An Ecoregional Conservation Assessment for the Southern Rocky Mountains Ecoregion and Santa Fe Subregion, Wyoming to New Mexico, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landowners and GAP Status
2.3. Existing Vegetation Types (2020 Update)
2.4. Mature and Old-Growth Forests (MOG)
2.5. Focal Species
2.5.1. Wolverine
2.5.2. Canada Lynx, Northern Goshawk, and Mexican Spotted Owl
2.6. Wildland–Urban Interface/Intermix (WUI), Wildfires, and Forest Thinning
2.7. Downscaled Climate Projections
3. Results
3.1. Landownerships and Gap Status
3.2. Existing Vegetation Type Representation Analysis
3.3. Mature and Old-Growth Forest Representation Analysis
3.4. Focal Species Distributions and GAP Status
3.4.1. Wolverine
3.4.2. Mexican Spotted Owl and Northern Goshawk Representation Analysis
3.4.3. Canada Lynx Representation Analysis
3.5. WUI, Wildfires, and Forest Thinning
3.6. Climate Change
3.6.1. Historical Trends
3.6.2. Future Projections under Two Emission Scenarios
4. Discussion
4.1. Representation and Importance of Protected Areas
4.2. Focal Species Conservation
4.3. Wildfires, Wilderness, and the Wildland–Urban Interface
4.4. Climate Change
5. Conclusions and Conservation Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hinneman, D.J.; Watson, J.; Martin, W.W. The State of the Southern Rockies Ecoregion: A Look at Special Imperilment, Ecosystem Protection, and a Conservation Opportunity. Endangered Species Update. Sch. Nat. Resour. Univ. Mich. January Febr. 2000, 17, 2–9. [Google Scholar]
- Drummond, B.M.; Wilson, T.S.; Acevedo, W. Status and Trends of Land Change in the Western United States-1973 to 2000. USGS Professional Paper 1794-A. 2012. Available online: http://pubs.usgs.gov/pp/1794/a/ (accessed on 3 June 2024).
- Neely, B.; Comer, P.; Moritz, M.; Lammerts, R.; Rondeau, C.; Prague, G.; Bell, H.; Copeland, J.; Humke, S.; Spakeman, T.; et al. Southern Rocky Mountains: An Ecoregional Assessment and Conservation Blueprint; The Nature Conservancy with Support from the U.S. Forest Service, Rocky Mountain Region, Colorado Division of Wildlife, and Bureau of Land Management: Boulder, CO, USA, 2001; Available online: https://www.researchgate.net/publication/260097702_Southern_Rocky_Mountains_an_ecoregional_assessment_and_conservation_blueprint (accessed on 21 June 2024).
- Ricketts, T.H.; Dinerstein, E.; Olson, D.M.; Loucks, C.J. Terrestrial Ecoregions of North America; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- NatureServe. NatureServe Network Biodiversity Location Data Accessed through NatureServe Explorer Web Application. 2024. Available online: https://explorer.natureserve.org/Taxon/ELEMENT_GLOBAL.2.838618/Pinus_ponderosa_-_Pseudotsuga_menziesii_-_Abies_concolor_Forest_Woodland_Macrogroup (accessed on 21 May 2024).
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Noss, R.F.; Dobson, A.P.; Baldwin, R.; Beier, P.; Davis, C.R.; Dellasala, D.A.; Francis, J.; Locke, H.; Nowak, K.; Lopez, R.; et al. Bolder Thinking for Conservation. Conserv. Biol. 2012, 26, 1–4. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The Exceptional Value of Intact Forest Ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Haight, J.; Hammill, E. Protected Areas as Potential Refugia for Biodiversity under Climatic Change. Biol. Conserv. 2019, 241, 108258. [Google Scholar] [CrossRef]
- Hoell, A.; Funk, C.; Barlow, M.; Shukla, S. Recent and Possible Future Variations in the North American Monsoon. In The Monsoons and Climate Change: Observations and Modeling; Carvalho, L., Jones, C., Eds.; Springer Climate; Springer: Cham, Switzerland, 2016; pp. 149–162. [Google Scholar] [CrossRef]
- Allen, C.D.; Savage, M.; Falk, D.A.; Suckling, K.F.; Swetnam, T.W.; Schulke, T.; Stacey, P.B.; Morgan, P.; Hoffman, M.; Klingel, J.T. Ecological Restoration of Southwestern Ponderosa Pine Ecosystems: A Broad Perspective. Ecol. Appl. 2002, 12, 1418–1433. [Google Scholar] [CrossRef]
- Margolis, E.Q.; Balmat, J. Fire History and Fire-Climate Relationships along a Fire Regime Gradient in the Santa Fe Municipal Watershed, NM, USA. For. Ecol. Manag. 2009, 258, 2416–2430. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Crouse, J.E.; Roccaforte, J.P.; Kalies, E.L. Do Thinning and/or Burning Treatments in Western USA Ponderosa or Jeffrey Pine-Dominated Forests Help Restore Natural Fire Behavior? For. Ecol. Manag. 2012, 269, 68–81. [Google Scholar] [CrossRef]
- Haffey, C.; Sisk, T.D.; Allen, C.D.; Thode, A.E.; Margolis, E.Q. Limits to Ponderosa Pine Regeneration Following Large High-Severity Forest Fires in the United States Southwest. Fire Ecol. 2018, 14, 143–163. [Google Scholar] [CrossRef]
- Baker, W.L.; Hanson, C.T.; DellaSala, D.A. Harnessing Natural Disturbances: A Nature-Based Solution for Restoring and Adapting Dry Forests in the Western USA to Climate Change. Fire 2023, 6, 428. [Google Scholar] [CrossRef]
