Conversion from Forest to Agriculture in the Brazilian Amazon from 1985 to 2021
Abstract
:1. Introduction
2. Methods
2.1. Conversion Length Calculation
- Load raster and extract valid values into a table.
- Calculate the year of first occurrence of any anthropic class for each pixel.
- Calculate the first year of “Forest Formation” LULC class after the year calculated in step 2. This step identifies the occurrence of more than one conversion in a given pixel.
- Classify rows as “before” or “after” the occurrence of the year calculated in step 3. This is the identification of periods before and after a return of forest after a first conversion to agriculture.
- Calculate the last year of “Forest Formation” within the rows classified as “before”, and add 1 year to represent the deforestation year.
- Calculate the first year of any agriculture type class within the rows classified as “before” for each pixel.
- Calculate the difference between years from items 5 and 6 to get the LULC conversion length in years for each pixel.
2.2. Description of Data Collection
2.3. Accuracy Assessment
3. Results
3.1. Conversion Spatial Patterns
3.2. Conversion Temporal Patterns
3.3. Validation
3.4. Qualitative Assessment
4. Discussion
4.1. Conversion Patterns
4.2. Accuracy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carvalho, G.O.; Nepstad, D.; McGrath, D.; del Carmen Vera Diaz, M.; Santilli, M.; Barros, A.C. Frontier Expansion in the Amazon: Balancing Development and Sustainability. Environ. Sci. Policy Sustain. Dev. 2002, 44, 34–44. [Google Scholar] [CrossRef]
- McDonald, M. Environment and Security: Global Eco-Politics and Brazilian Deforestation. Contemp. Secur. Policy 2003, 24, 69–94. [Google Scholar] [CrossRef]
- Banerjee, O.; Macpherson, A.J.; Alavalapati, J. Toward a Policy of Sustainable Forest Management in Brazil. J. Environ. Dev. 2009, 18, 130–153. [Google Scholar] [CrossRef]
- Fearnside, P.M. Deforestation in Brazilian Amazonia: History, Rates, and Consequences. Conserv. Biol. 2005, 19, 680–688. [Google Scholar] [CrossRef]
- Da Silva, R.F.B.; Batistella, M.; Moran, E.; Celidonio, O.L.D.M.; Millington, J.D. The Soybean Trap: Challenges and Risks for Brazilian Producers. Front. Sustain. Food Syst. 2020, 4, 12. [Google Scholar] [CrossRef]
- Simon, M.F.; Garagorry, F.L. The Expansion of Agriculture in the Brazilian Amazon. Environ. Conserv. 2005, 32, 203–212. [Google Scholar] [CrossRef]
- Barona, E.; Ramankutty, N.; Hyman, G.; Coomes, O.T. The Role of Pasture and Soybean in Deforestation of the Brazilian Amazon. Environ. Res. Lett. 2010, 5, 024002. [Google Scholar] [CrossRef]
- Arima, E.Y.; Richards, P.; Walker, R.; Caldas, M.M. Statistical Confirmation of Indirect Land Use Change in the Brazilian Amazon. Environ. Res. Lett. 2011, 6, 024010. [Google Scholar] [CrossRef]
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; del Bon Espirito-Santo, F.; Freitas, R.; Morisette, J. Cropland Expansion Changes Deforestation Dynamics in the Southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637–14641. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.E.; Lee, E.; Farinosi, F.; Pereira, F.F.; Moorcroft, P.R. Decoupling the Effects of Deforestation and Climate Variability in the Tapajós River Basin in the Brazilian Amazon. Hydrol. Process. 2018, 32, 1648–1663. [Google Scholar] [CrossRef]
- Boulton, C.A.; Timothy, M.L.; Boers, N. Pronounced Loss of Amazon Rainforest Resilience Since the Early 2000s. Nat. Clim. Chang. 2022, 12, 271–278. [Google Scholar] [CrossRef]
