Emotional Perceptions of Thermal Comfort for People Exposed to Green Spaces Characterized Using Streetscapes in Urban Parks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Plots
2.2. Study Design and Layout
2.3. Meteorological Factor Monitoring
2.4. Photographing at Stops in Parks
- (i)
- Fully crowded by visitors in all four orientations;
- (ii)
- The stop’s location suffers unwalkability for reasons such as lane maintenance;
- (iii)
- Excessively close to an adjacent building at a distance < 1 m;
- (iv)
- Accessibility was impeded by the occupation of pets, which were mostly puppies.
2.5. Facial Expression Recognization and Rating
2.6. Thermal Comfort Evaluation
2.7. Data Extracted from Streetscapes
2.8. Data Processing and Statistics
3. Results
3.1. Data Characteristics
3.2. Correlation Using Data from All Stops
3.3. Correlation Using Data from Selected Stops
3.4. Driving Force Analysis Using Multivariate Linear Regression
4. Discussion
4.1. The Estimate of Thermal Comfort Using Facial Emotion Scores
4.2. Difference in Thermal Comfort Evaluations between Two Methodologies
4.3. Vegetative Effects on Thermal Comfort for People Exposed to Green Space
4.4. Micro-Climate and Thermal Comfort
4.5. Limits of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.T.; You, Q.L.; Ren, G.Y.; Ullah, S.; Normatov, I.; Chen, D.L. Inequality of Global Thermal Comfort Conditions Changes in a Warmer World. Earths Future 2023, 11, e2022EF003109. [Google Scholar] [CrossRef]
- RELX. SDG Resource Centre. Available online: https://sdgresources.relx.com/thermal-comfort (accessed on 19 June 2024).
- Chandel, R.; Chandel, S.S.; Prasad, D.; Dwivedi, R.P. Experimental analysis and modelling of a photovoltaic powered thermoelectric solid-state cooling system for transition towards net zero energy buildings under different solar loading conditions. J. Clean. Prod. 2024, 442, 141099. [Google Scholar] [CrossRef]
- Purio, M.A.; Yoshitake, T.; Cho, M.G. Assessment of Intra-Urban Heat Island in a Densely Populated City Using Remote Sensing: A Case Study for Manila City. Remote Sens. 2022, 14, 5573. [Google Scholar] [CrossRef]
- Patel, S.; Indraganti, M.; Jawarneh, R.N. A comprehensive systematic review: Impact of Land Use/ Land Cover (LULC) on Land Surface Temperatures (LST) and outdoor thermal comfort. Build. Environ. 2024, 249, 111130. [Google Scholar] [CrossRef]
- Zhang, D.H.; Xie, X.; Zhou, C.S. Spatial influence of exposure to green spaces on the climate comfort of urban habitats in China. Urban Clim. 2023, 51, 101657. [Google Scholar] [CrossRef]
- Karimi, A.; Sanaieian, H.; Farhadi, H.; Norouzian-Maleki, S. Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Rep. 2020, 6, 1670–1684. [Google Scholar] [CrossRef]
- Meili, N.; Acero, J.A.; Peleg, N.; Manoli, G.; Burlando, P.; Fatichi, S. Vegetation cover and plant-trait effects on outdoor thermal comfort in a tropical city. Build. Environ. 2021, 195, 107733. [Google Scholar] [CrossRef]
- Mballo, S.; Herpin, S.; Manteau, M.; Demotes-Mainard, S.; Bournet, P.E. Impact of well-watered trees on the microclimate inside a canyon street scale model in outdoor environment. Urban Clim. 2021, 37, 100844. [Google Scholar] [CrossRef]