- DellaSala, D.A.; Baker, B.; Hanson, C.T.; Ruediger, L.; Baker, W. Have Western USA Fire Suppression and Active Management Approaches Become a Contemporary Sisyphus? Biol. Conserv. 2022, 268, 109499. [Google Scholar] [CrossRef]
- Baker, W.L. Restoring and Managing Low-Severity Fire in Dry-Forest Landscapes of the Western USA. PLoS ONE 2017, 12, e0172288. [Google Scholar] [CrossRef]
- Calkin, D.E.; Barrett, K.; Cohen, J.D.; Finney, M.A.; Pyne, S.J.; Quarles, S.L. Wildland-Urban Fire Disasters Aren’t Actually a Wildfire Problem. Proc. Natl. Acad. Sci. USA 2023, 120, e2315797120. [Google Scholar] [CrossRef]
- Law, B.E.; Bloemers, R.; Colleton, N.; Allen, M. Redefining the Wildfire Problem and Scaling Solutions to Meet the Challenge. Bull. At. Sci. 2023, 79, 377–384. [Google Scholar] [CrossRef]
- Hyden, S. Forest Service Wildfire Management Policy Run Amok. Available online: https://www.counterpunch.org/2023/08/11/forest-service-wildfire-management-policy-run-amok/ (accessed on 2 June 2024).
- Vander Lee, B.; Smith, R.; Bate, J. Ecological and Biological Diversity of the Santa Fe National Forest in Ecological and Biodiversity of National Forests in Region 3. Chapter 13. Nat. Conserv. 2004. [Google Scholar]
- DellaSala, D.A.; Kuchy, A.L.; Koopman, M.; Menke, K.; Fleischner, T.L.; Floyd, M.L. An Ecoregional Conservation Assessment for Forests and Woodlands of the Mogollon Highlands Ecoregion, Northcentral Arizona and Southwestern New Mexico, USA. Land 2023, 12, 2112. [Google Scholar] [CrossRef]
- Jones, K.A.; Niknami, L.S.; Buto, S.G.; Decker, D. Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD). US Geol. Surv. Tech. Methods 2022, 11-A3, 54. [Google Scholar] [CrossRef]
- Benkman, C.W.; Balda, R.P.; Smith, C.C. Adaptations for Seed Dispersal and the Compromises Due to Seed Predation in Limber Pine. Ecology 1984, 65, 632–642. [Google Scholar] [CrossRef]
- DellaSala, D.A.; Mackey, B.; Norman, P.; Campbell, C.; Comer, P.J.; Kormos, C.F.; Keith, H.; Rogers, B. Mature and Old-Growth Forests Contribute to Large-Scale Conservation Targets in the Conterminous United States. Front. For. Glob. 2022, 5, 979528. [Google Scholar] [CrossRef]
- Carroll, K.A.; Hansen, A.J.; Inman, R.M.; Lawrence, R.L.; Hoegh, A.B. Testing Landscape Resistance Layers and Modeling Connectivity for Wolverines in the Western United States. Glob. Ecol. Conserv. 2020, 23, 01125. [Google Scholar] [CrossRef]
- Squires, J.R.; DeCesare, H.J.; Olson, L.E.; Kolbe, J.A.; Hebblewhite, M.; Parks, S. Combining Resource Selection and Movement Behavior to Predict Corridors for Canada Lynx at Their Southern Range Periphery. Biol. Conserv. 2013, 157, 187–195. [Google Scholar] [CrossRef]
- Greenwald, D.N.; Crocker-Bedford, D.C.; Broberg, L.; Suckling, K.F.; Tibbitts, T. A Review of Northern Goshawk Habitat Section in the Home Range and Implications for Forest Management in the Western United States. Wildl. Soc. Bull. 2005, 33, 120–129. [Google Scholar] [CrossRef]
- Miller, R.A.; Carlisle, J.D.; Bechard, M.J.; Santini, D. Predicting Nesting Habitat of Northern Goshawks in Mixed Aspen-Lodgepole Pine Forests in a High-Elevation Shrub-Stepped Dominated Landscape. Open J. Ecol. 2013, 3, 109–115. [Google Scholar] [CrossRef]
- Wan, H.Y.; Cushman, S.A.; Ganey, J.L. Habitat Fragmentation Reduces Genetic Diversity and Connectivity of the Mexican Spotted Owls: A Simulation Study Using Empirical Resistance Models. Genes 2018, 9, 403. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Helmers, D.P.; Mockrin, M.H.; Carlson, A.R.; Hawbaker, T.J.; Martinuzzi, S. The 1990–2020 Wildland-Urban Interface of the Conterminous United States—Geospatial Data, 4th ed.; Forest Service Research Data Archive: Fort Collins, CO, USA, 2023. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Brown, T.J. A Comparison of Statistical Downscaling Methods Suited for Wildfire Applications. Int. J. Clim. 2012, 32, 772–780. [Google Scholar] [CrossRef]
- Global Vegetation Dynamics: Concepts and Applications in the MC1 Model. In AGU Geophyiscal Monographs; Bachelet, D.; Turner, D. (Eds.) Wiley: Hoboken, NJ, USA, 2015; Volume 214, p. 210. [Google Scholar] [CrossRef]
- Sheehan, T.; Bachelet, D.; Ferschweiler, K. Projected Major Fire and Vegetation Changes in the Pacific Northwest of the Conterminous United States under Selected CMIP5 Climate Futures. Ecol. Model. 2015, 317, 16–29. [Google Scholar] [CrossRef]
- Lohmann, D.R.; Nolte-Holube, R.; Raschke, E. A Large-Scale Horizontal Routing Model to Be Coupled to Land Surface Parameterization Schemes. Tellus 1996, 48, 708–721. [Google Scholar] [CrossRef]
- Thornton, D.; Murray, D. Modeling Range Dynamics through Time to Inform Conservation Planning: Canada Lynx in the Contiguous United States. Biol. Conserv. 2024, 292, 110541. [Google Scholar] [CrossRef]
- US EPA. Climate Change Indicators: Snowpack. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-snowpack (accessed on 10 June 2024).
