Distribution Characteristics and Relationship Between Soil Salinity and Soil Particle Size in Ebinur Lake Wetland, Xinjiang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collecting and Processing
2.2.1. Soil Particle Size Measurements
2.2.2. Soil Salinity Measurement
2.2.3. Soil Fractal Modeling
2.2.4. Inverse Distance Weighting
2.2.5. Ordinary Kriging
2.2.6. Statistical and Geostatistical Analysis
3. Results
3.1. Characterization of Soil Salinity/Salt Ion Distribution
3.1.1. Vertical Distribution Characteristics of Total Soil Salinity
3.1.2. Characteristics of Vertical Distribution of Salt Ions and Major Saline Soil Types
3.1.3. Characterization of Spatial Distribution of Soil Salinity
3.2. Statistical Description and Spatial Distribution Characteristics of Soil Particle Size
3.3. Correlation Analysis Between Soil Salts/Ions and Soil Particle Size
3.3.1. Correlation Between Soil Salts/Ions and Soil Particle Size
3.3.2. Percentage of Total Salts/Salt Ions in Different Soil Textures
4. Discussion
4.1. Analysis of Distribution Characteristics of Salinity and Salt Ions
4.2. Fractal Dimension of Particle Size Distribution
4.3. Analysis of Relationship Between Soil Salinity and Soil Particle Size
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Herbert, E.R.; Boon, P.; Burgin, A.J.; Neubauer, S.C.; Franklin, R.B.; Ardón, M.; Hopfensperger, K.N.; Lamers, L.P.; Gell, P. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 2015, 6, 1–43. [Google Scholar] [CrossRef]
- Suleymanov, A.; Gabbasova, I.; Komissarov, M.; Suleymanov, R.; Garipov, T.; Tuktarova, I.; Belan, L. Random forest modeling of soil properties in saline semi-arid areas. Agriculture 2023, 13, 976. [Google Scholar] [CrossRef]
- Andrade Foronda, D.; Colinet, G. Prediction of soil salinity/sodicity and salt-affected soil classes from soluble salt ions using machine learning algorithms. Soil Syst. 2023, 7, 47. [Google Scholar] [CrossRef]
- Singh, A. Soil salinity: A global threat to sustainable development. Soil Use Manag. 2022, 38, 39–67. [Google Scholar] [CrossRef]
- Zhuang, Q.; Shao, Z.; Huang, X.; Zhang, Y.; Wu, W.; Feng, X.; Lv, X.; Ding, Q.; Cai, B.; Altan, O. Evolution of soil salinization under the background of landscape patterns in the irrigated northern slopes of Tianshan Mountains, Xinjiang, China. Catena 2021, 206, 105561. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J.; Jia, H. Analysis of spatial variation of soil salinization using a hydrochemical and stable isotopic method in a semiarid irrigated basin, Hetao Plain, inner Mongolia, North China. Environ. Process. 2016, 3, 723–733. [Google Scholar] [CrossRef]
- Chernousenko, G.; Oreshnikova, N.; Ukraintseva, N. Soil salinization in coastal areas of the Arctic and Pacific regions of Russia. Eurasian Soil Sci. C/C Pochvovedenie 2001, 34, 1062–1076. [Google Scholar]
- Herrero, J.; Pérez-Coveta, O. Soil salinity changes over 24 years in a Mediterranean irrigated district. Geoderma 2005, 125, 287–308. [Google Scholar] [CrossRef]
- Gebremeskel, G.; Gebremicael, T.; Kifle, M.; Meresa, E.; Gebremedhin, T.; Girmay, A. Salinization pattern and its spatial distribution in the irrigated agriculture of Northern Ethiopia: An integrated approach of quantitative and spatial analysis. Agric. Water Manag. 2018, 206, 147–157. [Google Scholar] [CrossRef]
- Zheng, M.; Bai, Y.; Zhang, J.; Ding, B.; Xiao, J. Soil salinity characteristics of typical oasis in arid area based on principal component analysis: An example in Xinjiang. Chin. Agric. Sci. Bull. 2020, 36, 81–87. [Google Scholar]
