Quantifying Evapotranspiration and Environmental Factors in the Abandoned Saline Farmland Using Landsat Archives
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Processing
2.2.1. Vegetation Density
2.2.2. Surface Emissivity
2.2.3. Land Surface Temperature
2.3. Evapotranspiration Calculation
2.3.1. The Instantaneous Evapotranspiration Calculation
2.3.2. Daily and Monthly Evapotranspiration Calculation
2.3.3. Evapotranspiration Validation
2.4. Abandoned Saline Farmland Spatial Information
2.5. Factors Influencing Evapotranspiration
2.5.1. The Characteristic Index of Influencing Factors
Salinization Index
Aggregation Index
2.5.2. Lasso Multivariate Regression Analysis
2.5.3. Feature Importance Analysis Based on Random Forest
2.5.4. Shapley Feature Importance Analysis Method
3. Results
3.1. Estimated Evapotranspiration Maps
3.1.1. Different Time Scale of Evapotranspiration Maps
3.1.2. Validation of Evapotranspiration Estimates
3.2. Factors Affecting Evapotranspiration in Abandoned Saline Farmland
3.2.1. Degree of Salinization
3.2.2. Salt-Tolerant Vegetation Coverage
3.2.3. Influence of the Groundwater Table Depth
3.2.4. The Area of Abandoned Saline Agricultural Land
3.2.5. Spatial Distribution
3.3. Importance of Features in Evapotranspiration in Abandoned Saline Farmland
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, D.S.G.; Middleton, N.J. Salinization: New Perspectives on a Major Desertification Issue. J. Arid Environ. 1993, 24, 95–105. [Google Scholar] [CrossRef]
- Aslam, M.; Prathapar, S.A.; Aslam, M.; Prathapar, S.A. Strategies to Mitigate Secondary Salinization in the Indus Basin of Pakistan: A Selective Review; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2006. [Google Scholar]
- Kitamura, Y.; Yano, T.; Honna, T.; Yamamoto, S.; Inosako, K. Causes of Farmland Salinization and Remedial Measures in the Aral Sea Basin—Research on Water Management to Prevent Secondary Salinization in Rice-Based Cropping System in Arid Land. Agric. Water Manag. 2006, 85, 1–14. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, F.; Chen, Y.; Xu, T.; Cheng, Z.; Liang, J. Assessment of Reclamation Treatments of Abandoned Farmland in an Arid Region of China. Sustainability 2016, 8, 1183. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Q.; Zhao, Q.; Wu, J. Assessing the Long-Term Evolution of Abandoned Salinized Farmland via Temporal Remote Sensing Data. Remote Sens. 2021, 13, 4057. [Google Scholar] [CrossRef]
- Romero-Díaz, A.; Pérez-Morales, A.; Marín-Sanleandro, P. Prevalence, Causes, and Consequences of Agricultural Land Abandonment: A Case Study in the Region of Murcia, Spain. CATENA 2024, 241, 108071. [Google Scholar] [CrossRef]
- Konukcu, F.; Gowing, J.W.; Rose, D.A. Dry Drainage: A Sustainable Solution to Waterlogging and Salinity Problems in Irrigation Areas? Agric. Water Manag. 2006, 83, 1–12. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, L.; Huang, J.; Yang, J.; Vincent, B.; Bouarfa, S.; Vidal, A. On the Effectiveness of Dry Drainage in Soil Salinity Control. Sci. China Ser. E-Technol. Sci. 2009, 52, 3328–3334. [Google Scholar] [CrossRef]
- Yu, B.; Jiang, L.; Shang, S. Dry Drainage Effect of Hetao Irrigation District Based on Remote Sensing Evapotranspiration. Trans. Chin. Soc. Agric. Eng. 2016, 32, 1–8. [Google Scholar]
- Khouri, N. Potential of Dry Drainage for Controlling Soil Salinity. Can. J. Civ. Eng. 1998, 25, 195–205. [Google Scholar] [CrossRef]