- Hegewisch, K.C.; Abatzoglou, J.T. Future Time Series Web Tool. Clim. Toolbox. Available online: https://climatetoolbox.org (accessed on 8 June 2024).
- Menon, M.; Landguth, E.; Leal-Saenz, A.; Bagley, J.C.; Schoettle, A.W.; Wehenkel, C.; Flores-Renteria, L.; Cushman, S.A.; Waring, K.M.; Eckert, A.J. Tracing the Footprints of a Moving Hybrid Zone under a Demographic History of Speciation with Gene Flow. Evol. Appl. 2020, 13, 195–209. [Google Scholar] [CrossRef]
- Menon, M.; Bagley, J.C.; Page, G.F.M.; Whipple, A.V.; Schoettle, A.W.; Still, C.J.; Wehenke, C.; Waring, K.M.; Flores-Renteria, L.; Cushma, S.A.; et al. Adaptive Evolution in a Conifer Hybrid Zone Is Driven by a Mosaic of Recently Introgressed and Background Genetic Variants. Commun. Biol. 2021, 4, 160. [Google Scholar] [CrossRef]
- Johnson, J.S.; Sniezko, R.A. Quantitative Disease Resistance to White Pine Blister Rust at Southwestern White Pine’s (Pinus Strobiformis) Northern Range. Front. For. Glob. Chang. 2021, 4, 765871. [Google Scholar] [CrossRef]
- Lee, D. Spotted Owls and Forest Fire: A Systematic Review and Meta-Analysis of the Evidence. Ecosphere 2018, 9, e02354. [Google Scholar] [CrossRef]
- Lee, D. Spotted Owls and Forest Fire: Reply. Ecosphere 2020, 11, e03310. [Google Scholar] [CrossRef]
- Heinemeyer, K.; Squires, J.; Hebblewhite, M.; O’Keefe, J.J.; Holbrook, J.D.; Copeland, J. Wolverines in Winter: Indirect Habitat Loss and Functional Responses to Backcountry Recreation. Ecosphere 2019, 10, e02611. [Google Scholar] [CrossRef]
- Sherriff, R.L.; Veblen, T.; Sibold, J. Fire History in High Elevation Subalpine Forests in the Colorado Front Range. Ecoscience 2007, 8, 369–380. [Google Scholar] [CrossRef]
- Addington, R.N.; Aplet, G.H.; Battaglia, M.A.; Briggs, J.S.; Brown, P.M.; Cheng, A.S.; Dickinson, Y.; Feinstein, J.A.; Pelz, K.A.; Regan, C.M.; et al. Principles and Practices for the Restoration of Ponderosa Pine and Dry Mixed-Conifer Forests of the Colorado Front Range; USDA General Technical Report RMRS-GTR-373; USDA: Fort Collins, CO, USA, 2018; pp. 1–121. Available online: https://www.fs.usda.gov/rm/pubs_series/rmrs/gtr/rmrs_gtr373.pdf (accessed on 10 May 2024).
- Hood, S.; Harvey, B.J.; Fornwalt, P.J.; Naficy, C.E.; Hansen, W.D.; Davis, K.T.; Battaglia, M.A.; Stevens-Rumann, C.S.; Saab, V.A. Fire Ecology of Rocky Mountain Forests. In Fire Ecology and Management: Past, Present, and Future of US Forested Ecosystems, Managing Forest Ecosystems 39; Greenberg, C.H., Collins, B., Eds.; Springer: Cham, Switzerland, 2021; Chapter 8. [Google Scholar] [CrossRef]
- McKinney, S.T. Fire Regimes of Ponderosa Pine Ecosystems in Two Ecoregions of New Mexico. In Fire Effect Information System; USDA Forest Service Rocky Mountain Research Station, Missoula Fire Sciences Laboratory: Missoula, MT, USA, 2021. Available online: https://www.fs.usda.gov/database/feis/fire_regimes/NM_ponderosa_pine/all.html (accessed on 15 June 2024).