- Himeno, S.; Azuma, W.; Gyokusen, K.; Ishii, H.R. Leaf water maintains daytime transpiration in young Cryptomeria japonica trees. Tree Physiol. 2017, 37, 1394–1403. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, Y.; Wang, R.; Qian, Z.; Knibbs, L.D.; Jalaludin, B.; Schootman, M.; McMillin, S.E.; Howard, S.W.; Lin, L.Z.; et al. Associations between trees and grass presence with childhood asthma prevalence using deep learning image segmentation and a novel green view index. Environ. Pollut. 2021, 286, 117582. [Google Scholar] [CrossRef]
- Ma, Y.H.; Guo, S.R. 24-epibrassinolide improves cucumber photosynthesis under hypoxia by increasing CO2 assimilation and photosystem II efficiency. Photosynthetica 2014, 52, 96–104. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, M.; Zhou, Y.; Zhu, L.; Tian, H. The seasonal and annual impacts of landscape patterns on the urban thermal comfort using Landsat. Ecol. Indic. 2020, 110, 105798. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Z. Effective Moisture Temperature: Ventilation performance index accounting for effects of air temperature and relative humidity on thermal comfort. Build. Environ. 2023, 243, 110625. [Google Scholar] [CrossRef]
- Moustris, K.; Kavadias, K.A.; Zafirakis, D.; Kaldellis, J.K. Medium, short and very short-term prognosis of load demand for the Greek Island of Tilos using artificial neural networks and human thermal comfort-discomfort biometeorological data. Renew. Energy 2020, 147, 100–109. [Google Scholar] [CrossRef]
- Liu, J.; Niu, J.; Xia, Q. Combining measured thermal parameters and simulated wind velocity to predict outdoor thermal comfort. Build. Environ. 2016, 105, 185–197. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, J.; Xu, Z.; Hui, T.; Guo, P.; Sun, Y. The association between plant diversity and perceived emotions for visitors in urban forests: A pilot study across 49 parks in China. Urban For. Urban Green. 2022, 73, 127613. [Google Scholar] [CrossRef]
- Nghiem, T.P.L.; Wong, K.L.; Jeevanandam, L.; Chang, C.c.; Tan, L.Y.C.; Goh, Y.; Carrasco, L.R. Biodiverse urban forests, happy people: Experimental evidence linking perceived biodiversity, restoration, and emotional wellbeing. Urban For. Urban Green. 2021, 59, 127030. [Google Scholar] [CrossRef]
- Wei, H.; Ma, B.; Hauer, R.J.; Liu, C.; Chen, X.; He, X. Relationship between environmental factors and facial expressions of visitors during the urban forest experience. Urban For. Urban Green. 2020, 53, 126699. [Google Scholar] [CrossRef]
- An, B.Y.; Wang, D.; Liu, X.J.; Guan, H.M.; Wei, H.X.; Ren, Z.B. The effect of environmental factors in urban forests on blood pressure and heart rate in university students. J. For. Res. 2019, 24, 27–34. [Google Scholar] [CrossRef]
- Jiang, S.; Zhan, W.; Li, L.; Wang, C.; Dong, P.; Wang, S.; Ji, Y.; Huang, F.; Liu, Z.; Gao, Y. Contrasting moist heat across local climate zones in heat and non-heat waves: Insights from 29 Chinese metropolises. Build. Environ. 2024, 253, 111328. [Google Scholar] [CrossRef]
- Wang, X.J.; Dallimer, M.; Scott, C.E.; Shi, W.T.; Gao, J.X. Tree species richness and diversity predicts the magnitude of urban heat island mitigation effects of greenspaces. Sci. Total Environ. 2021, 770, 145211. [Google Scholar] [CrossRef] [PubMed]