- Gowing, J.W.; Wyseure, G.C.L. Dry-Drainage a Sustainable and Cost-Effective Solution to Waterlogging and Salinisation. Proceedings of the 5th International Drainage Workshop, Lahore, Pakistan, 8–15 February 1992; Volume 3, pp. 6–26. [Google Scholar]
- Raza, A.; Hu, Y.; Acharki, S.; Buttar, N.A.; Ray, R.L.; Khaliq, A.; Zubair, N.; Zubair, M.; Syed, N.R.; Elbeltagi, A. Evapotranspiration Importance in Water Resources Management Through Cutting-Edge Approaches of Remote Sensing and Machine Learning Algorithms. In Surface and Groundwater Resources Development and Management in Semi-arid Region: Strategies and Solutions for Sustainable Water Management; Pande, C.B., Kumar, M., Kushwaha, N.L., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–20. ISBN 978-3-031-29394-8. [Google Scholar]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop Evapotranspiration Estimation with FAO56: Past and Future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Pereira, L.S.; Perrier, A.; Allen, R.G.; Alves, I. Evapotranspiration: Concepts and Future Trends. J. Irrig. Drain Eng. 1999, 125, 45–51. [Google Scholar] [CrossRef]
- Van Wijk, W.R.; De Vries, D.A. Evapotranspiration. Neth. J. Agric. Sci. 1954, 2, 105–119. [Google Scholar]
- Tanner, C.B. Measurement of Evapotranspiration. In Agronomy Monographs; Hagan, R.M., Haise, H.R., Edminster, T.W., Eds.; American Society of Agronomy: Madison, WI, USA, 2015; pp. 534–574. ISBN 978-0-89118-206-1. [Google Scholar]
- Rijtema, P.E. An Analysis of Actual Evapotranspiration. Ph.D. Thesis, Pudoc, San Vicente, Philippines, 1965. [Google Scholar]
- Mondal, S.; Mishra, A. Quantifying the Precipitation, Evapotranspiration, and Soil Moisture Network’s Interaction Over Global Land Surface Hydrological Cycle. Water Resour. Res. 2024, 60, e2023WR034861. [Google Scholar] [CrossRef]
- Gowda, P.H.; Chavez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. ET Mapping for Agricultural Water Management: Present Status and Challenges. Irrig Sci 2008, 26, 223–237. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. A Methodology for Estimation of Surface Evapotranspiration over Large Areas Using Remote Sensing Observations. Geophys. Res. Lett. 1999, 26, 2773–2776. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A Review of Remote Sensing Based Actual Evapotranspiration Estimation. WIREs Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Taheri, M.; Mohammadian, A.; Ganji, F.; Bigdeli, M.; Nasseri, M. Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges. Energies 2022, 15, 1264. [Google Scholar] [CrossRef]
- Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P. Estimating Basin Scale Evapotranspiration (ET) by Water Balance and Remote Sensing Methods. Hydrol. Process. 2011, 25, 4037–4049. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.M.; Cihlar, J. Mapping Evapotranspiration Based on Remote Sensing: An Application to Canada’s Landmass. Water Resour. Res. 2003, 39, 2002WR001680. [Google Scholar] [CrossRef]
- Wright, J.L. New Evapotranspiration Crop Coefficients. J. Irrig. Drain. Div. 1982, 108, 57–74. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Chen, J.M.; Liu, J. Evolution of Evapotranspiration Models Using Thermal and Shortwave Remote Sensing Data. Remote Sens. Environ. 2020, 237, 111594. [Google Scholar] [CrossRef]
- Glenn, E.P.; Neale, C.M.U.; Hunsaker, D.J.; Nagler, P.L. Vegetation Index-Based Crop Coefficients to Estimate Evapotranspiration by Remote Sensing in Agricultural and Natural Ecosystems. Hydrol. Process. 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- Hu, X.; Shi, L.; Lin, L.; Zhang, B.; Zha, Y. Optical-Based and Thermal-Based Surface Conductance and Actual Evapotranspiration Estimation, an Evaluation Study in the North China Plain. Agric. For. Meteorol. 2018, 263, 449–464. [Google Scholar] [CrossRef]
