Spatiotemporal Variation and Prediction of Carbon Storage in Terrestrial Ecosystems at Multiple Development Stages in Beijing City Based on the Plus and Integrated Valuation of Ecosystem Services and Tradeoffs Models
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Data
2.3. Research Framework
- (1)
- Using 30 phases of LULC data from 1992 to 2022 and ArcGIS software (https://www.arcgis.com/index.html accessed on 17 September 2024), we analyzed LULC change trends in Beijing from 1992 to 2022. Then, using InVEST software (https://naturalcapitalproject.stanford.edu/software/invest accessed on 17 September 2024), we calculated and analyzed the trends in ecosystem carbon storage in Beijing from 1992 to 2022.
- (2)
- Based on the LULC and ecosystem carbon storage change trends in Beijing over the past 30 years, as well as relevant policies and plans issued by the government, we identified the development stages of LULC and ecosystem carbon storage in Beijing.
- (3)
- Using the development stage assessment described above, we predicted the LULC and ecosystem carbon storage in Beijing for 2035 under multiple scenarios. The scenarios were as follows: (i) an Uncontrolled Scenario (UCS), which simulates the LULC development trend in Beijing from 2011 to 2017 (i.e., the first time phase identified in the second part of this study) and serves as a baseline; (ii) a Natural Evolution Scenario (NES), which simulates the LULC development trend in Beijing from 2017 to 2020 (i.e., the second time phase identified in the second part); (iii) a Strict Control Scenario (SCS), which simulates the LULC development trend in Beijing from 2017 to 2020 (i.e., the second time phase identified in the second part), with strict control over the expansion of construction land according to the planning requirements; and (iv) a Reforestation and Wetland Expansion Scenario (RWES), which simulates the LULC development trend in Beijing from 2017 to 2020 (i.e., the second time phase identified in the second part); it involves strict control over the construction land area according to planning requirements while intensifying efforts in reforestation and wetland restoration, expanding various ecological spaces.
- (4)
- Based on the above analyses and simulation predictions, we propose corresponding policy and planning recommendations, including discussions on the mechanisms of land use pattern changes.
2.4. Methodology
2.4.1. Simulation of Future LULC Patterns under Multiple Scenarios
- (i)
- Uncontrolled Scenario (UCS)
- (ii)
- Natural Evolution Scenario (NES)
- (iii)
- Strict Control Scenario (SCS)
- (iv)
- Reforestation and Wetland Expansion Scenario (RWES)
2.4.2. Estimation of Future Carbon Storage
2.4.3. Land Use Change Analysis
3. Results
3.1. Evolution of LULC and Ecosystem Carbon Storage in Beijing from 1992 to 2022
3.1.1. Evolution of LULC
3.1.2. Evolution of Ecosystem Carbon Storage
3.2. Anticipated Transformations in LULC and Carbon Sequestration Potential within Beijing’s Ecosystem by 2035: A Multi-Scenario Approach
3.2.1. Prediction of LULC
3.2.2. Prediction of Carbon Storage
4. Discussion
4.1. Discussion on Carbon Storage in Beijing by 2035 and the Reasons for Its Changes
4.2. LULC Forecasting Methodology Based on Multi-Stage Development Control
4.2.1. Analysis of the Mechanism of Multi-Stage Changes in Construction Land in Beijing
4.2.2. Policy Recommendations for Mitigating Carbon Stock Loss by Controlling the Expansion of Construction Land
- (1)
- Strictly limit urban construction land expansion: Promote the intensive use of land and enforce a stringent urban development boundary system to prevent a decline in land carbon sequestration capacity.
- (2)
- Strengthen afforestation initiatives: Encourage the conversion of various LULC types into forests to enhance carbon sequestration.
- (3)
- Utilize technological measures to limit the expansion of water bodies: Prevent water bodies from encroaching on other LULC categories, especially forest land, to avoid a corresponding decline in Beijing’s carbon storage. For example, promote inter-basin water transfers instead of building new reservoirs and deepen existing reservoirs vertically rather than expanding them horizontally.