- Chinchilla, J.; Carbonnel, A.; Galleguillos, M. Effect of urban tree diversity and condition on surface temperature at the city block scale. Urban For. Urban Green. 2021, 60, 127069. [Google Scholar] [CrossRef]
- Larsen, E.K.; Blanusa, T.; Hirons, A.; Tanner, R.; McAleer, P.; Gush, M. Water use of garden trees for flood risk alleviation during periods of high rainfall. In Proceedings of the 31st International Horticultural Congress (IHC)-Horticulture for a World in Transition/II International Symposium on Greener Cities-Improving Ecosystem Services in a Climate-Changing World (GreenCities), Angers, France, 14–20 August 2022; pp. 173–179. [Google Scholar]
- Yang, J.; Zhao, L.; McBride, J.; Gong, P. Can you see green? Assessing the visibility of urban forests in cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- Chen, X.; Meng, Q.Y.; Hu, D.; Zhang, L.L.; Yang, J. Evaluating Greenery around Streets Using Baidu Panoramic Street View Images and the Panoramic Green View Index. Forests 2019, 10, 1109. [Google Scholar] [CrossRef]
- Mo, W.; Sun, M.Y.; Liu, T. Mapping Green View Index for Urban Parks with Varied Landscape Metrics and Distances toward the Chinese Eastern Railway Network. Sustainability 2024, 16, 1977. [Google Scholar] [CrossRef]
- Li, X.J. Examining the spatial distribution and temporal change of the green view index in New York City using Google Street View images and deep learning. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 2039–2054. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Z.; Wei, H.; Guo, P. Optimizing Spatial Distribution of Retail Shops against Neighborhood Tree Canopy Shade Using Big Data Extracted from Streetscape. Land 2024, 13, 1249. [Google Scholar] [CrossRef]
- Xie, X.H.; Zhou, H.Z.; Gou, Z.H. Dynamic real-time individual green space exposure indices and the relationship with static green space exposure indices: A study in Shenzhen. Ecol. Indic. 2023, 154, 110557. [Google Scholar] [CrossRef]
- Wang, W.; Lin, Z.Y.; Zhang, L.W.; Yu, T.; Ciren, P.B.; Zhu, Y. Building visual green index: A measure of visual green spaces for urban building. Urban For. Urban Green. 2019, 40, 335–341. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Tang, L.Y.; Qiao, P.; He, J.G.; Su, H.L. Socioecological justice in urban street greenery based on green view index-A case study within the Fuzhou Third Ring Road. Urban For. Urban Green. 2024, 95, 128313. [Google Scholar] [CrossRef]
- Gillerot, L.; Landuyt, D.; De Frenne, P.; Muys, B.; Verheyen, K. Urban tree canopies drive human heat stress mitigation. Urban For. Urban Green. 2024, 92, 128192. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, X.T.; Liu, Y.F.; Meng, L.Q. Salary Satisfaction of Employees at Workplace on a Large Area of Planted Land. Land 2023, 12, 2075. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Liu, H.H.; Li, D.Y.; Ho, L.C. Quantification through deep learning of sky view factor and greenery on urban streets during hot and cool seasons. Landsc. Urban Plan. 2023, 232, 104679. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Z.Y.; Song, Y.F.; Yu, X.Y.; Zhang, J.C.; Song, D.X. Psychological influence of sky view factor and green view index on daytime thermal comfort of pedestrians in Shanghai. Urban Clim. 2024, 56, 102014. [Google Scholar] [CrossRef]