- Bradley, C.M.; Hanson, C.T.; DellaSala, D.A. Does increased forest protection correspond to higher fire severity in frequent-fire forests of the western United States? Ecosphere 2016, 7, e01492. [Google Scholar] [CrossRef]
- Flower, A.; Gavin, D.G.; Heyerdahl, E.K.; Parsons, R.A.; Cohn, G.M. Western Spruce Budworm Outbreaks Did Not Increase Fire Risk over the Last Three Centuries: A Dendrochronological Analysis of Inter-Disturbance Synergism. PLoS ONE 2014, 9, e114282. [Google Scholar] [CrossRef]
- Bentz, B.J.; Regniere, J.; Fettig, C.J.; Hansen, M.; Hayes, J.L.; Hicke, J.A.; Kelsey, R.G.; Negron, J.F.; Seybold, S.J. Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects. BioScience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Kulakowski, D.; Jarvis, D. The Influence of Mountain Pine Beetle Outbreaks and Drought on Severe Wildfires in Northwestern Colorado and Southern Wyoming: A Look at the Past Century. Ecol. Manag. 2011, 262, 1686–1696. [Google Scholar] [CrossRef]
- Six, D.L.; Biber, E.; Long, E. Management of Pine Beetle Outbreak Suppression: Does Relevant Science Support Current Policy? Forests 2014, 5, 103–133. [Google Scholar] [CrossRef]
- Hart, S.J.; Schoennagel, T.; Veblen, T.T.; Chapman, T.B. Area Burned in the Western United States Unaffected by Recent Mountain Pine Beetle Outbreaks. Proc. Natl. Acad. Sci. USA 2015, 112, 4375–4380. [Google Scholar] [CrossRef] [PubMed]
- Meigs, G.W.; Zald, H.S.J.; Keeton, W.S. Do Insect Outbreaks Reduce the Severity of Subsequent Forest Fires? Environ. Res. Lett. 2016, 11, 045008. [Google Scholar] [CrossRef]
- Black, S.H.; Kulakowski, D.; Noon, B.R.; DellaSala, D.A. Do bark beetle outbreaks increase wildfire risks in the Central U.S. Rocky Mountains: Implications from Recent Research. Nat. Areas J. 2013, 33, 59–65. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). 6th Assessment Report. 2024. Available online: https://www.ipcc.ch/assessment-report/ar6/ (accessed on 10 June 2024).
- Swanson, M.E.; Franklin, J.F.; Beschta, R.L.; Crisafulli, C.M.; DellaSala, D.A.; Hutto, R.L.; Lindenmayer, D.B.; Swanson, F.J. The Forgotten Stage of Forest Succession: Early-Successional Ecosystems on Forest Sites. Front. Ecol. Environ. 2011, 9, 117–125. [Google Scholar] [CrossRef]
- Executive Order 14008. FACT SHEET: Biden-Harris Administration Takes New Action to Conserve and Restore America’s Lands and Waters. 2023. Available online: https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/21/fact-sheet-biden-harris-administration-takes-new-action-to-conserve-and-restore-americas-lands-and-waters/ (accessed on 12 July 2024).
- Executive Order 14072. Strengthening The Nation’s Forest, Communities, and Local Economies. 2022. Available online: https://www.federalregister.gov/documents/2022/04/27/2022-09138/strengthening-the-nations-forests-communities-and-local-economies (accessed on 12 July 2024).
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to More Wildfire in Western North American Forests as Climate Changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef]
- Ripple, W.J.; Olwf, C.; Phillips, M.K.; Beschta, R.L.; A Vucetich, J.; Kauffman, J.B.; E Law, B.; Wirsing, A.J.; E Lambert, J.; Leslie, E.; et al. Rewilding the American West. BioScience 2022, 72, 931–935. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-Started Wildfires Expand the Fire Niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef]
Southern Rocky Mountains Ecoregion | ||||||
---|---|---|---|---|---|---|
