Living on Peatlands to Climate Change and Peatland Degradation: A Case Study in Tumbang Nusa Village, Central Kalimantan, Indonesia. Mires Peat 2024, 30, 1–18. [Google Scholar] [CrossRef]
- Royana, R.; Noviar; Indrarto, S.; Raharjo, J.T.; Yasin, A.; Priyono, C.N.S.; Yusuf, M.; Utam, S.; Luthfiana, N. Status Restorasi Gambut 2016–2023: Mengharmoniskan Manusia dan Gambut dalam Pembangunan; BRGM: Jakarta, Indonesia, 2023; ISBN 978-623-6112-19-9. [Google Scholar]
- Bhomia, R. Peatland Restoration in Indonesia: Why Do People Matter? CIFOR-ICRAF Forests News. Available online: https://forestsnews.cifor.org/70022/peatland-restoration-in-indonesia-why-do-people-matter?fnl=en (accessed on 10 December 2020).
- Irawanti, S.; Surati; Handoyo; Mulyadin; Ariawan, K.; Setiadi, A.; Charity, D. Analisis mata pencaharian masyarakat di lahan gambut. Laporan Hasil Penelitian 2017. Kerjasama Badan Restorasi Gambut dan Puslitbang Sosial Ekonomi Kebijakan dan Perubahan Iklim.
- Wulan, S. sago as an environmentally sustainable food resource in the climate change era. J. Environ. Sci. Sustain. Dev. 2018, 1, 53–73. [Google Scholar] [CrossRef]
- Junaidah; Ardhana, A.; Salminah, M.; Buwono, D.C. The Mapping of Rattan Weaving Craft Business Modeling Gohong Village, Pulang Pisau Regency, Central Kalimantan. J. Galam 2022, 2, 107–124. [Google Scholar] [CrossRef]
- Nugroho, R.A.; Aryani, R.; Anggraini, W.D.C.; Hardi, E.H.; Rudianto, R.; Kusumawati, E.; Sudrajat, S.; Nur, F.M.; Manurung, H. Dietary Terminalia catappa leaves reduced growth performance but increased hematological profiles and survival rate of Pangasianodon hypophthalmus. IOP Conf. Ser. Earth Environ. Sci. 2019, 348, 012033. [Google Scholar] [CrossRef]
- Brown, C.; Boyd, D.S.; Sjögersten, S.; Vane, C.H. Detecting tropical peatland degradation: Combining remote sensing and organic geochemistry. PLoS ONE 2023, 18, e0280187. [Google Scholar] [CrossRef]
No. | Restoration Models | Location and Characteristics of the Restoration Model | Brief Description of the Role of Peat Restoration on Peat Water-Table Level | Source |
---|---|---|---|---|
1. | Peatland restoration with Dyera lowii, Gonystylus bancanus, Shorea uliginosa, Mezettia parvifolia, Callopylum sumatranum, Cratoxylon arborescens, and Palaquium burckii. |
| After 3.5 years of restoration: | [98] |
|
| |||
2. | Peatland restoration using paludiculture with sago as the main crop combined with oil palm, rubber and pineapple. |
| After one year of restoration: | [99] |
- Average water level from 36.25 cm to 22.6 cm. | ||||
- Average subsidence from 5.5 cm/year to 1.4 cm/year. - Average carbon reduction of 37 tonnes CO2 eq/year/ha | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dharmawan, I.W.S.; Lisnawati, Y.; Siahaan, H.; Premono, B.T.; Iqbal, M.; Junaedi, A.; Sakuntaladewi, N.; Bastoni; Fauzi, R.; Ramawati; et al. Use of an Adaptive-Vegetation Model to Restore Degraded Tropical Peat Swamp Forest to Support Climate Resilience. Land 2024, 13, 1377. https://doi.org/10.3390/land13091377
Dharmawan IWS, Lisnawati Y, Siahaan H, Premono BT, Iqbal M, Junaedi A, Sakuntaladewi N, Bastoni, Fauzi R, Ramawati, et al. Use of an Adaptive-Vegetation Model to Restore Degraded Tropical Peat Swamp Forest to Support Climate Resilience. Land. 2024; 13(9):1377. https://doi.org/10.3390/land13091377
Chicago/Turabian StyleDharmawan, I. Wayan Susi, Yunita Lisnawati, Hengki Siahaan, Bambang Tejo Premono, Mohamad Iqbal, Ahmad Junaedi, Niken Sakuntaladewi, Bastoni, Ridwan Fauzi, Ramawati, and et al. 2024. "Use of an Adaptive-Vegetation Model to Restore Degraded Tropical Peat Swamp Forest to Support Climate Resilience" Land 13, no. 9: 1377. https://doi.org/10.3390/land13091377
APA StyleDharmawan, I. W. S., Lisnawati, Y., Siahaan, H., Premono, B. T., Iqbal, M., Junaedi, A., Sakuntaladewi, N., Bastoni, Fauzi, R., Ramawati, Nugroho, A. W., Undaharta, N. K. E., Achmadi, A. S., Setyawati, T., Siregar, C. A., Pratiwi, Suhartana, S., Soenarno, Dulsalam, & Sukmana, A. (2024). Use of an Adaptive-Vegetation Model to Restore Degraded Tropical Peat Swamp Forest to Support Climate Resilience. Land, 13(9), 1377. https://doi.org/10.3390/land13091377