- Schweiker, M.; Huebner, G.M.; Kingma, B.R.M.; Kramer, R.; Pallubinsky, H. Drivers of diversity in human thermal perception—A review for holistic comfort models. Temperature 2018, 5, 308–342. [Google Scholar] [CrossRef] [PubMed]
- Thom, E.C.; Bosen, J.F. The discomfort index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Du, X.D.; Carpentier, L.; Teng, G.H.; Liu, M.L.; Wang, C.Y.; Norton, T. Assessment of Laying Hens’ Thermal Comfort Using Sound Technology. Sensors 2020, 20, 14. [Google Scholar] [CrossRef]
- Zhou, H.X.; Tao, G.X.; Nie, Y.X.; Yan, X.Y.; Sun, J. Outdoor thermal environment on road and its influencing factors in hot, humid weather: A case study in Xuzhou City, China. Build. Environ. 2022, 207, 15. [Google Scholar] [CrossRef]
- da Silva, M.V.; Pandorfi, H.; de Almeida, G.L.P.; Jardim, A.; Batista, P.H.D.; da Silva, R.A.B.; Lopes, I.; de Oliveira, M.E.G.; da Silva, J.L.B.; Moraes, A.S. Spatial variability and exploratory inference of abiotic factors in barn compost confinement for cattle in the semiarid. J. Therm. Biol. 2020, 94, 11. [Google Scholar] [CrossRef]
- Magalhães, C.A.S.; Zolin, C.A.; Lulu, J.; Lopes, L.B.; Furtini, I.V.; Vendrusculo, L.G.; Zaiatz, A.P.S.R.; Pedreira, B.C.; Pezzopane, J.R.M. Improvement of thermal comfort indices in agroforestry systems in the southern Brazilian Amazon. J. Therm. Biol. 2020, 91, 7. [Google Scholar] [CrossRef]
- Yi, T.Y.; Wang, H.; Liu, C.; Li, X.C.; Wu, J.S. Thermal comfort differences between urban villages and formal settlements in Chinese developing cities: A case study in Shenzhen. Sci. Total Environ. 2022, 853, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Feng, L.; Guo, S.; Tian, H. Impacts of Landscape Patterns on the Dynamic Changes of Thermal Comfort in Nanjing City. Resour. Environ. Yangtze Basin 2018, 27, 1712–1724, (In Chinese with English Abstract). [Google Scholar]
- Zheng, X.R.; Zhang, N.; Wang, X. Development of a modified thermal humidity index and its application to human thermal comfort of urban vegetation patches. Ecosyst. Health Sustain. 2022, 8, 18. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, X.M.; Tang, N.; Chen, S.M.; Deng, Y.W.; Gan, D.X. Summer Outdoor Thermal Perception for the Elderly in a Comprehensive Park of Changsha, China. Atmosphere 2022, 13, 1853. [Google Scholar] [CrossRef]
- Chan, S.Y.; Chau, C.K.; Leung, T.M. On the study of thermal comfort and perceptions of environmental features in urban parks: A structural equation modeling approach. Build. Environ. 2017, 122, 171–183. [Google Scholar] [CrossRef]
- Zhou, C.; Yan, L.; Yu, L.; Wei, H.; Guan, H.; Shang, C.; Chen, F.; Bao, J. Effect of Short-term Forest Bathing in Urban Parks on Perceived Anxiety of Young-adults: A Pilot Study in Guiyang, Southwest China. Chin. Geogr. Sci. 2019, 29, 139–150. [Google Scholar] [CrossRef]
- Guan, H.; Wei, H.; He, X.; Ren, Z.; An, B. The tree-species-specific effect of forest bathing on perceived anxiety alleviation of young-adults in urban forests. Ann. For. Res. 2017, 60, 327–341. [Google Scholar] [CrossRef]
- Kaplan, S.; Kaplan, R. The Experience of Nature: A Psychological Perspective; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Wei, H.X.; Hauer, R.J.; Chen, X.; He, X.Y. Facial Expressions of Visitors in Forests along the Urbanization Gradient: What Can We Learn from Selfies on Social Networking Services? Forests 2019, 10, 1049. [Google Scholar] [CrossRef]