Owner Category | GAP ha | Total Owner Category ha | ||||
(%) | ||||||
1 | 2 | 2.5 | 3 | 4 | (%) | |
National Park Service | 139,643 | 40,539 | 1 | 8684 | 4302 | 193,170 |
(72.3) | (21.0) | (0.0) | (4.5) | (2.2) | (1.3) | |
U.S. Bureau of Land Management | 20,911 | 104,967 | 143 | 1,059,753 | 7847 | 1,193,622 |
(1.8) | (8.8) | (0.0) | (88.8) | (0.7) | (8.2) | |
USDA Forest Service | 1,486,778 | 510,940 | 1,396,938 | 3,614,900 | 9478 | 7,019,033 |
(21.2) | (7.3) | (19.9) | (51.5) | (0.1) | (48.5) | |
Other Federal 1 | 20 | 10,866 | 0 | 497 | 39,025 | 50,408 |
(0.0) | (21.6) | (0.0) | (1.0) | (77.4) | (0.3) | |
State | 79 | 52,332 | 353 | 303,385 | 202,997 | 559,145 |
(0.0) | (9.4) | (0.1) | (54.3) | (36.3) | (3.9) | |
Local Government | 1284 | 24,838 | 43 | 8924 | 52,801 | 87,889 |
(1.5) | (28.3) | (0.0) | (10.2) | (60.1) | (0.6) | |
Tribal | 1 | 274 | 64 | 174 | 413,551 | 414,064 |
(0.0) | (0.1) | (0.0) | (0.0) | (99.9) | (2.9) | |
Non-Governmental Organization | 128 | 22,579 | 10 | 2263 | 7185 | 32,165 |
(0.4) | (70.2) | (0.0) | (7.0) | (22.3) | (0.2) | |
Private | 2326 | 209,099 | 2174 | 108,796 | 4,603,628 | 4,926,023 |
(0.0) | (4.2) | (0.0) | (2.2) | (93.5) | (34.0) | |
Total GAP ha | 1,651,170 | 976,433 | 1,399,726 | 5,107,376 | 5,340,813 | 14,475,519 |
(%) | (11.4) | (6.7) | (9.7) | (35.3) | (36.9) |
Southern Rocky Mountains Ecoregion | ||||||
---|---|---|---|---|---|---|
Owner Category | GAP ha | Total Owner Category ha | ||||
(%) | ||||||
1 | 2 | 2.5 | 3 | 4 | (%) | |
National Park Service | 12,605 | 38,609 | 0 | 0 | 0 | 51,214 |
(24.6) | (75.4) | (0.0) | (0.0) | (0.0) | (2.3) | |
U.S. Bureau of Land Management | 0 | 0 | 0 | 0 | 0 | 0 |
(0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | |
USDA Forest Service | 162,852 | 10,581 | 99,897 | 740,343 | 36 | 1,013,710 |
(16.1) | (1.0) | (9.9) | (73.0) | (0.0) | (46.3) | |
Other Federal 1 | 1 | 8003 | 2 | 41,924 | 10,287 | 60,217 |
(0.0) | (13.3) | (0.0) | (69.6) | (17.1) | (2.8) | |
State | 0 | 31,818 | 1 | 8781 | 30,634 | 71,234 |
(0.0) | (44.7) | (0.0) | (12.3) | (43.0) | (3.3) | |
Local Government | 0 | 2 | 1 | 0 | 893 | 897 |
(0.0) | (0.3) | (0.1) | (0.0) | (99.6) | (0.0) | |
Tribal | 1 | 274 | 64 | 45 | 264,245 | 264,630 |
(0.0) | (0.1) | (0.0) | (0.0) | (99.9) | (12.1) | |
Non-Governmental Organization | 0 | 215 | 0 | 0 | 0 | 215 |
(0.0) | (100.0) | (0.0) | (0.0) | (0.0) | (0.0) | |
Private | 86 | 1272 | 380 | 7311 | 716,884 | 725,933 |
(0.0) | (0.2) | (0.1) | (1.0) | (98.8) | (33.2) | |
Total GAP ha | 175,546 | 90,775 | 100,345 | 798,404 | 1,022,980 | 2,188,050 |
(%) | (8.0) | (4.1) | (4.6) | (36.5) | (46.8) |
Southern Rocky Mountains Ecoregion | ||||||
---|---|---|---|---|---|---|
Existing Vegetation Type (EVT) Category | GAP ha | Total EVT Category ha | ||||
(%) | ||||||
1 | 2 | 2.5 | 3 | 4 | (%) | |
Agricultural | 269 | 11,263 | 1008 | 22,927 | 221,516 | 256,983 |
(0.1) | (4.4) | (0.4) | (8.9) | (86.2) | (1.8) | |
Alpine | 90,446 | 29,059 | 22,827 | 29,109 | 9781 | 181,223 |
(49.9) | (16.0) | (12.6) | (16.1) | (5.4) | (1.3) | |
Aspen and Mixed-Conifer Forest | 5177 | 2484 | 17,949 | 33,109 | 9966 | 68,684 |
(7.5) | (3.6) | (26.1) | (48.2) | (14.5) | (0.5) | |
Aspen Forest and Woodland | 107,598 | 92,004 | 236,841 | 500,609 | 343,511 | 1,280,563 |
(8.4) | (7.2) | (18.5) | (39.1) | (26.8) | (8.8) | |
Barren | 52,872 | 13,289 | 18,192 | 26,440 | 22,601 | 133,395 |
(39.6) | (10.0) | (13.6) | (19.8) | (16.9) | (0.9) | |