- Li, Q.; Xi, M.; Wang, Q.; Kong, F.; Li, Y. Characterization of soil salinization in typical estuarine area of the Jiaozhou Bay, China. Phys. Chem. Earth Parts A/B/C 2018, 103, 51–61. [Google Scholar] [CrossRef]
- Burgess, T.; Webster, R. Optimal interpolation and isarithmic mapping of soil properties: I The semi-variogram and punctual kriging. J. Soil Sci. 1980, 31, 315–331. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Zhang, X.; Wang, X.; Lv, Z.; Yang, J.; Shao, H.; Yu, S. GIS-mapping spatial distribution of soil salinity for Eco-restoring the Yellow River Delta in combination with electromagnetic induction. Ecol. Eng. 2016, 94, 306–314. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, B. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agric. Sci. 2015, 47, 125–130. [Google Scholar]
- Singh, A. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, K.; Qian, H.; Gao, Y.; Fang, Y.; Tang, S.; Xiao, S.; Ren, W.; Qu, W.; Zhang, Q. Natural-human driving factors of groundwater salinization in a long-term irrigation area. Environ. Res. 2023, 220, 115178. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, J.; Xu, D.; Wu, B.; Chang, H.; Zhang, B.; Wei, Z. Soil salinization poses greater effects than soil moisture on field crop growth and yield in arid farming areas with intense irrigation. J. Clean. Prod. 2024, 451, 142007. [Google Scholar] [CrossRef]
- Akramkhanov, A.; Martius, C.; Park, S.J.; Hendrickx, J.M. Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma 2011, 163, 55–62. [Google Scholar] [CrossRef]
- Sharma, L.K.; Naik, R. Saline Wetland Ecosystems. In Conservation of Saline Wetland Ecosystems: An Initiative towards UN Decade of Ecological Restoration; Springer: Singapore, 2024; pp. 33–75. [Google Scholar]
- Nurbekova, Z.; Satkanov, M.; Beisekova, M.; Akbassova, A.; Ualiyeva, R.; Cui, J.; Chen, Y.; Wang, Z.; Zhangazin, S. Strategies for achieving high and sustainable plant productivity in saline soil conditions. Horticulturae 2024, 10, 878. [Google Scholar] [CrossRef]
- Liu, Y. The driving factors and ecological countermeasures of soil salinization in the seawater intrusion areas in the south of Laizhou Bay. Chin. Agric. Sci. Bull. 2012, 19, 193–204. [Google Scholar]
- Li, E.; Shen, J.; Jing, J.; Hu, H.; Lu, X. Distribution characteristics of salinity and nutrient at the estuary in coastal saline soil of north Jiangsu. Sci. Soil Water Conserv. 2016, 14, 79–88. [Google Scholar]
- Cañedo-Argüelles, M.; Kefford, B.J.; Piscart, C.; Prat, N.; Schäfer, R.B.; Schulz, C.-J. Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 2013, 173, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.-Y.; Guo, Q.-E.; Che, Z.-X.; Gao, Y.; Ge, H.-J. Effects of phosphate gypsum agent on soil moisture diffusivity. Arid Zone Res. 2016, 33, 506–510. [Google Scholar]
- Stavi, I.; Thevs, N.; Priori, S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
- Fu, X.; Wu, X.; Wang, H.; Chen, Y.; Wang, R.; Wang, Y. Effects of fertigation with carboxymethyl cellulose potassium on water conservation, salt suppression, and maize growth in salt-affected soil. Agric. Water Manag. 2023, 287, 108436. [Google Scholar] [CrossRef]
- Xie, X.; Pu, L.; Zhu, M.; Xu, Y.; Wang, X. Linkage between soil salinization indicators and physicochemical properties in a long-term intensive agricultural coastal reclamation area, Eastern China. J. Soils Sediments 2019, 19, 3699–3707. [Google Scholar] [CrossRef]