4.3. Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinmer, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. Synthesis Report of the IPCC Sixth Assessment Report (AR6), Longer Report. IPCC; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- Wu, A.B.; Chen, F.G.; Zhao, Y.X.; Qin, Y.J.; Liu, X.; Guo, X.P. Multi-scenario Simulation of Construction Land Expansion and Its Impact on Ecosystem Carbon Storage in Beijing-Tianjin-Hebei Urban Agglomeration. Huan Jing Ke Xue Huanjing Kexue 2024, 45, 2828–2839. [Google Scholar] [PubMed]
- Dybala, K.E.; Steger, K.; Walsh, R.G.; Smart, D.R.; Gardali, T.; Seavy, N.E. Optimizing carbon storage and biodiversity co-benefits in reforested riparian zones. J. Appl. Ecol. 2019, 56, 343–353. [Google Scholar] [CrossRef]
- Ge, Q.; Dai, J.; He, F.; Pan, Y.; Wang, M. Land Use, Land Cover Change, and Carbon Cycle Research in China over the Last 300 Years. Sci. China Ser. D Earth Sci. 2008, 51, 197–210. [Google Scholar] [CrossRef]
- Ma, X.Z.; Wang, Z. Progress in the study on the impact of land-use change on regional carbon sources and sinks. Acta Ecol. Sin. 2015, 35, 5898–5907. [Google Scholar]
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, 27–39. [Google Scholar] [CrossRef]
- Posner, S.; Verutes, G.; Koh, I.; Denu, D.; Ricketts, T. Global use of ecosystem service models. Ecosyst. Serv. 2016, 17, 131–141. [Google Scholar] [CrossRef]
- Lin, T.; Yang, M.-Z.; Wu, D.-F.; Liu, F.; Yang, J.-H.; Wang, Y.-J. Spatial correlation and prediction of land use carbon storage based on the InVEST-PLUS model-A case study in Guangdong Province. China Environ. Sci. 2022, 42, 4827–4839. [Google Scholar]
- Shi, J.; Shi, P.J.; Wang, Z.Y.; Cheng, F.Y. Spatial-Temporal Evolution and Prediction of Carbon Storage in Jiuquan City Ecosystem Based on PLUS-InVEST Model. Huan Jing Ke Xue Huanjing Kexue 2024, 45, 300–313. [Google Scholar]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Huang, D.; Huang, J.; Liu, T. Delimiting Urban Growth Boundaries Using the CLUE-S Model with Village Administrative Boundaries. Land Use Policy 2019, 82, 422–435. [Google Scholar] [CrossRef]
- Hou, J.K.; Chen, J.J.; Zhang, K.Q.; Zhou, G.Q.; You, H.T.; Han, X.W. Temporal and spatial variation characteristics of carbon storage in the source region of the Yellow River based on InVEST and GeoSoS-FLUS models and its response to different future scenarios. Huan Jing Ke Xue Huanjing Kexue 2022, 43, 5253–5262. [Google Scholar] [PubMed]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhou, T.J.; Ni, C.; Zheng, X. Study on the Impact of Landuse Pattern Changes on Habitat Based on Ca-Markov and InVEST Models—A Case Study of Shallow Mountainous Areas in Beijing. J. Chin. Landsc. Archit. 2020, 36, 139–144. [Google Scholar]
- Fu, C.; Liu, Y.; Chen, Y.; Li, F.; Huang, J.; Huang, H. Simulation of Land Use Change and Habitat Quality in the Yellow River Basin under Multiple Scenarios. Water 2022, 14, 3767. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, X.; Xu, X.; Sun, S.; Zhao, L.; Liang, X.; Zeng, L. Multi-scenario simulation of land use change and its impact on ecosystem services in Beijing-Tianjin-Hebei region based on the FLUS-InVEST Model. Acta Ecol. Sin. 2023, 43, 1–15. [Google Scholar]