- Wei, H.X.; Hauer, R.J.; He, X.Y. A forest experience does not always evoke positive emotion: A pilot study on unconscious facial expressions using the face reading technology. For. Policy Econ. 2021, 123, 102365. [Google Scholar] [CrossRef]
- Lanini-Maggi, S.; Lanz, M.; Hilton, C.; Fabrikant, S.I. The positive effect of blue luminescent pathways on urban park visitor’s affective states: A virtual reality online study measuring facial expressions and self-reports. Environ. Plan. B Urban Anal. City Sci. 2024. Early access. [Google Scholar] [CrossRef]
- Wei, H.X.; Hauer, R.J.; Guo, S.L. Daytime dynamic of spontaneous expressions of pedestrians in an urban forest park. Urban For. Urban Green. 2021, 65, 127326. [Google Scholar] [CrossRef]
- Liu, P.; Liu, M.N.; Xia, T.T.; Wang, Y.T.; Wei, H.X. Can Urban Forest Settings Evoke Positive Emotion? Evidence on Facial Expressions and Detection of Driving Factors. Sustainability 2021, 13, 8687. [Google Scholar] [CrossRef]
- He, Q.; Wang, Y.; Qiu, Q.; Su, Y.; Wei, H.X.; Li, J.Y. Posted Sentiments toward Experiences in Degraded Forests Are Shaped Jointly by Landscape Structure and Microclimate. Ecosyst. Health Sustain. 2023, 9, 0004. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; Chen, Z.; Guo, M.Y.; Guo, P. Optimizing Urban Forest Landscape for Better Perceptions of Positive Emotions. Forests 2021, 12, 1691. [Google Scholar] [CrossRef]
- Li, H.Y.; Peng, J.X.; Jiao, Y.; Ai, S.S. Experiencing Urban Green and Blue Spaces in Urban Wetlands as a Nature-Based Solution to Promote Positive Emotions. Forests 2022, 13, 473. [Google Scholar] [CrossRef]
- He, Q.; Wang, Y.; Qiu, Q.; Su, Y.; Wang, Y.; Wei, H.X.; Li, J.Y. Joint effects of air PM2.5 and socioeconomic dimensions on posted emotions of urban green space visitors in cities experiencing population urbanization: A pilot study on 50 cities of East China. Sci. Total Environ. 2023, 861, 160607. [Google Scholar] [CrossRef]
- Wang, X.P.; Meng, L.Q.; Liu, Y.F.; Wei, H.X. Facial Expressions of Urban Forest Visitors Jointly Exposed to Air Pollution and Regional Climate. Forests 2023, 14, 1571. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, X.G.; Wei, H.X.; Xia, T.T.; Liu, M.N.; Ai, S.S. Geographical Distribution and Driving Meteorological Forces of Facial Expressions of Visitors in Urban Wetland Parks in Eastern China. Front. Earth Sci. 2022, 10, 781204. [Google Scholar] [CrossRef]
- Wang, X.P.; Meng, L.Q.; Wei, H.X. Biomass, carbohydrate, and leakage conductance in buds of six ornamental tree species subjected to a "false spring" in Northeast China. Ann. For. Res. 2022, 65, 15–30. [Google Scholar] [CrossRef]
- Yu, X.; Ren, G.; Zhang, P.; Hu, J.; Liu, N.; Li, J.; Zhang, C. Extreme Temperature Change of the Last 110 Years in Changchun, Northeast China. Adv. Atmos. Sci. 2020, 37, 347–358. [Google Scholar] [CrossRef]
- Wu, S.; Wang, D.; Yan, Z.; Wang, X.; Han, J. Spatiotemporal dynamics of urban green space in Changchun: Changes, transformations, landscape patterns, and drivers. Ecol. Indic. 2023, 147, 109958. [Google Scholar] [CrossRef]