- Hu, H.; Tian, F.; Hu, H. Soil particle size distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang of China. Sci. China Technol. Sci. 2011, 54, 1568–1574. [Google Scholar] [CrossRef]
- Rubinić, V.; Lazarević, B.; Husnjak, S.; Durn, G. Climate and relief influence on particle size distribution and chemical properties of pseudogley soils in croatia. Catena 2015, 127, 340–348. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, K.; Qian, H.; Gao, Y.; Fang, Y.; Xiao, S.; Tang, S.; Zhang, Q.; Qu, W.; Ren, W. Characterization of soil salinization and its driving factors in a typical irrigation area of Northwest China. Sci. Total Environ. 2022, 837, 155808. [Google Scholar] [CrossRef]
- Shokri, N.; Hassani, A.; Sahimi, M. Multi-scale soil salinization dynamics from global to pore scale: A review. Rev. Geophys. 2024, 62, e2023RG000804. [Google Scholar] [CrossRef]
- Gao, Z.; Niu, F.; Lin, Z.; Luo, J. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai–Tibet Plateau, China. Catena 2021, 203, 105373. [Google Scholar] [CrossRef]
- Richer-de-Forges, A.C.; Arrouays, D.; Chen, S.; Dobarco, M.R.; Libohova, Z.; Roudier, P.; Minasny, B.; Bourennane, H. Hand-feel soil texture and particle-size distribution in central France. Relationships and implications. Catena 2022, 213, 106155. [Google Scholar] [CrossRef]
- Song, X.Y.; Li, H.Y. Fractal characteristics of soil particle-size distributions under different landform and land-use types. Adv. Mater. Res. 2011, 201, 2679–2684. [Google Scholar] [CrossRef]
- Zhang, A.; Ding, J.; Wang, J.; SaiDi, M.; Li, Y. Fractal and multifractal analysis on saline soil particle size distribution in arid oasis. Arid Zone Res. 2019, 36, 314–322. [Google Scholar]
- Wang, E.; Chen, J.; Liu, L.; Cui, L.; Xue, J.; Ren, J.; Du, Q. Effect of soil texture on water and salt transport in freeze—Thaw soil in the shallow groundwater area. Water 2023, 15, 2587. [Google Scholar] [CrossRef]
- Bing, H.; He, P.; Zhang, Y. Cyclic freeze–thaw as a mechanism for water and salt migration in soil. Environ. Earth Sci. 2015, 74, 675–681. [Google Scholar] [CrossRef]
- Li, X.; Chang, S.X.; Salifu, K.F. Soil texture and layering effects on water and salt dynamics in the presence of a water table: A review. Environ. Rev. 2014, 22, 41–50. [Google Scholar] [CrossRef]
- Zettl, J.; Lee Barbour, S.; Huang, M.; Si, B.; Leskiw, L. Influence of textural layering on field capacity of coarse soils. Can. J. Soil Sci. 2011, 91, 133–147. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Wu, Y. Research on the water level change effect on the salinity of everglade around Ebinur Lake. J. Arid Land Resour. Environ. 2010, 24, 108–111. [Google Scholar]
- Ding, J.-L.; Ge, X.-Y.; Wang, J.-Z. Ebinur Lake wetland identification and its spatio-temporal dynamic changes. J. Nat. Resour. 2021, 36, 1949–1963. [Google Scholar] [CrossRef]
- Xie, W.; Wu, L.; Zhang, Y.; Wu, T.; Li, X.; Ouyang, Z. Effects of straw application on coastal saline topsoil salinity and wheat yield trend. Soil Tillage Res. 2017, 169, 1–6. [Google Scholar] [CrossRef]
- Xue, L.; Jiang, J.; Li, X.; Yan, Z.; Zhang, Q.; Ge, Z.; Tian, B.; Craft, C. Salinity affects topsoil organic carbon concentrations through regulating vegetation structure and productivity. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005217. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Germer, J.; Asch, F. Evaluating topsoil salinity via geophysical methods in rice production systems in the Vietnam Mekong Delta. J. Agron. Crop Sci. 2024, 210, e12676. [Google Scholar] [CrossRef]