- Shao, Z.; Chen, Y.; Zhao, J.; Xia, C.; He, Y.; Tang, F. Spatio-temporal evolution and prediction of carbon storage in Beijing’s ecosystem based on FLUS and InVEST models. Acta Ecol. Sin. 2022, 42, 9456–9469. [Google Scholar]
- Wang, C.; Li, T.; Guo, X.; Xia, L.; Lu, C.; Wang, C. Plus-InVEST Study of the Chengdu-Chongqing urban agglomeration’s land-use change and carbon storage. Land 2022, 11, 1617. [Google Scholar] [CrossRef]
- Li, Y.; Yao, S.; Jiang, H.; Wang, H.; Ran, Q.; Gao, X.; Ding, X.; Ge, D. Spatial-temporal evolution and prediction of carbon storage: An integrated framework based on the MOP–PLUS–InVEST model and an applied case study in Hangzhou, East China. Land 2022, 11, 2213. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Zhang, Q.; Chen, C.; Yang, Z. Analysis of Spatial-Temporal Variation and Driving Forces of Carbon Storage in Suzhou City Based on the PLUS-InVEST-Geodector Model. Environ. Sci. Technol. 2024, 47, 1–17. [Google Scholar]
- Geddes, P. Cities in Evolution; Routledge/Thoemmes Press: London, UK, 1998. [Google Scholar]
- Hall, P.; Hay, D. Growth centres in the European urban system. Geogr. Rev. 1982, 72, 360. [Google Scholar]
- Li, H.; Hu, Y.; Li, H.; Ren, J.; Shao, R.; Liu, Z. Assessing the Impact of Spatiotemporal Evolution of Urbanization on Carbon Storage in the Mega-Urban Agglomeration Area: Case Study of Yangtze River Delta Urban Agglomeration, China. Sustainability 2023, 15, 14548. [Google Scholar] [CrossRef]
- Lu, Q.; Lv, T.; Wang, S.; Wei, L. Spatiotemporal Variation and Development Stage of CO2 Emissions of Urban Agglomerations in the Yangtze River Economic Belt, China. Land 2023, 12, 1678. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, Y.; Dai, M.; Li, Q.; Sun, C. The Heterogeneity of the Drivers of Urban Form in China: Perspectives from Regional Disparities and Development Stage Variations. Land 2023, 12, 1436. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Wang, Y.; Liu, D.; Xia, C.; Wang, Z.; Wang, H.; Liu, Y. Urban expansion simulation towards low-carbon development: A case study of Wuhan, China. Sustain. Cities Soc. 2020, 63, 102455. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, X.; Sun, D. A Coupled InVEST-PLUS Model for the Spatiotemporal Evolution of Ecosystem Carbon Storage and Multi-Scenario Prediction Analysis. Land 2024, 13, 509. [Google Scholar] [CrossRef]
- Du, S.; Zhou, Z.; Huang, D.; Zhang, F.; Deng, F.; Yang, Y. The Response of Carbon storages to Land Use/Cover Change and a Vulnerability Multi-Scenario Analysis of the Karst Region in Southern China Based on PLUS-InVEST. Forests 2023, 14, 2307. [Google Scholar] [CrossRef]
- Liu, X.J.; Li, X.; Liang, X.; Shi, H.; Ou, J. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model. Trop. Geogr 2019, 39, 397–409. [Google Scholar]
- Du, M.; Liu, C.; Wang, W.; Yang, H. Simulation of Ecological Risk in Beijing Using Mop-Plus Model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 48, 15–22. [Google Scholar] [CrossRef]