- Wei, H.X.; Guo, P.; Zheng, H.F.; He, X.Y.; Wang, P.J.; Ren, Z.B.; Zhai, C. Micro-scale heterogeneity in urban forest soils affects fine root foraging by ornamental seedlings of Buddhist pine and Northeast yew. Urban For. Urban Green. 2017, 28, 63–72. [Google Scholar] [CrossRef]
- Mao, Z.X.; Wang, W.J.; Ren, Z.B.; Zhang, D.; He, X.Y. Recreational Attractiveness of Urban Parks and Implications for Their Management: A Case Study in Changchun, China. Chin. Geogr. Sci. 2022, 32, 456–466. [Google Scholar] [CrossRef]
- Wei, H.X.; Hauer, R.J.; Zhai, X.Q. The Relationship between the Facial Expression of People in University Campus and Host-City Variables. Appl. Sci. 2020, 10, 1474. [Google Scholar] [CrossRef]
- Guan, H.M.; Wei, H.X.; Hauer, R.J.; Liu, P. Facial expressions of Asian people exposed to constructed urban forests: Accuracy validation and variation assessment. PLoS ONE 2021, 16, e0253141. [Google Scholar] [CrossRef]
- Garau, E.; Requena-Mullor, J.M.; Quintas-Soriano, C.; López-Rodríguez, M.D.; Otamendi-Urroz, I.; Oyarzabal, M.; Castro, A.J. A methodological approach for integrating human emotions in protected areas management: Insights from SE Spain. Landsc. Urban Plan. 2024, 244, 104988. [Google Scholar] [CrossRef]
- Chase, O.A.; Sousa de Almeida, J.F.; Brito de Souza, J.R.; Tavares da Costa Junior, C. Sensory platform architecture for IN SITU monitoring the thermal comfort in rural environments–The case study at Federal Rural University of Amazonian, Brazil. Measurement 2014, 58, 294–300. [Google Scholar] [CrossRef]
- Kumakoshi, Y.; Chan, S.Y.; Koizumi, H.; Li, X.; Yoshimura, Y. Standardized Green View Index and Quantification of Different Metrics of Urban Green Vegetation. Sustainability 2020, 12, 7434. [Google Scholar] [CrossRef]
- Tang, L.; He, J.; Peng, W.; Huang, H.; Chen, C.; Yu, C. Assessing the visibility of urban greenery using MLS LiDAR data. Landsc. Urban Plan. 2023, 232, 104662. [Google Scholar] [CrossRef]
- Onaindia, M.; Dominguez, I.; Albizu, I.; Garbisu, C.; Amezaga, I. Vegetation diversity and vertical structure as indicators of forest disturbance. For. Ecol. Manag. 2004, 195, 341–354. [Google Scholar] [CrossRef]
- Duan, Y.; Wei, X.; Wang, N.; Zang, D.; Zhao, W.; Yang, Y.; Wang, X.; Xu, Y.; Zhang, X.; Liu, C. Mapping Characteristics in Vaccinium uliginosum Populations Predicted Using Filtered Machine Learning Modeling. Forests 2024, 15, 1252. [Google Scholar] [CrossRef]
- Li, G.J.; Liu, C.; He, Y.H. The effect of thermal discomfort on human well-being, psychological response and performance. Sci. Technol. Built Environ. 2021, 27, 960–970. [Google Scholar] [CrossRef]
- Lan, L.; Lian, Z.W.; Pan, L. The effects of air temperature on office workers’ well-being, workload and productivity-evaluated with subjective ratings. Appl. Ergon. 2010, 42, 29–36. [Google Scholar] [CrossRef]
- Huang, S.Y.; Zhu, J.J.; Zhai, K.B.; Wang, Y.; Wei, H.X.; Xu, Z.H.; Gu, X.R. Do Emotional Perceptions of Visible Greeneries Rely on the Largeness of Green Space? A Verification in Nanchang, China. Forests 2022, 13, 1192. [Google Scholar] [CrossRef]
- Li, H.L.; Campana, P.E.; Tan, Y.T.; Yan, J.Y. Feasibility study about using a stand-alone wind power driven heat pump for space heating. Appl. Energy 2018, 228, 1486–1498. [Google Scholar] [CrossRef]