Developed | 1443 | 4819 | 541 | 42,593 | 167,541 | 216,938 |
(0.7) | (2.2) | (0.2) | (19.6) | (77.2) | (1.5) | |
Grassland | 80,727 | 95,578 | 71,477 | 386,897 | 807,428 | 1,442,106 |
(5.6) | (6.6) | (5.0) | (26.8) | (56.0) | (10.0) | |
Limber Pine Woodland | 4 | 237 | 26 | 2165 | 1489 | 3921 |
(0.1) | (6.1) | (0.7) | (55.2) | (38.0) | (0.0) | |
Lodgepole Pine Forest | 114,905 | 64,508 | 137,148 | 408,600 | 106,138 | 831,299 |
(13.8) | (7.8) | (16.5) | (49.2) | (12.8) | (5.7) | |
Mixed-Conifer Forest | 91,210 | 87,846 | 154,977 | 506,968 | 362,187 | 1,203,189 |
(7.6) | (7.3) | (12.9) | (42.1) | (30.1) | (8.3) | |
Pinyon–Juniper | 18,355 | 50,682 | 36,605 | 386,388 | 463,682 | 955,712 |
(1.9) | (5.3) | (3.8) | (40.4) | (48.5) | (6.6) | |
Ponderosa Pine | 35,994 | 83,489 | 112,688 | 842,012 | 1,130,986 | 2,205,170 |
(1.6) | (3.8) | (5.1) | (38.2) | (51.3) | (15.2) | |
Riparian | 21,052 | 13,503 | 17,583 | 80,563 | 113,188 | 245,889 |
(8.6) | (5.5) | (7.2) | (32.8) | (46.0) | (1.7) | |
Shrubland | 67,705 | 127,211 | 118,569 | 904,887 | 1,250,583 | 2,468,954 |
(2.7) | (5.2) | (4.8) | (36.7) | (50.7) | (17.1) | |
Snow–Ice | 41,221 | 8151 | 2358 | 7225 | 2348 | 61,304 |
(67.2) | (13.3) | (3.8) | (11.8) | (3.8) | (0.4) | |
Sparse | 162,830 | 35,553 | 39,627 | 43,009 | 16,005 | 297,024 |
(54.8) | (12.0) | (13.3) | (14.5) | (5.4) | (2.1) | |
Subalpine Forest | 747,527 | 240,071 | 405,574 | 836,305 | 211,538 | 2,441,016 |
(30.6) | (9.8) | (16.6) | (34.3) | (8.7) | (16.9) | |
Water | 3725 | 5335 | 1698 | 21,600 | 30,441 | 62,799 |
(5.9) | (8.5) | (2.7) | (34.4) | (48.5) | (0.4) | |
Wetland | 8111 | 11,349 | 4037 | 25,971 | 69,883 | 119,351 |
(6.8) | (9.5) | (3.4) | (21.8) | (58.6) | (0.8) | |
Total GAP ha | 1,651,170 | 976,433 | 1,399,726 | 5,107,376 | 5,340,813 | 14,475,519 (100%) |
(%) | (11.4) | (6.7) | (9.7) | (35.3) | (36.9) |
Santa Fe Subregion | ||||||
---|---|---|---|---|---|---|
Existing Vegetation Type (EVT) Category | GAP ha | Total EVT Category ha | ||||
(%) | ||||||
1 | 2 | 2.5 | 3 | 4 | (%) | |
Agricultural | 40 | 455 | 101 | 1833 | 27,075 | 29,505 |
(0.1) | (1.5) | (0.3) | (6.2) | (91.8) | (1.3) | |
Alpine | 453 | 141 | 25 | 182 | 1208 | 2009 |
(22.6) | (7.0) | (1.2) | (9.1) | (60.1) | (0.1) | |
Aspen and Mixed-Conifer Forest | 306 | 371 | 172 | 890 | 2136 | 3875 |
(7.9) | (9.6) | (4.4) | (23.0) | (55.1) | (0.2) | |
Aspen Forest and Woodland | 9814 | 4648 | 3495 | 30,877 | 28,563 | 77,397 |
(12.7) | (6.0) | (4.5) | (39.9) | (36.9) | (3.5) | |
Barren | 4045 | 438 | 290 | 799 | 3185 | 8757 |
(46.2) | (5.0) | (3.3) | (9.1) | (36.4) | (0.4) | |
Developed | 223 | 668 | 97 | 4544 | 21,545 | 27,077 |
(0.8) | (2.5) | (0.4) | (16.8) | (79.6) | (1.2) | |
Grassland | 6756 | 11,666 | 4544 | 30,197 | 67,543 | 120,706 |
(5.6) | (9.7) | (3.8) | (25.0) | (56.0) | (5.5) | |
Limber Pine Woodland | 0 | 0 | 0 | 0 | 0 | 0 |
(0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | |
Lodgepole Pine Forest | 0.1 | 1 | 1 | 0.1 | 0 | 2 |
(4.3) | (39.1) | (52.2) | (4.3) | (0.0) | (0.0) | |
Mixed-Conifer Forest | 40,613 | 20,745 | 26,675 | 159,960 | 113,726 | 361,719 |
(11.2) | (5.7) | (7.4) | (44.2) | (31.4) | (16.5) | |
Pinyon–Juniper | 13,342 | 8390 | 20,138 | 145,166 | 196,042 | 383,078 |
(3.5) | (2.2) | (5.3) | (37.9) | (51.2) | (17.5) | |
Ponderosa Pine | 16,241 | 17,185 | 21,711 | 298,328 | 308,192 | 661,657 |
(2.5) | (2.6) | (3.3) | (45.1) | (46.6) | (30.2) | |
Riparian | 948 | 1146 | 495 | 4920 | 12,284 | 19,793 |
(4.8) | (5.8) | (2.5) | (24.9) | (62.1) | (0.9) | |