- Wu, W.; Xu, L.; Zheng, H.; Zhang, X. How much carbon storage will the ecological space leave in a rapid urbanization area? Scenario analysis from Beijing-Tianjin-Hebei Urban Agglomeration. Resour. Conserv. Recycl. 2023, 189, 106774. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, B.; Wang, C.; Zang, W.; Huang, X.; Wu, Z.; Xu, M.; Zhou, K.; Li, J.; Yang, Y. Carbon storage simulation and analysis in Beijing-Tianjin-Hebei region based on CA-plus model under dual-carbon background. Geomat. Nat. Hazards Risk 2023, 14, 2173661. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Lyu, F.; Chen, S.; Yu, Z. Temporal and spatial variations of carbon storage and carbon sink improvement strategy atthe district and county level based on PLUS-InVEST model: Taking Yanqing District as an example. Acta Ecol. Sin. 2023, 34, 3373–3384. [Google Scholar]
- He, Y.; Xia, C.; Shao, Z.; Zhao, J. The spatiotemporal evolution and prediction of carbon storage: A case study of urban agglomeration in China’s Beijing-Tianjin-Hebei region. Land 2022, 11, 858. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Han, Y. Land Use Change and Carbon storage Assessment in Southern Shaanxi based on the PLUS-InVEST Model under Multiple Scenarios. Reg. Res. Dev. 2024, 43, 145–152+160. [Google Scholar]
- Lai, Z.; Chen, C.; Chen, J.; Wu, Z.; Wang, F.; Li, S. Multi-scenario simulation of land-use change and delineation of urban growth boundaries in county area: A case study of Xinxing County, Guangdong Province. Land 2022, 11, 1598. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Li, S.; Li, Y.; Wang, W. Urban Land Carbon Emission and Carbon Emission Intensity Prediction Based on Patch-Generating Land Use Simulation Model and Grid with Multiple Scenarios in Tianjin. Land 2023, 12, 2160. [Google Scholar] [CrossRef]
- Li, L.; Song, Y.; Wei, X.; Dong, J. Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan, China. Ecol. Indic. 2020, 111, 106064. [Google Scholar] [CrossRef]
- Wang, H.; Fan, J. Influence of Urban Development Stage of Beijing on the Development of New cities. City Plan. Rev. 2007, 3, 20–24. [Google Scholar]
- Zheng, D.; Ma, X.; Zhang, K. Planning Needs and Practice Innovations at the Present Stage. City Plan. Rev. 2023, 47, 10–19. [Google Scholar]
- Li, L. Perplexity of Inflection Point at 50%Urbanization Level A Comparative Study on Rapid Urbanization of Typical Countries. Urban Plan. Forum 2013, 3, 43–49. [Google Scholar]
- Zhang, J.; Deng, N.; Wei, S.; Chen, J. Comparative Study of Urban Spatial Expansion between Regions with Different EconomicDevelopment Phases: A Case Study of Fuzhou and Taipei. J. Nat. Resour. 2012, 27, 177–186. [Google Scholar]
- Tang, L.; Liu, J.; Ma, X. Research on Coordination between Urban Construction Land Consumption Intensity andSocio-Economic Development Level: From the Perspective of Urban Development Stages. Chin. Land Sci. 2017, 31, 73–82. [Google Scholar]
- Chen, X.; He, X.; Wang, S. Simulated validation and prediction of land use under multiple scenarios in Daxing District, Beijing, China, Based on GeoSOS-FLUS Model. Sustainability 2022, 14, 11428. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, B.; Wang, M.; Liu, B.; Yang, X. Analysis of the future land cover change in Beijing using CA–Markov chain model. Environ. Earth Sci. 2020, 79, 60. [Google Scholar] [CrossRef]
- Li, L.; Hu, R.; Li, S. Simulation of Low-Carbon Land Use Scenarios in Beijing Based on the Improved FLUS Model. Remote Sens. Nat. Resour. 2023, 35, 81–89. [Google Scholar]