- Guo, Q.-E.; Cao, S.-Y.; Zhan, Z.-B.; Nan, L.-L.; Wang, Z.; Zhang, J.-J.; Zhu, X.-T. Distribution characteristics of salt ions in soil particles of different grain sizes of two typical salt-forming soils in Gansu. Arid Zone Agric. Res. 2021, 5, 216–221. [Google Scholar]
- He, B.; Hu, W.; Chen, X.; Ding, C.; Qi, X. Spatial and temporal distribution characteristics and diversity of myxobacteria in the rhizosphere of Phragmites australis in Ebinur Lake wetland. Acta Microbiol. Sin. 2024, 4. [Google Scholar]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I. Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Yuan, Y.; Fu, D.; Lü, G. Inter-specific relations of the dominant plants of the wetland vegetation in the Ebinur Lake Wetland in Xinjiang Uygur autonomous region. Wetl. Sci. 2008, 6, 486–491. [Google Scholar]
- Abulimiti, A.; Wang, Y.-H. Soil organic matter, salinity, and water content in the Aibi Lake Wetland. J. Northeast. For. Univ. 2020, 48, 34–40. [Google Scholar]
- Sun, Q.; Sun, J.; Baidurela, A.; Li, L.; Hu, X.; Song, T. Ecological landscape pattern changes and security from 1990 to 2021 in Ebinur Lake Wetland Reserve, China. Ecol. Indic. 2022, 145, 109648. [Google Scholar] [CrossRef]
- Gondek, M.; Weindorf, D.C.; Thiel, C.; Kleinheinz, G. Soluble salts in compost and their effects on soil and plants: A review. Compos. Sci. Util. 2020, 28, 59–75. [Google Scholar] [CrossRef]
- Richards, L. Diagnosis and improvement of saline. Saline Alkali Soils. Handb. 1954, 60, 129–134. [Google Scholar]
- Hardie, M.; Doyle, R. Measuring soil salinity. In Plant Salt Tolerance. Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; pp. 415–425. [Google Scholar]
- Choudhary, O.; Kharche, V.K. Soil salinity and sodicity. Soil Sci. 2018, 12, 353–384. [Google Scholar]
- Rhoades, J. Salinity: Electrical conductivity and total dissolved solids. Methods Soil Anal. 1996, 5 Pt 3, 417–435. [Google Scholar]
- Zhao, Y.; Feng, Q.; Yang, H. Soil salinity distribution and its relationship with soil particle size in the lower reaches of Heihe River, Northwestern China. Environ. Earth Sci. 2016, 75, 810. [Google Scholar] [CrossRef]
- Wang, G.L.; Zhou, S.L.; Zhao, Q.G. Volume fractal dimension of soil particles and its applications to land use. Acta Pedol. Sin. 2005, 42, 546–550. [Google Scholar]
- Zhao, W.; Cao, T.; Li, Z.; Sheng, J. Comparison of IDW, cokriging and ARMA for predicting spatiotemporal variability of soil salinity in a gravel–sand mulched jujube orchard. Environ. Monit. Assess. 2019, 191, 376. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H.-W.; Shi, Y.-X. The pollution assessment and spatial distribution of soil heavy metals in field scale—Case study in Yanggu county of northwest Shandong province. Chin. J. Soil Sci. 2009, 40, 673–678. [Google Scholar]
- Zhang, X.; Zhao, W.; Wang, L.; Liu, Y.; Liu, Y.; Feng, Q. Relationship between soil water content and soil particle size on typical slopes of the Loess Plateau during a drought year. Sci. Total Environ. 2019, 648, 943–954. [Google Scholar] [CrossRef]
- Zhang, T.; Zhan, X.; He, J.; Feng, H.; Kang, Y. Salt characteristics and soluble cations redistribution in an impermeable calcareous saline-sodic soil reclaimed with an improved drip irrigation. Agric. Water Manag. 2018, 197, 91–99. [Google Scholar] [CrossRef]