- Maeda, E.E.; Abera, T.A.; Siljander, M.; Aragão, L.E.; Moura, Y.M.D.; Heiskanen, J. Large-Scale Commodity Agriculture Exacerbates the Climatic Impacts of Amazonian Deforestation. Proc. Natl. Acad. Sci. USA 2021, 118, e2023787118. [Google Scholar] [CrossRef] [PubMed]
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Gatti Domingues, L.; Cassol, H.L.; Tejada, G.; Aragão, L.E.; Nobre, C.; Peters, W.; et al. Amazonia as a Carbon Source Linked to Deforestation and Climate Change. Nature 2021, 595, 388–393. [Google Scholar] [CrossRef]
- Nunes, C.A.; Berenguer, E.; França, F.; Ferreira, J.; Lees, A.C.; Louzada, J.; Sayer, E.J.; Solar, R.; Smith, C.C.; Aragão, L.E.; et al. Linking Land-Use and Land-Cover Transitions to Their Ecological Impact in the Amazon. Proc. Natl. Acad. Sci. USA 2022, 119, e2202310119. [Google Scholar] [CrossRef]
- Rittl, T.F.; Oliveira, D.; Cerri, C.E. Soil Carbon Stock Changes Under Different Land Uses in the Amazon. Geoderma Reg. 2017, 10, 138–143. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Kulmann-Leal, B.; Kaminski, V.L.; Valverde-Villegas, J.; Veiga, A.B.G.; Spilki, F.R.; Fearnside, P.M.; Caesar, L.; Giatti, L.L.; Wallau, G.L.; et al. Beyond Diversity Loss and Climate Change: Impacts of Amazon Deforestation on Infectious Diseases and Public Health. An. Acad. Bras. Cienc. 2020, 92, 1–33. [Google Scholar] [CrossRef]
- Souza, C.M., Jr.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Da Silva, R.F.B.; Millington, J.D.; Moran, E.F.; Batistella, M.; Liu, J. Three Decades of Land-Use and Land-Cover Change in Mountain Regions of the Brazilian Atlantic Forest. Landsc. Urban Plan. 2020, 204, 103948. [Google Scholar] [CrossRef]
- Capmourteres, V.; Rooney, N.; Anand, M. Assessing the Causal Relationships of Ecological Integrity: A Re-Evaluation of Karr’s Iconic Index of Biotic Integrity. Ecosphere 2018, 9, E02168. [Google Scholar] [CrossRef]
- Gelo, D.; Turpie, J. The Effect of Forest Land Use on the Cost of Drinking Water Supply: Machine Learning Evidence from South African Data. J. Environ. Econ. Policy 2022, 11, 361–374. [Google Scholar] [CrossRef]
- Odongo, V.O.; Mulatu, D.W.; Muthoni, F.K.; Van Oel, P.R.; Meins, F.M.; Van der Tol, C.; Skidmore, A.K.; Groen, T.A.; Becht, R.; Onyando, J.O.; et al. Coupling Socio-Economic Factors and Eco-Hydrological Processes Using a Cascade-Modeling Approach. J. Hydrol. 2014, 518, 49–59. [Google Scholar] [CrossRef]
- Larned, S.T.; Moores, J.; Gadd, J.; Baillie, B.; Schallenberg, M. Evidence for the Effects of Land Use on Freshwater Ecosystems in New Zealand. N. Z. J. Mar. Freshw. Res. 2020, 54, 551–591. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Bansal, R.K.; Mittal, M.; Goyal, L.M.; Kaur, I.; Verma, A.; Son, L.H. Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images. J. Indian Soc. Remote Sens. 2019, 47, 427–437. [Google Scholar] [CrossRef]
- Fearnside, P.M. Avança Brasil: Environmental and Social Consequences of Brazil’s Planned Infrastructure in Amazonia. Environ. Manag. 2002, 30, 735–747. [Google Scholar] [CrossRef]
- West, T.A.; Fearnside, P.M. Brazil’s Conservation Reform and the Reduction of Deforestation in Amazonia. Land Use Policy 2021, 100, 105072. [Google Scholar] [CrossRef]
- Arima, E.Y.; Barreto, P.; Araújo, E.; Soares-Filho, B. Public Policies Can Reduce Tropical Deforestation: Lessons and Challenges from Brazil. Land Use Policy 2014, 41, 465–473. [Google Scholar] [CrossRef]
- Paim, M.A. Zero Deforestation in the Amazon: The Soy Moratorium and Global Forest Governance. Rev. Eur. Int. Environ. Law 2021, 30, 220–232. [Google Scholar] [CrossRef]