- Liu, Y.; Shi, J.; Zheng, Y.; Hu, X. The Evolution Pattern and Simulation of Land Use in the Beijing Municipal Administrative Center (Tongzhou District). J. Resour. Ecol. 2022, 13, 270–284. [Google Scholar]
- Li, Z.; Cheng, X.; Han, H. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China. Forests 2020, 11, 584. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Dong, F. Optimization of land use structure in Beijing based on MOP model and FLUS model. Int. Conf. Comput. Model. Simul. Data Anal. 2022, 12160, 87–92. [Google Scholar]
- Ning, X.; Zhang, X.; Zhang, X.; Wang, H.; Zhang, W. A Method for Assessing Urban Ecological Resilience and Identifying Its Critical Distance Belt Based on the Source-Sink Theory: A Case Study of Beijing. Remote Sens. 2023, 15, 2502. [Google Scholar] [CrossRef]
- Meng, F.; Zhou, Z.; Zhang, P. Multi-objective optimization of land use in the Beijing–Tianjin–Hebei region of China based on the GMOP-PLUS coupling model. Sustainability 2023, 15, 3977. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, L.; Zhang, C.; Liao, Z. Strategic Thoughts on the Spatial Layout of Beijing in the New Stage. City Plan. Rev. 2017, 41, 23–32. [Google Scholar]
- Xu, S.; Yuan, X.; Deng, Y. Structural Patterns and Aggregation Rules of the Spatial Evolution of Urban Functions in Beijing. Acta Geogr. Sin. 2023, 78, 2092–2104. [Google Scholar]
- Li, Q. The Housing Price Issue: A Historical Review, Analysis of Causes, and Long-Term Strategies. Shanghai Real Estate 2019, 9, 10–15. [Google Scholar]
- Li, W.; Li, H.; Hao, F.; Feng, Z.; Wang, S. A Simulation of the Spatial Expansion Process of Shrinking Cities Based on the Concept of Smart Shrinkage: A Case Study of the City of Baishan. Land 2024, 13, 239. [Google Scholar] [CrossRef]
- Dengxing, F.; Xinxiao, Y.; Yongjie, Y.; Lili, N.; Zhiliang, G.; Liya, M. Carbon storage in Beijing’s forests and its dynamics. J. Beijing For. Univ. 2008, 30 (Suppl. 2), 117–120. [Google Scholar]
Data Type | Data Name | Resolution (m) | Data Source |
---|---|---|---|
Land use data | LULC | 30 | China Land Cover Dataset, Wuhan University |
Socioeconomic factors | GDP | 1000 | Resource and Environment Science and Data Center of Chinese Academy of Sciences (https://www.resdc.cn/, assessed on 22 April 2024) |
Population Density | 1000 | ||
Night Light Data | 1000 | ||
Distance to Railway | 30 | OpenStreetMap (http://www.openstreetmap.org/, assessed on 22 April 2024) | |
Distance to Highways | 30 | ||
Distance to Primary Way | 30 | ||
Distance to Secondary Way | 30 | ||
Distance to Tertiary Way | 30 | ||
Distance to Transportation Stations | 30 | ||
Natural Factors | Distance to Water | 30 | OpenStreetMap (http://www.openstreetmap.org/, assessed on 22 April 2024) |
Soil type | 1000 | Resource and Environment Science and Data Center of Chinese Academy of Sciences (https://www.resdc.cn/, assessed on 22 April 2024) | |
Digital Elevation Model | 90 | Shuttle Radar Topography Mission, SRTM (https://www.earthdata.nasa.gov/sensors/srtm, assessed on 22 April 2024) | |
Slope | 90 | Generate from DEM data by Arcgis | |
Slope Orientation | 90 | ||