- Juan, P.; Mateu, J.; Jordan, M.; Mataix-Solera, J.; Meléndez-Pastor, I.; Navarro-Pedreño, J. Geostatistical methods to identify and map spatial variations of soil salinity. J. Geochem. Explor. 2011, 108, 62–72. [Google Scholar] [CrossRef]
- Fu, T.; Gao, H.; Liu, J. Comparison of different interpolation methods for prediction of soil salinity in arid irrigation region in northern China. Agronomy 2021, 11, 1535. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Wang, F.; Liang, J. Study on particle size composition and erodibility of different salinized soils in Ebinur Lake wetland. Soil 2018, 50, 598–605. [Google Scholar]
- Caputo, M.C.; De Carlo, L.; Turturro, A.C. HYPROP-FIT to model rock water retention curves estimated by different methods. Water 2022, 14, 3443. [Google Scholar] [CrossRef]
- Jones, C.P.; Grossl, P.R.; Amacher, M.C.; Boettinger, J.L.; Jacobson, A.R.; Lawley, J.R. Selenium and salt mobilization in wetland and arid upland soils of Pariette Draw, Utah (USA). Geoderma 2017, 305, 363–373. [Google Scholar] [CrossRef]
- Humphries, M.; McCarthy, T. Chemical sedimentation as a driver of habitat diversity in dryland wetlands. Wetl. Ecol. Manag. 2022, 30, 675–694. [Google Scholar] [CrossRef]
- Jia, Y.; Guo, H.; Xi, B.; Jiang, Y.; Zhang, Z.; Yuan, R.; Yi, W.; Xue, X. Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia. Sci. Total Environ. 2017, 601, 691–702. [Google Scholar] [CrossRef]
- Zhao, X.; He, X.; Yang, X.; Zhang, X.; Lv, G. Effects of soil moisture and salt on desert plant biodiversity in Ebinur Lake Basin of Xinjiang. China. J. Arid Land Resour. Environ. 2017, 31, 76–82. [Google Scholar]
- Vepraskas, M.J.; Craft, C.B. Wetland Soils: Genesis, Hydrology, Landscapes, and Classification; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Zhang, X.; Li, Y.; Li, F. Spatial distribution characteristics of soil water-salt gradients in the ecological buffer zone of arid zone lakes and their influencing factors. J. Clean. Prod. 2024, 444, 141299. [Google Scholar] [CrossRef]
- Xie, W.; Yang, J.; Yao, R.; Wang, X. Impact study of impoundment of the three gorges reservoir on salt-water dynamics and soil salinity in the Yangtze River estuary. J. Environ. Inform. 2020, 36, 11–23. [Google Scholar] [CrossRef]
- Tiliwalidi, A. Study on Spatial Variability of Soil Salinity and Its Influencing Factors in the Bortala River Basin. Master’s Thesis, Xinjiang University, Urumqi, China, 2013. [Google Scholar]
- Wurtsbaugh, W.A.; Miller, C.; Null, S.E.; DeRose, R.J.; Wilcock, P.; Hahnenberger, M.; Howe, F.; Moore, J. Decline of the world’s saline lakes. Nat. Geosci. 2017, 10, 816–821. [Google Scholar] [CrossRef]
- Opp, C.; Groll, M.; Abbasi, H.; Foroushani, M.A. Causes and effects of sand and dust storms: What has past research taught us? A survey. J. Risk Financial Manag. 2021, 14, 326. [Google Scholar] [CrossRef]
- Tyler, S.W.; Wheatcraft, S.W. Fractal scaling of soil particle-size distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- Bai, Y.; Qin, Y.; Lu, X.; Zhang, J.; Chen, G.; Li, X. Fractal dimension of particle-size distribution and their relationships with alkalinity properties of soils in the western Songnen Plain, China. Sci. Rep. 2020, 10, 20603. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, G.; Heathman, G.C.; Wang, Y.; Huang, C.-h. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China. Geoderma 2009, 154, 123–130. [Google Scholar] [CrossRef]