- Park, B.J.; Furuya, K.; Kasetani, T.; Takayama, N.; Kagawa, T.; Miyazaki, Y. Relationship between psychological responses and physical environments in forest settings. Landsc. Urban Plan. 2011, 102, 24–32. [Google Scholar] [CrossRef]
- Taleghani, M.; Sailor, D.J.; Tenpierik, M.; van den Dobbelsteen, A. Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Build. Environ. 2014, 73, 138–150. [Google Scholar] [CrossRef]
- Yan, P.B.; Yang, J. Species diversity of urban forests in China. Urban For. Urban Green. 2017, 28, 160–166. [Google Scholar] [CrossRef]
- Walters, G.M. Perennial plants and ephemeral seed banks in Papago Park, Phoenix, Arizona. Nat. Areas J. 2004, 24, 36–43. [Google Scholar]
- Aguilera, G.; Ekroos, J.; Persson, A.S.; Pettersson, L.B.; Öckinger, E. Intensive management reduces butterfly diversity over time in urban green spaces. Urban Ecosyst. 2019, 22, 335–344. [Google Scholar] [CrossRef]
Park | Built Year | Star Rating 1 | Rating Date | Total Area (ha) | Green Space (ha) | Blue Space (ha) |
---|---|---|---|---|---|---|
Beihu Wetland Park | 2012 | 4A | 29 May 2014 | 792.18 | 0.54 | 113.76 |
World Sculpture Park | 2003 | 5A | 25 February 2017 | 356.86 | 158.31 | 124.74 |
Zoo and Botanic Park | 1938 | 4A | 15 September 2007 | 237.86 | 31.41 | 73.62 |
Jingyue Pool Park | 1934 | 5A | 14 January 2011 | 87.09 | 0.09 | 5.31 |
Nanhu Park | 1935 | - | - | 73.58 | 4.95 | 0.72 |
Variable | DI 1 | THI 2 | CP 3 |
---|---|---|---|
All stops | |||
Intercept | −167.49 ± 2.27 *** 4 | 35.68 ± 0.12 *** | 895.76 ± 6.22 *** |
GVI | - 5 | - | - |
Shannon | −1.09 ± 0.53 * | −0.06 ± 0.03 * | - |
T 6 | 22.36 ± 0.07 *** | 1.19 ± 0.00 *** | −28.67 ± 0.20 *** |
RH 7 | 4.76 ± 0.01 *** | 0.13 ± 0.00 *** | −0.13 ± 0.04 ** |
WV 8 | −0.23 ± 0.06 *** | −0.01 ± 0.00 *** | 9.34 ± 0.16 *** |
Selected stops | |||
Intercept | −122.82 ± 6.41 *** | 38.06 ± 0.34 *** | 944.64 ± 16.12 *** |
GVI | −0.15 ± 0.05 *** | −0.01 ± 0.00 *** | −0.21 ± 0.10 * |
Shannon | - | - | - |
T | 20.82 ± 0.19 *** | 1.11 ± 0.01 *** | −29.87 ± 0.46 *** |
RH | 4.89 ± 0.05 *** | 0.13 ± 0.00 *** | - |
WV | - | - | 8.47 ± 0.40 *** |
Variables | Happy | Sad | PRI | ENRI |
---|---|---|---|---|
Intercept | 8.00 ± 2.08 | 45.19 ± 3.81 | −42.41 ± 5.37 | −1.34 ± 0.12 |
RH | 0.14 ± 0.05 | - | - | 0.01 ± 0.00 |
GVI | - | −0.20 ± 0.07 | 0.31 ± 0.10 | - |
Shannon | - | 7.12 ± 2.64 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, B.; Zhu, C.; Geng, J.; Liu, Y. Emotional Perceptions of Thermal Comfort for People Exposed to Green Spaces Characterized Using Streetscapes in Urban Parks. Land 2024, 13, 1515. https://doi.org/10.3390/land13091515
Xin B, Zhu C, Geng J, Liu Y. Emotional Perceptions of Thermal Comfort for People Exposed to Green Spaces Characterized Using Streetscapes in Urban Parks. Land. 2024; 13(9):1515. https://doi.org/10.3390/land13091515
Chicago/Turabian StyleXin, Benlu, Chengfeng Zhu, Jingjing Geng, and Yanqi Liu. 2024. "Emotional Perceptions of Thermal Comfort for People Exposed to Green Spaces Characterized Using Streetscapes in Urban Parks" Land 13, no. 9: 1515. https://doi.org/10.3390/land13091515
APA StyleXin, B., Zhu, C., Geng, J., & Liu, Y. (2024). Emotional Perceptions of Thermal Comfort for People Exposed to Green Spaces Characterized Using Streetscapes in Urban Parks. Land, 13(9), 1515. https://doi.org/10.3390/land13091515