Mitigation Strategy of Land Use Mix for Jobs-Housing Mismatch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Data Sources
2.1.1. Research Area
2.1.2. Data Source
2.2. Research Methods
2.2.1. Measurement of Jobs-Housing Mismatch
2.2.2. Measurement of Land Use Mix
- (1)
- Diversity
- (2)
- Accessibility
- (3)
- Compatibility
2.3. Construction of the Influence Mechanism Model
3. Results
3.1. Results of Jobs-Housing Mismatch
3.2. Spatial Pattern of Land Use Mix
3.3. The Impact Mechanism of Land Use Mix on the Jobs-Housing Mismatch
3.4. Strategies for Mitigating Spatial Differentiation in Jobs-Housing Mismatch
4. Discussion and Conclusions
4.1. The Spatial Distribution of Jobs-Housing Mismatch and Land Use Mix
4.2. Effect of Land Use Mix on Jobs-Housing Mismatch and Partitioning Strategies
4.3. Limitations and Further Studies
4.4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Catering | Companies | Shopping | Finance | Residential Areas | Science | Living Services | Medical | |
---|---|---|---|---|---|---|---|---|
Catering | 0 | |||||||
Companies | 0 | 0 | ||||||
Shopping | 0 | 0 | 0 | |||||
Finance | 0 | 0 | 0 | 0 | ||||
Residential Areas | 0 | 0 | 0 | 0 | 0 | |||
Science | 0 | 0 | 0 | 0 | 0.5 | 0 | ||
Living Services | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | |
Medical | 0 | 0 | 0 | 0 | 0.5 | 0 | 0.5 | 0 |
Entertainment | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 |
Government | 0 | 0 | 0 | 0 | 0.5 | 0 | 0.5 | 0 |
Accommodation | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 |
Traffic Facilities | 1 | 1 | 1 | 1 | 0.5 | 0 | 0.5 | 0 |
Scenic Spots | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0.5 | 0.5 | 0.5 |
Entertainment | Government | Accommodation | Traffic Facilities | Scenic Spots | |
---|---|---|---|---|---|
Entertainment | 0 | ||||
Government | 0 | 0 | |||
Accommodation | 0 | 0 | 0 | ||
Traffic Facilities | 1 | 0 | 1 | 0 | |
Scenic Spots | 0.5 | 0.5 | 0.5 | 0.5 | 0 |
References
- Li, S.M.; Liu, Y. The jobs-housing relationship and commuting in Guangzhou, China: HuKou and dual structure. J. Transp. Geogr. 2016, 54, 286–294. [Google Scholar] [CrossRef]
- Ta, N.; Chai, Y.; Zhang, Y.; Sun, D. Understanding job-housing relationship and commuting pattern in Chinese cities: Past, present and future. Transp. Res. Part D-Transp. Environ. 2017, 52, 562–573. [Google Scholar] [CrossRef]
- Tao, Y.; van Ham, M.; Petrović, A.; Ta, N. A household perspective on the commuting paradox: Longitudinal relationships between commuting time and subjective wellbeing for couples in China. Transp. Res. Part A Policy Pract. 2023, 170, 103640. [Google Scholar] [CrossRef]
- Zhao, P.J.; Hu, H.Y. Geographical patterns of traffic congestion in growing megacities: Big data analytics from Beijing. Cities 2019, 92, 164–174. [Google Scholar] [CrossRef]
- Scott, D.M.; Kanaroglou, P.S.; Anderson, W.P. Impacts of commuting efficiency on congestion and emissions: Case of the Hamilton CMA, Canada. Transp. Res. Part D-Transp. Environ. 1997, 2, 245–257. [Google Scholar] [CrossRef]
- Andong, R.F.; Sajor, E. Urban sprawl, public transport, and increasing CO2 emissions: The case of Metro Manila, Philippines. Environ. Dev. Sustain. 2017, 19, 99–123. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, D.; Yu, Z.; Hu, H. Long commutes and transport inequity in China’s growing megacity: New evidence from Beijing using mobile phone data. Travel Behav. Soc. 2020, 20, 248–263. [Google Scholar] [CrossRef]
- Long, Y.; Thill, J.C. Combining smart card data and household travel survey to analyze jobs-housing relationships in Beijing. Comput. Environ. Urban Syst. 2015, 53, 19–35. [Google Scholar] [CrossRef]
- Huang, J.; Levinson, D.; Wang, J.O.; Jin, H.T. Job-worker spatial dynamics in Beijing: Insights from Smart Card Data. Cities 2019, 86, 83–93. [Google Scholar] [CrossRef]