- Jarvis, P.G.; Monteith, J.L.; Weatherley, P.E. The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 273, 593–610. [Google Scholar] [CrossRef]
- Meng, C.L.; Li, Z.-L.; Zhan, X.; Shi, J.C.; Liu, C.Y. Land Surface Temperature Data Assimilation and Its Impact on Evapotranspiration Estimates from the Common Land Model. Water Resour. Res. 2009, 45, 2008WR006971. [Google Scholar] [CrossRef]
- Xiong, Y.J.; Qiu, G.Y. Estimation of Evapotranspiration Using Remotely Sensed Land Surface Temperature and the Revised Three-Temperature Model. Int. J. Remote Sens. 2011, 32, 5853–5874. [Google Scholar] [CrossRef]
- Jin, Y.; He, R.; Marino, G.; Whiting, M.; Kent, E.; Sanden, B.L.; Culumber, M.; Ferguson, L.; Little, C.; Grattan, S. Spatially Variable Evapotranspiration over Salt Affected Pistachio Orchards Analyzed with Satellite Remote Sensing Estimates. Agric. For. Meteorol. 2018, 262, 178–191. [Google Scholar] [CrossRef]
- Aboelsoud, H.M.; Habib, A.; Engel, B.; Hashem, A.A.; Abou El-Hassan, W.; Govind, A.; Elnashar, A.; Eid, M.; Kheir, A.M. The Combined Impact of Shallow Groundwater and Soil Salinity on Evapotranspiration Using Remote Sensing in an Agricultural Alluvial Setting. J. Hydrol. Reg. Stud. 2023, 47, 101372. [Google Scholar] [CrossRef]
- Lai, Y.; Wu, D.; Zhang, M. Crystallization Deformation of a Saline Soil during Freezing and Thawing Processes. Appl. Therm. Eng. 2017, 120, 463–473. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Engel, B.; Huang, G. Growth Responses of Crops and Natural Vegetation to Irrigation and Water Table Changes in an Agro-Ecosystem of Hetao, Upper Yellow River Basin: Scenario Analysis on Maize, Sunflower, Watermelon and Tamarisk. Agric. Water Manag. 2018, 199, 93–104. [Google Scholar] [CrossRef]
- Gobin, A.; Sallah, A.-H.M.; Curnel, Y.; Delvoye, C.; Weiss, M.; Wellens, J.; Piccard, I.; Planchon, V.; Tychon, B.; Goffart, J.-P.; et al. Crop Phenology Modelling Using Proximal and Satellite Sensor Data. Remote Sens. 2023, 15, 2090. [Google Scholar] [CrossRef]
- Durgun, Y.Ö.; Gobin, A.; Van De Kerchove, R.; Tychon, B. Crop Area Mapping Using 100-m Proba-V Time Series. Remote Sens. 2016, 8, 585. [Google Scholar] [CrossRef]
- Qin, Z.H.; Li, W.J.; Xu, B.; Chen, Z.; Liu, J. The Estimation of Land Surface Emissivity for Landsat TM6. Remote Sens. Land Resour. 2004, 3, 28–32. [Google Scholar]
- Qin, Z.; Karnieli, A.; Berliner, P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.-L.; Sun, X. Temporal Upscaling of Instantaneous Evapotranspiration: An Intercomparison of Four Methods Using Eddy Covariance Measurements and MODIS Data. Remote Sens. Environ. 2013, 138, 102–118. [Google Scholar] [CrossRef]
- Liu, Y.; Pereira, L.S.; Fernando, R.M. Fluxes through the Bottom Boundary of the Root Zone in Silty Soils: Parametric Approaches to Estimate Groundwater Contribution and Percolation. Agric. Water Manag. 2006, 84, 27–40. [Google Scholar] [CrossRef]
- Peng, Z.; Guo, H.; Wu, J.; Huang, J. Contribution of Osmotic Potential on Bare Soil Evaporation Rate. Adv. Water Sci. 2013, 24, 235–242. [Google Scholar]
- O’Neill, R.V.; Krummel, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; DeAngelis, D.L.; Milne, B.T.; Turner, M.G.; Zygmunt, B.; Christensen, S.W.; et al. Indices of Landscape Pattern. Landsc. Ecol 1988, 1, 153–162. [Google Scholar] [CrossRef]