- Amaral, D.F.; de Souza Ferreira Filho, J.B.; Chagas, A.L.S.; Adami, M. Expansion of Soybean Farming into Deforested Areas in the Amazon Biome: The Role and Impact of the Soy Moratorium. Sustain. Sci. 2021, 16, 1295–1312. [Google Scholar] [CrossRef]
- Heilmayr, R.; Rausch, L.L.; Munger, J.; Gibbs, H.K. Brazil’s Amazon Soy Moratorium Reduced Deforestation. Nat. Food 2020, 1, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Kastens, J.H.; Brown, J.C.; Coutinho, A.C.; Bishop, C.R.; Esquerdo, J.C.D. Soy Moratorium Impacts on Soybean and Deforestation Dynamics in Mato Grosso, Brazil. PLoS ONE 2017, 12, E0176168. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.N.; DeFries, R.S.; Morton, D.C.; Stickler, C.M.; Galford, G.L.; Shimabukuro, Y.E. Decoupling of Deforestation and Soy Production in the Southern Amazon During the Late 2000s. Proc. Natl. Acad. Sci. USA 2012, 109, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Gollnow, F.; Hissa, L.D.B.V.; Rufin, P.; Lakes, T. Property-Level Direct and Indirect Deforestation for Soybean Production in the Amazon Region of Mato Grosso, Brazil. Land Use Policy 2018, 78, 377–385. [Google Scholar] [CrossRef]
- da Silva, R.F.B.; Viña, A.; Moran, E.F.; Dou, Y.; Batistella, M.; Liu, J. Socioeconomic and Environmental Effects of Soybean Production in Metacoupled Systems. Sci. Rep. 2021, 11, 18662. [Google Scholar] [CrossRef] [PubMed]
- Kröger, M. Inter-Sectoral Determinants of Forest Policy: The Power of Deforesting Actors in Post-2012 Brazil. For. Policy Econ. 2017, 77, 24–32. [Google Scholar] [CrossRef]
- Pereira, J.C.; Viola, E. Catastrophic Climate Risk and Brazilian Amazonian Politics and Policies: A New Research Agenda. Glob. Environ. Politics 2019, 19, 93–103. [Google Scholar] [CrossRef]
- Schielein, J.; Börner, J. Recent Transformations of Land-Use and Land-Cover Dynamics Across Different Deforestation Frontiers in the Brazilian Amazon. Land Use Policy 2018, 76, 81–94. [Google Scholar] [CrossRef]
- Sant’Anna, A.A.; Costa, L. Environmental Regulation and Bail Outs Under Weak State Capacity: Deforestation in the Brazilian Amazon. Ecol. Econ. 2021, 186, 107071. [Google Scholar] [CrossRef]
- Soares-Filho, B.; Rajão, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking Brazil’s Forest Code. Science 2014, 344, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Freitas, F.L.; Sparovek, G.; Berndes, G.; Persson, U.M.; Englund, O.; Barretto, A.; Mörtberg, U. Potential Increase of Legal Deforestation in Brazilian Amazon After Forest Act Revision. Nat. Sustain. 2018, 1, 665–670. [Google Scholar] [CrossRef]
- Gusso, A.; Ducati, J.R.; Bortolotto, V.C. Analysis of Soybean Cropland Expansion in the Southern Brazilian Amazon and Its Relation to Economic Drivers. Acta Amaz. 2017, 47, 281–292. [Google Scholar] [CrossRef]
- Hargrave, J.; Kis-Katos, K. Economic Causes of Deforestation in the Brazilian Amazon: A Panel Data Analysis for the 2000s. Environ. Resour. Econ. 2013, 54, 471–494. [Google Scholar] [CrossRef]
- da Silva, R.F.B.; Millington, J.D.; Viña, A.; Dou, Y.; Moran, E.; Batistella, M.; Lapola, D.M.; Liu, J. Balancing Food Production with Climate Change Mitigation and Biodiversity Conservation in the Brazilian Amazon. Sci. Total. Environ. 2023, 904, 166681. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.L.N.; Raucci, G.S.; Cerri, C.E.P.; Bernoux, M.; Feigl, B.J.; Wruck, F.J.; Cerri, C.C. Impact of Pasture, Agriculture and Crop-Livestock Systems on Soil c Stocks in Brazil. Soil Tillage Res. 2010, 110, 175–186. [Google Scholar] [CrossRef]