Mean Annual Precipitation | 1000 | Resource and Environment Science and Data Center of Chinese Academy of Sciences (https://www.resdc.cn/, assessed on 22 April 2024) | |
Annual Mean Temperature | 1000 | ||
Normalize Difference Vegetation Index | 1000 |
LULC Types | Cropland | Forest | Shrub | Grassland | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NES | SCS | RWES | NES | SCS | RWES | NES | SCS | RWES | NES | SCS | RWES | |
Cropland | 0.968 | 0.968 | 0.968 | 0.012 | 0.012 | 0.124 | 0 | 0 | 0 | 0.001 | 0.001 | 0.001 |
Forest | 0.008 | 0.008 | 0.008 | 0.990 | 0.991 | 0.991 | 0.001 | 0.001 | 0.001 | 0 | 0 | 0 |
Shrub | 0 | 0 | 0 | 0.209 | 0.209 | 0.209 | 0.752 | 0.752 | 0.752 | 0.038 | 0.038 | 0.038 |
Grassland | 0.064 | 0.064 | 0.064 | 0.097 | 0.097 | 0.097 | 0.009 | 0.009 | 0.009 | 0.826 | 0.826 | 0.826 |
Water | 0.034 | 0.034 | 0.036 | 0.001 | 0.001 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 |
Unused Land | 0.115 | 0.115 | 0.115 | 0 | 0 | 0 | 0 | 0 | 0 | 0.061 | 0.061 | 0.061 |
Construction Land | 0 | 0 | 0 | 0 | 0.007 | 0.007 | 0 | 0 | 0 | 0 | 0 | 0 |
LULC Types | Water | Unused Land | Construction Land | |||||||||
NES | SCS | RWES | NES | SCS | RWES | NES | SCS | RWES | ||||
Cropland | 0.005 | 0.005 | 0.007 | 0 | 0 | 0 | 0.013 | 0.013 | 0.013 | |||
Forest | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Shrub | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Grassland | 0.001 | 0.001 | 0.001 | 0 | 0 | 0 | 0.002 | 0.002 | 0.002 | |||
Water | 0.964 | 0.966 | 0.966 | 0 | 0 | 0 | 0.002 | 0 | 0 | |||
Unused Land | 0.004 | 0.004 | 0.004 | 0.786 | 0.786 | 0.786 | 0.033 | 0.033 | 0.033 | |||
Construction Land | 0.002 | 0.004 | 0.004 | 0 | 0 | 0 | 0.989 | 0.989 | 0.989 |
Cropland | Forest | Shrub | Grassland | Water | Unused Land | Construction Land | |
---|---|---|---|---|---|---|---|
UCS | 0.326 | 0.610 | 0.116 | 0.080 | 0.175 | 0.001 | 1 |
NES | 0.941 | 1 | 0.113 | 0.060 | 0.269 | 0.001 | 0.563 |
SCS | 0.765 | 1 | 0.092 | 0.049 | 0.285 | 0.001 | 0.443 |
RWES | 0.165 | 1 | 0.020 | 0.011 | 0.073 | 0.001 | 0.096 |
Cropland | Forest | Shrub | Grassland | Water | Unused Land | Construction Land | |
---|---|---|---|---|---|---|---|
Aboveground Biomass Carbon | 453 | 3580 | 290 | 110 | 61 | 10 | 50 |
Belowground Biomass Carbon | 91 | 907 | 199 | 261 | 0 | 2 | 0 |
Soil Carbon | 7000 | 15,140 | 9400 | 6290 | 1716 | 2263 | 3217 |
Dead Organic Matter Carbon | 45 | 300 | 247 | 124 | 0 | 1 | 5 |
1992 | 1997 | 2002 | 2007 | 2012 | 2017 | 2022 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cropland | 6095.99 | 5699.27 | 5452.83 | 4964.31 | 4554.06 | 4241.97 | 4164.67 | |||||||
Forest | 7586.29 | 7739.15 | 7744.59 | 7793.44 | 7880.44 | 7952.40 | 7989.78 | |||||||
Shrub | 42.02 | 27.92 | 61.49 | 34.50 | 46.43 | 71.20 | 55.97 | |||||||
Grassland | 621.84 | 558.81 | 521.54 | 546.28 | 503.58 | 407.88 | 353.39 | |||||||
Water | 231.05 | 247.92 | 179.54 | 149.93 | 160.63 | 204.46 | 241.02 | |||||||
Unused Land | 1.56 | 1.12 | 0.87 | 0.70 | 0.94 | 0.62 | 1.36 | |||||||
Construction Land | 1831.78 | 2136.34 | 2449.67 | 2921.37 | 3264.46 | 3532.00 | 3604.34 | |||||||
(a) Changes in the Area of Different Land Use Types from 1992 to 2022 | ||||||||||||||
1992–1997 | 1997–2002 | 2002–2007 | 2007–2012 | 2012–2017 | 2017–2022 | 1992–2022 | ||||||||