- Zhou, X.G.; Yeh, A.G.O.; Yue, Y. Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data. J. Transp. Geogr. 2018, 68, 102–108. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, J.P.; Zhang, T.R. Quantifying and visualizing jobs-housing balance with big data: A case study of Shanghai. Cities 2017, 66, 10–22. [Google Scholar] [CrossRef]
- Comer, D.; Greene, J.S. The development and application of a land use diversity index for Oklahoma City, OK. Appl. Geogr. 2015, 60, 46–57. [Google Scholar] [CrossRef]
- Næss, P. Residential location, transport rationales and daily-life travel behaviour: The case of Hangzhou Metropolitan Area, China. Prog. Plan. 2013, 79, 1–50. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, M.; Simth, D.A.; Chi, B. Behind the Land Use Mix: Measuring the Functional Compatibility in Urban and Sub-Urban Areas of China. Land 2022, 11, 2. [Google Scholar] [CrossRef]
- Song, X.Q.; Feng, Q.; Xia, F.Z.; Li, X.Y.; Scheffran, J. Impacts of changing urban land-use structure on sustainable city growth in China: A population-density dynamics perspective. Habitat Int. 2021, 107, 102296. [Google Scholar] [CrossRef]
- Kwoka, G.J.; Boschmann, E.E.; Goetz, A.R. The impact of transit station areas on the travel behaviors of workers in Denver, Colorado. Transp. Res. Part A-Policy Pract. 2015, 80, 277–287. [Google Scholar] [CrossRef]
- Cervero, R. Jobs-housing balancing and regional mobility. J. Am. Plann. Assoc. 1989, 55, 136–150. [Google Scholar] [CrossRef]
- Peng, Z.-R. The Jobs-Housing Balance and Urban Commuting. Urban Stud. 1997, 34, 1215–1235. [Google Scholar] [CrossRef]
- D’Agata, A.; Quaranta, G.; Salvia, R.; Carlucci, M.; Salvati, L. Mixed Land Use as an Intrinsic Feature of Sprawl: A Short-Term Analysis of Settlement Growth and Population Distribution Using European Urban Atlas. Land 2023, 12, 972. [Google Scholar] [CrossRef]
- Zhou, X.; Yeh, A.G.; Yue, Y.; Li, W. Residential-employment mixed use and jobs-housing balance: A case study of Shenzhen, China. Land Use Policy 2022, 119, 106201. [Google Scholar] [CrossRef]
- Wu, W.; Chen, W.Y.; Yun, Y.; Wang, F.D.; Gong, Z. Urban greenness, mixed land-use, and life satisfaction: Evidence from residential locations and workplace settings in Beijing. Landsc. Urban Plan. 2022, 224, 104428. [Google Scholar] [CrossRef]
- Zhuo, Y.; Jing, X.; Wang, X.; Li, G.; Xu, Z.; Chen, Y.; Wang, X. The Rise and Fall of Land Use Mix: Review and Prospects. Land 2022, 11, 2198. [Google Scholar] [CrossRef]
- Ma, W.; Wang, N.; Li, Y.; Sun, D.J. 15-min pedestrian distance life circle and sustainable community governance in Chinese metropolitan cities: A diagnosis. Humanit. Soc. Sci. Commun. 2023, 10, 364. [Google Scholar] [CrossRef]
- Grasser, G.; van Dyck, D.; Titze, S.; Stronegger, W.J. A European perspective on GIS-based walkability and active modes of transport. Eur. J. Public Health 2016, 27, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zeng, L.; Liang, H.; Li, D.; Yang, X.; Zhang, B. Comprehensive walkability assessment of urban pedestrian environments using big data and deep learning techniques. Sci Rep. 2024, 14, 26993. [Google Scholar] [CrossRef] [PubMed]
- Black, J.A.; Conroy, M.M. Accessibility Measures and the Social Evaluation of Urban Structure. Environ. Plan. A 1977, 9, 1013–1031. [Google Scholar] [CrossRef]
- Zhuo, Y.; Zheng, H.; Wu, C.; Xu, Z.; Li, G.; Yue, Z. Compatibility Mix Degree Index: A Novel Measure to Characterize Urban Land Use Mix Pattern. Comput. Environ. Urban Syst. 2019, 75, 49–60. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression—Modelling spatial non-stationarity. J. R. Stat. Soc. Ser. D-Stat. 1998, 47, 431–443. [Google Scholar]