Shrubland | 15,066 | 13,315 | 10,137 | 64,256 | 155,022 | 257,795 |
(5.8) | (5.2) | (3.9) | (24.9) | (60.1) | (11.8) | |
Snow–Ice | 9 | 0 | 0 | 0 | 12 | 21 |
(43.9) | (0.0) | (0.0) | (0.0) | (56.1) | (0.0) | |
Sparse | 1206 | 146 | 271 | 650 | 1122 | 3395 |
(35.5) | (4.3) | (8.0) | (19.1) | (33.1) | (0.2) | |
Subalpine Forest | 66,104 | 8037 | 12,129 | 53,830 | 72,629 | 212,730 |
(31.1) | (3.8) | (5.7) | (25.3) | (34.1) | (9.7) | |
Water | 91 | 351 | 3 | 118 | 4298 | 4860 |
(1.9) | (7.2) | (0.1) | (2.4) | (88.4) | (0.2) | |
Wetland | 289 | 3072 | 60 | 1855 | 8397 | 13,673 |
(2.1) | (22.5) | (0.4) | (13.6) | (61.4) | (0.6) | |
Total GAP ha | 175,546 | 90,775 | 100,345 | 798,404 | 1,022,980 | 2,188,050 (100.0) |
(%) | (8.0) | (4.1) | (4.6) | (36.5) | (46.8) |
Southern Rocky Mountains Ecoregion | ||||||
---|---|---|---|---|---|---|
Forest Structure Class | GAP ha | Total Forest Structure Class ha | ||||
(%) | ||||||
1 | 2 | 2.5 | 3 | 4 | (%) | |
Young | 214,080 | 110,619 | 189,426 | 618,906 | 381,940 | 1,514,970 |
(14.1) | (7.3) | (12.5) | (40.9) | (25.2) | (22.9) | |
Intermediate | 274,961 | 160,632 | 302,829 | 967,726 | 625,263 | 2,331,411 |
(11.8) | (6.9) | (13.0) | (41.5) | (26.8) | (35.3) | |
Mature | 387,317 | 206,024 | 438,769 | 1,078,196 | 650,641 | 2,760,947 |
(14.0) | (7.5) | (15.9) | (39.1) | (23.6) | (41.8) | |
Total GAP ha | 876,358 | 477,275 | 931,024 | 2,664,829 | 1,657,843 | 6,607,329 (100.0) |
(13.3) | (7.2) | (14.1) | (40.3) | (25.1) | ||
Santa Fe Subregion | ||||||
Forest Structure Class | GAP ha | Total Forest Structure Class ha | ||||
(%) | ||||||
1 | 2 | 2.5 | 3 | 4 | (%) | |
Young | 16,957 | 10,126 | 9021 | 78,272 | 78,996 | 193,372 |
(8.8) | (5.2) | (4.7) | (40.5) | (40.9) | (15.9) | |
Intermediate | 33,504 | 18,373 | 19,557 | 182,556 | 167,959 | 421,949 |
(7.9) | (4.4) | (4.6) | (43.3) | (39.8) | (34.7) | |
Mature | 74,385 | 22,007 | 41,420 | 275,932 | 187,588 | 601,332 |
(12.4) | (3.7) | (6.9) | (45.9) | (31.2) | (49.4) | |
Total GAP ha | 124,846 | 50,505 | 69,999 | 536,760 | 434,542 | 1,216,653 (100.0) |
(10.3) | (4.2) | (5.8) | (44.1) | (35.7) |
Southern Rocky Mountains Ecoregion | ||||||
---|---|---|---|---|---|---|
Wolverine Habitat Connectivity Tier | GAP ha | Wolverine Habitat Connectivity Tier ha | ||||
(%) | ||||||
1 | 2 | 2.5 | 3 | 4 | (%) | |
90th Percentile | 370,568 | 142,632 | 259,856 | 565,749 | 255,199 | 1,594,004 |
(23.2) | (8.9) | (16.3) | (35.5) | (16.0) | (66.7) | |
95th Percentile | 186,999 | 59,476 | 145,152 | 299,470 | 104,002 | 795,099 |
(23.5) | (7.5) | (18.3) | (37.7) | (13.1) | (33.3) | |
Total GAP ha | 557,567 | 202,108 | 405,008 | 865,219 | 359,201 | 2,389,103 |
(23.3) | (8.5) | (17.0) | (36.2) | (15.0) | ||
Santa Fe Subregion | ||||||
Wolverine Habitat Connectivity Tier | GAP ha | Wolverine Habitat Connectivity Tier ha | ||||
(%) | ||||||
1 | 2 | 2.5 | 3 | 4 | (%) | |
90th Percentile | 16,567 | 4 | 2224 | 45,033 | 49,005 | 112,833 |
(14.7) | (0.0) | (2.0) | (39.9) | (43.4) | (73.9) | |
95th Percentile | 10,559 | 2 | 809 | 13,624 | 14,807 | 39,801 |
(26.5) | (0.0) | (2.0) | (34.2) | (37.2) | (26.1) | |
Total GAP ha | 27,126 | 6 | 3033 | 58,657 | 63,812 | 152,634 |
(17.8) | (0.0) | (2.0) | (38.4) | (41.8) |
Southern Rocky Mountains Ecoregion | ||||||
---|---|---|---|---|---|---|
Focal Species | GAP ha | Total Focal Species Suitable Habitat ha | ||||
(%) | ||||||
1 | 2 | 2.5 | 3 | 4 | (%) | |
Mexican Spotted Owl | 7912 | 17,767 | 32,989 | 181,424 | 104,697 | 344,789 |