- Martín, M.Á.; Montero, E.S. Laser diffraction and multifractal analysis for the characterization of dry soil volume-size distributions. Soil Tillage Res. 2002, 64, 113–123. [Google Scholar] [CrossRef]
- Gui, D.; Lei, J.; Zeng, F.; Mu, G.; Zhu, J.; Wang, H.; Zhang, Q. Characterizing variations in soil particle size distribution in oasis farmlands—A case study of the Cele Oasis. Math. Comput. Model. 2010, 51, 1306–1311. [Google Scholar] [CrossRef]
- Amantai, N.; Ding, J.; Ge, X.; Bao, Q. Variation characteristics of actual evapotranspiration and meteorological elements in the Ebinur Lake basin from 1960 to 2017. Acta Geogr. Sin 2021, 76, 1177–1192. [Google Scholar]
- Smith, W. Infiltration in sands and its relation to groundwater recharge. Water Resour. Res. 1967, 3, 539–555. [Google Scholar] [CrossRef]
- Wang, P.; Hu, F.; Han, Z.; Kong, X. Experimental study on dispersion of saline water flowing through clay-bearing soil. South North Water Transf. Water Sci. Technol. 2014, 12, 101–104. [Google Scholar]
- Chen, P.; Sun, J.; Ma, L.; Chen, Y.; Xia, J. Effects of shell sand content on soil physical properties and salt ions under simulated rainfall leaching. Geoderma 2022, 406, 115520. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Wang, S.; Liu, H.; Fu, G.; Xiong, Y. Spatial distribution of soil salinity and potential implications for soil management in the Manas River watershed, China. Soil Use Manag. 2020, 36, 93–103. [Google Scholar] [CrossRef]
Soil Depth (cm) | Statistic | CO32− | HCO3− | Cl− | SO42− | Ca2+ | Mg2+ | Na+ + K+ | TSS |
---|---|---|---|---|---|---|---|---|---|
0–10 | Min | 0 | 24 | 71 | 960 | 120 | 100 | 700 | 7805 |
Max | 340 | 900 | 77,810 | 40,220 | 4850 | 5190 | 51,350 | 143,790 | |
Mean | 86 | 353 | 18,533 | 10,458 | 2182 | 1189 | 13,604 | 46,406 | |
SD | 114 | 182 | 21,035 | 5349 | 1259 | 1382 | 12,929 | 35,877 | |
CV | 132 | 51 | 114 | 51 | 58 | 116 | 95 | 77 | |
10–20 | Min | 0 | 50 | 70 | 2300 | 100 | 80 | 810 | 4490 |
Max | 380 | 710 | 43,040 | 19,100 | 3830 | 5870 | 24,940 | 88,400 | |
Mean | 60 | 330 | 6100 | 9500 | 1560 | 620 | 6310 | 24,500 | |
SD | 100 | 160 | 8230 | 2590 | 1100 | 870 | 4930 | 15,090 | |
CV | 163 | 47 | 135 | 27 | 71 | 139 | 78 | 62 | |
20–40 | Min | 0 | 50 | 70 | 1820 | 100 | 120 | 30 | 3930 |
Max | 430 | 970 | 24,990 | 12,380 | 3190 | 1710 | 17,270 | 54,290 | |
Mean | 70 | 330 | 4480 | 7730 | 1210 | 520 | 4910 | 19,250 | |
SD | 110 | 170 | 5520 | 2760 | 1110 | 400 | 3850 | 11,080 | |
CV | 155 | 50 | 123 | 36 | 91 | 78 | 79 | 58 | |
40–60 | Min | 0 | 20 | 70 | 1340 | 110 | 30 | 320 | 3970 |
Max | 310 | 780 | 26,940 | 14,210 | 3230 | 1850 | 19,370 | 56,710 | |
Mean | 70 | 300 | 4040 | 7980 | 1030 | 530 | 4940 | 18,880 | |
SD | 100 | 130 | 5520 | 2540 | 1100 | 380 | 3640 | 10,450 | |
CV | 137 | 44 | 137 | 32 | 107 | 72 | 74 | 55 |
Soil Depth (cm) | 0–10 | 10–20 | 20–40 | 40–60 |
---|---|---|---|---|
0–10 | 1 | |||
10–20 | 0.611 ** | 1 | ||
20–40 | 0.600 ** | 0.669 ** | 1 | |
40–60 | 0.579 ** | 0.629 ** | 0.843 ** | 1 |
Soil Depth (cm) | 2 ≤ Cl−/SO42− (%) Chloride | 1 ≤ Cl−/SO42− < 2(%) Sulfate–Chloride | 0.2 ≤ Cl−/SO42− < 221(%) Chloride–Sulfate | Cl−/SO42− < 20.2(%) Sulfate |
0–10 | 36.00 | 12.00 | 24.00 | 28.00 |
10–20 | 4.00 | 18.00 | 38.00 | 40.00 |
20–40 | 4.00 | 12.00 | 44.00 | 40.00 |
40–60 | 2.00 | 16.00 | 40.00 | 42.00 |
Grading of soil salinization | Chloride | Sulfate–chloride | Chloride–sulfate | Sulfate |