- He, H.S.; DeZonia, B.E.; Mladenoff, D.J. An Aggregation Index (AI) to Quantify Spatial Patterns of Landscapes. Landsc. Ecol. 2000, 15, 591–601. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Adeyemo, T.; Kramer, I.; Levy, G.J.; Mau, Y. Salinity and Sodicity Can Cause Hysteresis in Soil Hydraulic Conductivity. Geoderma 2022, 413, 115765. [Google Scholar] [CrossRef]
- Glenn, E.P.; Nagler, P.L.; Huete, A.R. Vegetation Index Methods for Estimating Evapotranspiration by Remote Sensing. Surv. Geophys. 2010, 31, 531–555. [Google Scholar] [CrossRef]
- Forman, R.T.T. Some General Principles of Landscape and Regional Ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, Z.; Zhao, C.; Qu, Y.; Liu, Q.; Zhang, H.; Tong, Y.; Wang, C.; Li, S.; Guo, J. Review of Land Surface Albedo: Variance Characteristics, Climate Effect and Management Strategy. Remote Sens. 2022, 14, 1382. [Google Scholar] [CrossRef]
- Hien, L.T.T.; Gobin, A.; Lim, D.T.; Quan, D.T.; Hue, N.T.; Thang, N.N.; Binh, N.T.; Dung, V.T.K.; Linh, P.H. Soil Moisture Influence on the FTIR Spectrum of Salt-Affected Soils. Remote Sens. 2022, 14, 2380. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Metwaly, M.M.; Metwalli, M.R.; AbdelRahman, M.A.; Badreldin, N. Integrating Active and Passive Remote Sensing Data for Mapping Soil Salinity Using Machine Learning and Feature Selection Approaches in Arid Regions. Remote Sens. 2023, 15, 1751. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.; Afifi, A.A.; D’Antonio, P.; Gabr, S.S.; Scopa, A. Detecting and Mapping Salt-Affected Soil with Arid Integrated Indices in Feature Space Using Multi-Temporal Landsat Imagery. Remote Sens. 2022, 14, 2599. [Google Scholar] [CrossRef]
- Tian, F.; Hou, M.; Qiu, Y.; Zhang, T.; Yuan, Y. Salinity Stress Effects on Transpiration and Plant Growth under Different Salinity Soil Levels Based on Thermal Infrared Remote (TIR) Technique. Geoderma 2020, 357, 113961. [Google Scholar] [CrossRef]
ET | GWTD | AI | NDVI | SI | Area | |
---|---|---|---|---|---|---|
ET | 1.000 | −0.121 *** | −0.123 *** | 0.218 *** | −0.098 *** | −0.096 *** |
GWTD | −0.121 *** | 1.000 | −0.012 | 0.015 | −0.069 *** | −0.049 * |
AI | −0.123 *** | −0.012 | 1.000 | −0.122 *** | 0.280 *** | 0.218 *** |
NDVI | 0.218 *** | 0.015 | −0.122 *** | 1.000 | 0.043 * | −0.097 *** |
SI | −0.098 *** | −0.069 *** | 0.280 *** | 0.043 * | 1.000 | 0.156 *** |
Area | −0.096 *** | −0.049 * | 0.218 *** | −0.097 *** | 0.156 *** | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Wu, J.; Yang, Q.; Zhao, H.; Mao, J.; Yu, Z.; Liu, Y.; Gobin, A. Quantifying Evapotranspiration and Environmental Factors in the Abandoned Saline Farmland Using Landsat Archives. Land 2025, 14, 283. https://doi.org/10.3390/land14020283
Zhao L, Wu J, Yang Q, Zhao H, Mao J, Yu Z, Liu Y, Gobin A. Quantifying Evapotranspiration and Environmental Factors in the Abandoned Saline Farmland Using Landsat Archives. Land. 2025; 14(2):283. https://doi.org/10.3390/land14020283
Chicago/Turabian StyleZhao, Liya, Jingwei Wu, Qi Yang, Hang Zhao, Jun Mao, Ziyang Yu, Yanqi Liu, and Anne Gobin. 2025. "Quantifying Evapotranspiration and Environmental Factors in the Abandoned Saline Farmland Using Landsat Archives" Land 14, no. 2: 283. https://doi.org/10.3390/land14020283
APA StyleZhao, L., Wu, J., Yang, Q., Zhao, H., Mao, J., Yu, Z., Liu, Y., & Gobin, A. (2025). Quantifying Evapotranspiration and Environmental Factors in the Abandoned Saline Farmland Using Landsat Archives. Land, 14(2), 283. https://doi.org/10.3390/land14020283