(2.3) | (5.2) | (9.6) | (52.6) | (30.4) | (2.7) | |
Northern Goshawk | 995,417 | 637,456 | 1,041,847 | 3,732,433 | 3,299,723 | 9,706,876 |
(10.3) | (6.6) | (10.7) | (38.5) | (34.0) | (75.2) | |
Canada Lynx | 558,604 | 258,103 | 520,036 | 1,163,796 | 356,529 | 2,857,068 |
(19.6) | (9.0) | (18.2) | (40.7) | (12.5) | (22.1) | |
Total GAP ha | 1,561,934 | 913,326 | 1,594,872 | 5,077,653 | 3,760,949 | 12,908,733 |
(12.1) | (7.1) | (12.4) | (39.3) | (29.1) | ||
Santa Fe Subregion | ||||||
Focal Species | GAP ha | Total Focal Species Suitable Habitat ha | ||||
(%) | ||||||
1 | 2 | 2.5 | 3 | 4 | (%) | |
Mexican Spotted Owl | 7218 | 4054 | 11,312 | 112,238 | 58,596 | 193,419 |
(3.7) | (2.1) | (5.8) | (58.0) | (30.3) | (9.9) | |
Northern Goshawk | 130,313 | 65,243 | 83,743 | 684,744 | 800,875 | 1,764,918 |
(7.4) | (3.7) | (4.7) | (38.8) | (45.4) | (90.1) | |
Canada Lynx | 0 | 0 | 0 | 0 | 0 | 0 |
(0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | |
Total GAP ha | 137,531 | 69,297 | 95,056 | 796,982 | 859,471 | 1,958,337 |
(7.0) | (3.5) | (4.9) | (40.7) | (43.9) |
Wildland–Urban Interface/Intermix (2020) Class | Southern Rocky Mountains Ecoregion | Santa Fe Subregion | ||
---|---|---|---|---|
All ha | Burned ha | All ha | Burned ha | |
(%) | (%) | (%) | (%) | |
Low-Density Intermix | 410,361 | 25,685 | 51,441 | 4909 |
(75.6) | (88.5) | (77.0) | (90.9) | |
Medium-Density Intermix | 69,114 | 1442 | 7392 | 166 |
(12.7) | (5.0) | (11.1) | (3.1) | |
High-Density Intermix | 237 | 2 | 26 | 1 |
(0.0) | (0.0) | (0.0) | (0.0) | |
Low-Density Interface | 25,640 | 1536 | 5086 | 165 |
(4.7) | (5.3) | (7.6) | (3.1) | |
Medium-Density Interface | 31,149 | 295 | 2495 | 113 |
(5.7) | (1.0) | (3.7) | (2.1) | |
High-Density Interface | 6097 | 78 | 357 | 48 |
(1.1) | (0.3) | (0.5) | (0.9) | |
Total ha | 542,599 | 29,037 | 66,797 | 5402 |
(%) 1 | (3.8) | (2.3) | (3.1) | (1.5) |
Average Annual Temperature | +1.2 °C |
Maximum Temperature | +0.8 °C |
Minimum Temperature | +1.5 °C |
Frost-Free Season | +29 days longer frost-free season |
Annual Precipitation | −15% |
Drought 2 | Increasing frequency |
Snowpack 3 | <20% at most sites |
Years | RCP8.5 | RCP4.5 | ||||
---|---|---|---|---|---|---|
>32 °C | >38 °C | >41 °C | >32 °C | >38 °C | >41 °C | |
2040–2069 | +19.6 | +1.3 | +0.1 | +12.3 | +0.4 | +0.0 |
2070–2099 | +39.3 | +6.4 | +1.1 | +15.2 | +0.7 | +0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DellaSala, D.A.; Africanis, K.; Baker, B.C.; Koopman, M. An Ecoregional Conservation Assessment for the Southern Rocky Mountains Ecoregion and Santa Fe Subregion, Wyoming to New Mexico, USA. Land 2024, 13, 1432. https://doi.org/10.3390/land13091432
DellaSala DA, Africanis K, Baker BC, Koopman M. An Ecoregional Conservation Assessment for the Southern Rocky Mountains Ecoregion and Santa Fe Subregion, Wyoming to New Mexico, USA. Land. 2024; 13(9):1432. https://doi.org/10.3390/land13091432
Chicago/Turabian StyleDellaSala, Dominick A., Kaia Africanis, Bryant C. Baker, and Marni Koopman. 2024. "An Ecoregional Conservation Assessment for the Southern Rocky Mountains Ecoregion and Santa Fe Subregion, Wyoming to New Mexico, USA" Land 13, no. 9: 1432. https://doi.org/10.3390/land13091432
APA StyleDellaSala, D. A., Africanis, K., Baker, B. C., & Koopman, M. (2024). An Ecoregional Conservation Assessment for the Southern Rocky Mountains Ecoregion and Santa Fe Subregion, Wyoming to New Mexico, USA. Land, 13(9), 1432. https://doi.org/10.3390/land13091432