- Wang, D.G.; Zhou, M. The built environment and travel behavior in urban China: A literature review. Transp. Res. Part D-Transp. Environ. 2017, 52, 574–585. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Bahr, S. The relationship between urban greenery, mixed land use and life satisfaction: An examination using remote sensing data and deep learning. Landsc. Urban Plan. 2024, 251, 105174. [Google Scholar] [CrossRef]
- Wang, P.H.; Li, K.R.; Zhang, W.B. China’s New Housing Security Model: Evaluation of the Job-Housing Balance in Affordable Rental Housing, Shanghai. Land 2024, 13, 1034. [Google Scholar] [CrossRef]
- Chen, R.Y.; Zhang, M.; Zhou, J.P. Jobs-housing relationships before and amid COVID-19: An excess-commuting approach. J. Transp. Geogr. 2023, 106, 103507. [Google Scholar] [CrossRef]
- Gao, Y.K.; Zhao, P.J.; Zhang, M.Z. Discovering temporal-spatial features of jobs-housing relationship from a regional perspective: A nationwide study. J. Transp. Geogr. 2024, 121, 104020. [Google Scholar] [CrossRef]
- Li, Z.J.; Zhao, P.J.; Yu, L.; Hai, X.D.; Feng, Y.H. The changes in job-housing balance during the Covid-19 period in China. Cities 2023, 137, 104313. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yuan, M.X.; Liu, F.J.; Niu, Q. The Impact of COVID-19 on the Jobs-Housing Dynamic Balance: Empirical Evidence from Wuhan between 2019, 2021, 2023. Land 2024, 13, 1299. [Google Scholar] [CrossRef]
District | Area (km2) | Resident Population (Ten Thousand People) | Number of Employed Persons (People) | Urbanization Rate (%) |
---|---|---|---|---|
Shangcheng | 122 | 137.1 | 292,350 | 100 |
Gongshu | 119 | 117.7 | 359,228 | 100 |
Xihu | 263 | 116.7 | 391,714 | 97.4 |
Binjiang | 73 | 53 | 421,649 | 100 |
Xiaoshan | 931 | 211.0 | 525,511 | 81.1 |
Yuhang | 940 | 136.4 | 322,991 | 74.1 |
Linping | 282 | 110.8 | 251,658 | 89.1 |
Qiantang | 338 | 79.7 | 301,593 | 88.6 |
System | Indicator | Source of Data and Description | Weight |
---|---|---|---|
Traffic Condition | Distance from transportation facilities | Amap POI data, Euclidean distance | 35.41% |
Distance from subway stops | Amap POI data, Euclidean distance | 64.59% | |
Public Service | Distance from hospitals | Amap POI data, Euclidean distance | 56.59% |
Distance from schools | Amap POI data, Euclidean distance | 43.41% | |
Socio-Economic Situation | GDP | GDP spatial distribution Kilometer grid dataset | 39.06% |
Benchmark land price | Bureau of Planning and Natural Resources, Hangzhou | 60.94% |
Indicator | Jobs-Housing Mismatch Index | |||
---|---|---|---|---|
Residential Dominant | Employment Dominant | |||
High Mismatch | Low Mismatch | High Mismatch | Low Mismatch | |
Diversity | 0.041 ** | 0.003 ** | 0.072 ** | −0.045 ** |
Availability | 0.003 ** | 0.003 ** | −0.045 *** | −0.023 *** |
Compatibility | −0.013 *** | −0.002 *** | 0.013 *** | 0.026 *** |
Traffic Condition | −0.180 *** | −0.061 *** | 0.075 *** | 0.108 *** |
Public Service | −0.583 *** | −0.306 *** | 0.627 *** | 1.028 *** |
Socio-Economic Situation | 0.249 * | 0.346 * | −0.004 *** | 0.006 *** |
R2 | 0.65 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wu, S.; Zeng, C.; Dang, Y. Mitigation Strategy of Land Use Mix for Jobs-Housing Mismatch. Land 2025, 14, 82. https://doi.org/10.3390/land14010082
Liu Z, Wu S, Zeng C, Dang Y. Mitigation Strategy of Land Use Mix for Jobs-Housing Mismatch. Land. 2025; 14(1):82. https://doi.org/10.3390/land14010082
Chicago/Turabian StyleLiu, Zhuangtian, Shaohua Wu, Canying Zeng, and Yunxiao Dang. 2025. "Mitigation Strategy of Land Use Mix for Jobs-Housing Mismatch" Land 14, no. 1: 82. https://doi.org/10.3390/land14010082
APA StyleLiu, Z., Wu, S., Zeng, C., & Dang, Y. (2025). Mitigation Strategy of Land Use Mix for Jobs-Housing Mismatch. Land, 14(1), 82. https://doi.org/10.3390/land14010082