Non-saline Criteria Value | TSS0–10 < 1500 | TSS0–10 < 2000 | TSS0–10 < 2500 | TSS0–10 < 3000 |
Light salinized Criteria Value | 1500 < TSS0–10 < 3000 | 2000 < TSS0–10 < 3000 | 2500 < TSS0–10 < 4000 | 3000 < TSS0–10 < 6000 |
Moderate salinized Criteria Value | 3000 < TSS0–10 < 5000 | 3000 < TSS0–10 < 6000 | 4000 < TSS0–10 < 7000 2% | 6000 < TSS0–10 < 10,000 2% |
Heavy salinized Criteria Value | 5000 < TSS0–10 < 8000 | 6000 < TSS0–10 < 10,000 | 7000 < TSS0–10 < 12,000 4% | 10,000 < TSS0–10 < 20,000 20% |
Salinized soil Criteria | TSS0–10 ≥ 8000 36% | TSS0–10 ≥ 10,000 12% | TSS0–10 ≥ 12,000 20% | TSS0–10 ≥ 20,000 6% |
Variable | Method | R2 | RMSE | MAE |
---|---|---|---|---|
TSS | OK | 0.43 | 7.31 | 6.36 |
IDW | 0.56 | 6.71 | 5.31 | |
HCO3− | OK | 0.35 | 0.04 | 0.03 |
IDW | 0.34 | 0.03 | 0.03 | |
Cl− | OK | 0.40 | 3.99 | 3.43 |
IDW | 0.68 | 3.09 | 2.53 | |
SO42− | OK | 0.78 | 2.08 | 1.37 |
IDW | 0.80 | 1.31 | 0.88 | |
Ca2+ | OK | 0.43 | 0.26 | 0.21 |
IDW | 0.59 | 0.24 | 0.21 | |
Mg2+ | OK | 0.53 | 0.26 | 0.21 |
IDW | 0.59 | 0.24 | 0.20 | |
Na+ + K+ | OK | 0.54 | 2.50 | 2.16 |
IDW | 0.62 | 1.45 | 1.84 | |
Dsoil | OK | 0.44 | 0.04 | 0.04 |
IDW | 0.50 | 0.05 | 0.04 | |
Clay | OK | 0.55 | 2.20 | 1.77 |
IDW | 0.71 | 2.10 | 1.68 | |
Silt | OK | 0.53 | 19.19 | 16.15 |
IDW | 0.53 | 18.85 | 15.67 | |
Sand | OK | 0.43 | 21.28 | 16.15 |
IDW | 0.53 | 20.81 | 17.03 |
Soil Depth (cm) | Minimum | Maximum | Average Value | Standard Deviation | Coefficient of Variation | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
Clay (%) | |||||||
0–10 | 0.10 | 11.26 | 5.64 | 2.48 | 0.44 | 0.49 | 0.11 |
10–20 | 0.11 | 13.98 | 5.07 | 2.99 | 0.59 | 0.78 | 0.80 |
20–40 | 0.03 | 16.99 | 5.04 | 3.64 | 0.72 | 1.08 | 1.40 |
40–60 | 0.15 | 18.00 | 5.23 | 3.71 | 0.71 | 1.12 | 1.63 |
Silt (%) | |||||||
0–10 | 2.92 | 77.24 | 45.32 | 19.18 | 0.42 | −0.33 | −0.73 |
10–20 | 2.52 | 78.68 | 39.47 | 20.96 | 0.53 | 0.02 | −1.11 |
20–40 | 1.94 | 79.41 | 39.51 | 22.97 | 0.58 | −0.03 | −1.28 |
40–60 | 2.35 | 80.82 | 40.64 | 21.90 | 0.54 | −0.09 | −1.10 |
Sand (%) | |||||||
0–10 | 11.50 | 96.19 | 49.04 | 21.30 | 0.43 | 0.27 | −0.64 |
10–20 | 9.88 | 96.77 | 55.46 | 23.48 | 0.42 | −0.06 | −0.96 |
20–40 | 9.23 | 97.60 | 55.45 | 25.90 | 0.47 | −0.01 | −1.18 |
40–60 | 8.78 | 96.94 | 54.12 | 24.79 | 0.46 | 0.04 | −1.03 |
Dsoil | CLAY | SILT | SAND | |||||
---|---|---|---|---|---|---|---|---|
0–10 | R | Sig | R | Sig | R | Sig | R | Sig |
TSS | 0.420 ** | 0.002 | 0.582 ** | 0.000 | 0.440 ** | 0.001 | −0.464 ** | 0.001 |
CO32− | 0.260 | 0.068 | 0.327 * | 0.020 | 0.295 * | 0.038 | −0.304 * | 0.032 |
HCO3− | −0.073 | 0.617 | −0.059 | 0.683 | −0.076 | 0.598 | 0.076 | 0.602 |
Cl− | 0.395 ** | 0.004 | 0.568 ** | 0.000 | 0.410 ** | 0.003 | −0.435 ** | 0.002 |
SO42− | 0.171 | 0.234 | 0.142 | 0.326 | 0.201 | 0.162 | −0.197 | 0.170 |
Ca2+ | 0.292 * | 0.040 | 0.174 | 0.227 | 0.288 * | 0.043 | −0.279 * | 0.050 |
Mg2+ | 0.182 | 0.206 | 0.198 | 0.168 | 0.283 * | 0.046 | −0.278 | 0.051 |
Na+ + K+ | 0.402 ** | 0.004 | 0.590 ** | 0.000 | 0.413 ** | 0.003 | −0.441 ** | 0.001 |
10–20 | ||||||||
TSS | 0.448 ** | 0.001 | 0.550 ** | 0.000 | 0.418 ** | 0.002 | −0.444 ** | 0.001 |
CO32− | 0.233 | 0.103 | 0.295 * | 0.037 | 0.207 | 0.149 | −0.222 | 0.121 |
HCO3− | 0.015 | 0.920 | −0.052 | 0.719 | 0.108 | 0.453 | −0.090 | 0.533 |
Cl− | 0.447 ** | 0.001 | 0.568 ** | 0.000 | 0.450 ** | 0.001 | −0.474 ** | 0.001 |