AC (km2) | DD (%) | AC (km2) | DD (%) | AC (km2) | DD (%) | AC (km2) | DD (%) | AC (km2) | DD (%) | AC (km2) | DD (%) | AC (km2) | DD (%) | |
Cropland | −396.72 | −1.39 | −246.44 | −0.90 | −488.52 | −1.97 | −410.25 | −1.80 | −312.08 | −1.47 | −77.31 | −0.37 | −2099.14 | −1.58 |
Forest | 152.86 | 0.40 | 5.44 | 0.01 | 48.85 | 0.13 | 87.00 | 0.22 | 71.96 | 0.18 | 37.38 | 0.09 | 601.62 | 0.24 |
Shrub | −14.10 | −10.10 | 33.58 | 10.92 | −26.99 | −15.64 | 11.92 | 5.14 | 24.77 | 6.96 | −15.23 | −5.44 | −12.75 | −0.71 |
Grassland | −63.03 | −2.26 | −37.27 | −1.43 | 24.74 | 0.91 | −42.70 | −1.70 | −95.70 | −4.69 | −54.49 | −3.08 | −368.10 | −3.26 |
Water | 16.86 | 1.36 | −68.38 | −7.62 | −29.61 | −3.95 | 10.71 | 1.33 | 43.83 | 4.29 | 36.56 | 3.03 | 31.47 | 0.41 |
Unused Land | −0.44 | −7.83 | −0.25 | −5.74 | −0.17 | −4.78 | 0.24 | 5.02 | −0.32 | −10.17 | 0.73 | 10.81 | −0.51 | −1.18 |
Construction Land | 304.57 | 2.85 | 313.33 | 2.56 | 471.70 | 3.23 | 343.09 | 2.10 | 267.54 | 1.51 | 72.34 | 0.40 | 1847.42 | 1.60 |
AC: Area Change; DD: Dynamic Degree. | ||||||||||||||
(b) Changes and Dynamics of Different Land Use Types during Different Periods, from 1992 to 2022 |
Cropland | Forest | Shrub | Grassland | Water | Unused Land | Construction Land | Total 1992 | |
---|---|---|---|---|---|---|---|---|
Cropland | 3964.97 | 310.19 | 0.13 | 47.65 | 38.61 | 0.13 | 1734.31 | 6095.99 |
Forest | 127.16 | 7367.70 | 38.88 | 25.31 | 3.25 | 0.00 | 23.99 | 7586.29 |
Shrub | 0.04 | 20.47 | 6.84 | 14.66 | 0.00 | 0.00 | 0.01 | 42.02 |
Grassland | 43.69 | 287.34 | 10.12 | 265.42 | 0.45 | 0.14 | 14.69 | 621.84 |
Water | 24.49 | 3.86 | 0.00 | 0.31 | 182.36 | 0.90 | 19.13 | 231.05 |
Unused Land | 0.16 | 0.00 | 0.00 | 0.03 | 0.01 | 0.17 | 1.18 | 1.56 |
Contruction Land | 4.15 | 0.22 | 0.00 | 0.01 | 16.33 | 0.02 | 1811.04 | 1831.78 |
Total 2022 | 4164.67 | 7989.78 | 55.97 | 353.39 | 241.02 | 1.36 | 3604.35 | 16,410.54 |
UCS | NES | SCS | RWES | |||||
---|---|---|---|---|---|---|---|---|
AC (km2) | DD (%) | AC (km2) | DD (%) | AC (km2) | DD (%) | AC (km2) | DD (%) | |
Cropland | −942.8 | −1.48% | −229.8 | −0.36% | −218.37 | −0.34% | −831.25 | −1.31% |
Forest | 180.65 | 0.15% | 80.13 | 0.07% | 211.43 | 0.18% | 999.73 | 0.84% |
Shrub | 16.27 | 1.52% | −8.56 | −0.80% | −23.21 | −2.17% | −20.01 | −1.87% |
Grassland | −112.18 | −1.84% | −99.12 | −1.62% | −175.52 | −2.87% | −259.18 | −4.24% |
Water | 45.23 | 1.48% | 22.74 | 0.74% | 71.75 | 2.35% | 30.73 | 1.00% |
Unused Land | −0.37 | −3.98% | −0.35 | −3.76% | −0.25 | −2.69% | −0.17 | −1.83% |
Construction Land | 813.19 | 1.53% | 234.93 | 0.44% | 134.11 | 0.25% | 80.14 | 0.15% |
Cropland | Forest | Shrub | Grassland | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UCS | NES | SCS | RWES | UCS | NES | SCS | RWES | UCS | NES | SCS | RWES | UCS | NES | SCS | RWES | |
Cropland | 3290.29 | 3913.50 | 3911.89 | 3312.29 | 82.93 | 65.85 | 105.90 | 810.28 | 0.89 | 0.01 | 0.00 | 0.00 | 9.89 | 3.34 | 13.39 | 1.97 |
Forest | 0.00 | 65.34 | 61.88 | 54.39 | 7950.17 | 7875.77 | 7880.23 | 7887.60 | 0.00 | 7.62 | 6.57 | 6.83 | 0.00 | 0.01 | 0.06 | 0.00 |
Shrub | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.39 | 31.17 | 28.87 | 71.18 | 48.04 | 38.27 | 41.10 | 0.05 | 2.79 | 1.78 | 1.25 |