SO42− | 0.182 | 0.207 | 0.154 | 0.285 | 0.046 | 0.753 | −0.060 | 0.677 |
Ca2+ | 0.357 * | 0.011 | 0.316 * | 0.025 | 0.280 * | 0.049 | −0.290 * | 0.041 |
Mg2+ | 0.266 | 0.062 | 0.349 * | 0.013 | 0.342 * | 0.015 | −0.350 * | 0.013 |
Na+ + K+ | 0.398 ** | 0.004 | 0.519 ** | 0.000 | 0.376 ** | 0.007 | −0.401 ** | 0.004 |
20–40 | ||||||||
TSS | 0.493 ** | 0.000 | 0.703 ** | 0.000 | 0.476 ** | 0.000 | −0.521 ** | 0.000 |
CO32− | −0.083 | 0.565 | −0.170 | 0.238 | −0.205 | 0.154 | 0.205 | 0.152 |
HCO3− | −0.001 | 0.992 | −0.119 | 0.410 | 0.069 | 0.632 | −0.045 | 0.757 |
Cl− | 0.485 ** | 0.000 | 0.728 ** | 0.000 | 0.534 ** | 0.000 | −0.576 ** | 0.000 |
SO42− | 0.274 | 0.054 | 0.315 * | 0.026 | 0.120 | 0.407 | −0.150 | 0.297 |
Ca2+ | 0.375 ** | 0.007 | 0.432 ** | 0.002 | 0.362 ** | 0.010 | −0.382 ** | 0.006 |
Mg2+ | 0.265 | 0.063 | 0.267 | 0.060 | 0.318 * | 0.024 | −0.319 * | 0.024 |
Na+ + K+ | 0.393 ** | 0.005 | 0.609 ** | 0.000 | 0.383 ** | 0.006 | −0.425 ** | 0.002 |
40–60 | ||||||||
TSS | 0.386 ** | 0.006 | 0.607 ** | 0.000 | 0.421 ** | 0.002 | −0.462 ** | 0.001 |
CO32− | −0.198 | 0.168 | −0.322 * | 0.023 | −0.323 * | 0.022 | 0.334 * | 0.018 |
HCO3− | 0.120 | 0.406 | 0.116 | 0.423 | 0.175 | 0.224 | −0.172 | 0.233 |
Cl− | 0.458 ** | 0.001 | 0.685 ** | 0.000 | 0.494 ** | 0.000 | −0.539 ** | 0.000 |
SO42− | −0.020 | 0.891 | 0.053 | 0.715 | −0.006 | 0.965 | −0.002 | 0.988 |
Ca2+ | 0.401 ** | 0.004 | 0.421 ** | 0.002 | 0.425 ** | 0.002 | −0.438 ** | 0.001 |
Mg2+ | 0.378 ** | 0.007 | 0.453 ** | 0.001 | 0.538 ** | 0.000 | −0.543 ** | 0.000 |
Na+ + K+ | 0.265 | 0.062 | 0.496 ** | 0.000 | 0.280 * | 0.049 | −0.321 * | 0.023 |
Soil Texture Type | Layers (cm) | Samples | Clay (%) | Silt (%) | Sand (%) | Dsoil | Average Salt Content (mg/kg) |
---|---|---|---|---|---|---|---|
Sandy soil; loamy sandy soil | 0–10 | 14 | 3.61 | 26.01 | 70.39 | 2.49 | 35,730 |
10–20 | 11 | 2.19 | 16.78 | 81.03 | 2.40 | 14,950 | |
20–40 | 17 | 1.80 | 15.27 | 82.93 | 2.36 | 13,140 | |
40–60 | 13 | 1.76 | 14.37 | 83.88 | 2.36 | 15,200 | |
Sandy loam; loam | 0–10 | 28 | 6.22 | 50.85 | 42.93 | 2.59 | 43,490 |
10–20 | 19 | 4.49 | 32.24 | 63.28 | 2.53 | 26,770 | |
20–40 | 14 | 5.52 | 36.34 | 58.14 | 2.57 | 19,780 | |
40–60 | 17 | 4.88 | 36.27 | 58.85 | 2.55 | 16,630 | |
Silt; silty loam | 0–10 | 8 | 7.17 | 60.58 | 32.24 | 2.62 | 68,930 |
10–20 | 20 | 7.07 | 57.25 | 35.68 | 2.61 | 27,640 | |
20–40 | 19 | 7.58 | 63.53 | 28.88 | 2.62 | 24,311 | |
40–60 | 20 | 7.78 | 60.98 | 31.25 | 2.62 | 23,071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, D.; Wang, J.; Ding, J.; Zhang, Z. Distribution Characteristics and Relationship Between Soil Salinity and Soil Particle Size in Ebinur Lake Wetland, Xinjiang. Land 2025, 14, 297. https://doi.org/10.3390/land14020297
Wen D, Wang J, Ding J, Zhang Z. Distribution Characteristics and Relationship Between Soil Salinity and Soil Particle Size in Ebinur Lake Wetland, Xinjiang. Land. 2025; 14(2):297. https://doi.org/10.3390/land14020297
Chicago/Turabian StyleWen, Duo, Jinjie Wang, Jianli Ding, and Zhe Zhang. 2025. "Distribution Characteristics and Relationship Between Soil Salinity and Soil Particle Size in Ebinur Lake Wetland, Xinjiang" Land 14, no. 2: 297. https://doi.org/10.3390/land14020297
APA StyleWen, D., Wang, J., Ding, J., & Zhang, Z. (2025). Distribution Characteristics and Relationship Between Soil Salinity and Soil Particle Size in Ebinur Lake Wetland, Xinjiang. Land, 14(2), 297. https://doi.org/10.3390/land14020297