Grassland | 6.66 | 25.75 | 41.98 | 35.37 | 97.73 | 68.14 | 144.16 | 222.36 | 13.43 | 7.00 | 3.18 | 3.28 | 287.27 | 300.30 | 216.61 | 145.01 |
Water | 0.81 | 6.49 | 6.74 | 7.57 | 0.00 | 0.16 | 0.17 | 0.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 |
Unused Land | 0.01 | 0.07 | 0.09 | 0.09 | 0.00 | 0.00 | 0.01 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.10 | 0.04 |
Construction Land | 0.39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 1.87 | 0.00 | 0.00 |
Total 2035 | 3298.16 | 4011.16 | 4022.59 | 3409.71 | 8130.82 | 8030.30 | 8161.65 | 8949.90 | 87.50 | 62.67 | 48.02 | 51.22 | 295.27 | 308.33 | 231.93 | 148.27 |
Water | Unused Land | Construction Land | Total 2017 | |||||||||||||
UCS | NES | SCS | RWES | UCS | NES | SCS | RWES | UCS | NES | SCS | RWES | UCS | NES | SCS | RWES | |
Cropland | 45.67 | 23.43 | 73.35 | 33.75 | 0.00 | 0.00 | 0.00 | 0.00 | 811.29 | 234.83 | 136.42 | 82.66 | 4240.96 | 4240.96 | 4240.96 | 4240.96 |
Forest | 0.00 | 0.00 | 0.07 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.43 | 1.35 | 1.33 | 7950.17 | 7950.17 | 7950.17 | 7950.17 |
Shrub | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 71.23 | 71.23 | 71.23 | 71.23 |
Grassland | 1.42 | 0.42 | 0.49 | 0.43 | 0.00 | 0.03 | 0.03 | 0.05 | 0.93 | 5.81 | 1.00 | 0.95 | 407.45 | 407.45 | 407.45 | 407.45 |
Water | 201.89 | 194.86 | 196.45 | 195.14 | 0.00 | 0.00 | 0.00 | 0.00 | 1.21 | 2.42 | 0.58 | 0.49 | 203.95 | 203.95 | 203.95 | 203.95 |
Unused Land | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.24 | 0.34 | 0.41 | 0.34 | 0.00 | 0.09 | 0.04 | 0.62 | 0.62 | 0.62 | 0.62 |
Construction Land | 0.19 | 7.97 | 5.34 | 5.34 | 0.00 | 0.00 | 0.00 | 0.00 | 3535.58 | 3526.33 | 3530.83 | 3530.83 | 3536.17 | 3536.17 | 3536.17 | 3536.17 |
Total 2035 | 249.18 | 226.69 | 275.70 | 234.68 | 0.25 | 0.27 | 0.37 | 0.45 | 4349.36 | 3771.10 | 3670.28 | 3616.31 | 16,410.54 | 16,410.54 | 16,410.54 | 16,410.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Liu, C.; Dai, L. Spatiotemporal Variation and Prediction of Carbon Storage in Terrestrial Ecosystems at Multiple Development Stages in Beijing City Based on the Plus and Integrated Valuation of Ecosystem Services and Tradeoffs Models. Land 2024, 13, 1544. https://doi.org/10.3390/land13091544
Wang P, Liu C, Dai L. Spatiotemporal Variation and Prediction of Carbon Storage in Terrestrial Ecosystems at Multiple Development Stages in Beijing City Based on the Plus and Integrated Valuation of Ecosystem Services and Tradeoffs Models. Land. 2024; 13(9):1544. https://doi.org/10.3390/land13091544
Chicago/Turabian StyleWang, Peian, Chen Liu, and Linlin Dai. 2024. "Spatiotemporal Variation and Prediction of Carbon Storage in Terrestrial Ecosystems at Multiple Development Stages in Beijing City Based on the Plus and Integrated Valuation of Ecosystem Services and Tradeoffs Models" Land 13, no. 9: 1544. https://doi.org/10.3390/land13091544
APA StyleWang, P., Liu, C., & Dai, L. (2024). Spatiotemporal Variation and Prediction of Carbon Storage in Terrestrial Ecosystems at Multiple Development Stages in Beijing City Based on the Plus and Integrated Valuation of Ecosystem Services and Tradeoffs Models. Land, 13(9), 1544. https://doi.org/10.3390/land13091544