- Azevedo, J.C.D.; Cardoso, A.D.S.; Lage Filho, N.M.; Faturi, C.; Silva, T.C.D.; Domingues, F.N.; Costa, V.E.; Ruggieri, A.C.; Reis, R.A.; do Rêgo, A.C. Effects of Agricultural Expansion on Soil Carbon and Nitrogen Stocks in the Amazon Deforestation Arc. Soil Syst. 2024, 8, 25. [Google Scholar] [CrossRef]
- Fujisaki, K.; Perrin, A.S.; Desjardins, T.; Bernoux, M.; Balbino, L.C.; Brossard, M. From Forest to Cropland and Pasture Systems: A Critical Review of Soil Organic Carbon Stocks Changes in Amazonia. Glob. Change Biol. 2015, 21, 2773–2786. [Google Scholar] [CrossRef] [PubMed]
- Popin, G.V.; de Resende, M.E.B.; Locatelli, J.L.; Santos, R.S.; Siqueira-Neto, M.; Brando, P.M.; Neill, C.; Cerri, C.E. Land-Use Change and Deep-Soil Carbon Distribution on the Brazilian Amazon-Cerrado Agricultural Frontier. Agric. Ecosyst. Environ. 2025, 381, 109451. [Google Scholar] [CrossRef]
- Zeferino, L.B.; Lustosa Filho, J.F.; dos Santos, A.C.; Cerri, C.E.P.; de Oliveira, T.S. Soil Carbon and Nitrogen Stocks Following Forest Conversion to Long-Term Pasture in Amazon Rainforest-Cerrado Transition Environment. CATENA 2023, 231, 107346. [Google Scholar] [CrossRef]
- Foody, G.M. Assessing the Accuracy of Land Cover Change with Imperfect Ground Reference Data. Remote Sens. Environ. 2010, 114, 2271–2285. [Google Scholar] [CrossRef]
- Powell, R.L.; Matzke, N.; de Souza, C., Jr.; Clark, M.; Numata, I.; Hess, L.L.; Roberts, D.A. Sources of Error in Accuracy Assessment of Thematic Land-Cover Maps in the Brazilian Amazon. Remote Sens. Environ. 2004, 90, 221–234. [Google Scholar] [CrossRef]
- Qu, L.A.; Chen, Z.; Li, M.; Zhi, J.; Wang, H. Accuracy Improvements to Pixel-Based and Object-Based LULC Classification with Auxiliary Datasets from Google Earth Engine. Remote Sens. 2021, 13, 453. [Google Scholar] [CrossRef]
- Krivoguz, D.; Chernyi, S.G.; Zinchenko, E.; Silkin, A.; Zinchenko, A. Using Landsat-5 for Accurate Historical LULC Classification: A Comparison of Machine Learning Models. Data 2023, 8, 138. [Google Scholar] [CrossRef]
- Kasetkasem, T.; Arora, M.K.; Varshney, P.K. Super-Resolution Land Cover Mapping Using a Markov Random Field Based Approach. Remote Sens. Environ. 2005, 96, 302–314. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Atkinson, P.M. Unsupervised Object-Based Spectral Unmixing for Subpixel Mapping. Remote Sens. Environ. 2025, 318, 114514. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seixas, H.T.; Silveira, H.L.F.d.; Mendes, A.P.d.S.F.; Soares, F.D.S.; da Silva, R.F.B. Conversion from Forest to Agriculture in the Brazilian Amazon from 1985 to 2021. Land 2025, 14, 300. https://doi.org/10.3390/land14020300
Seixas HT, Silveira HLFd, Mendes APdSF, Soares FDS, da Silva RFB. Conversion from Forest to Agriculture in the Brazilian Amazon from 1985 to 2021. Land. 2025; 14(2):300. https://doi.org/10.3390/land14020300
Chicago/Turabian StyleSeixas, Hugo Tameirão, Hilton Luís Ferraz da Silveira, Alan Pereira da Silva Falcão Mendes, Fabiana Da Silva Soares, and Ramon Felipe Bicudo da Silva. 2025. "Conversion from Forest to Agriculture in the Brazilian Amazon from 1985 to 2021" Land 14, no. 2: 300. https://doi.org/10.3390/land14020300
APA StyleSeixas, H. T., Silveira, H. L. F. d., Mendes, A. P. d. S. F., Soares, F. D. S., & da Silva, R. F. B. (2025). Conversion from Forest to Agriculture in the Brazilian Amazon from 1985 to 2021. Land, 14(2), 300. https://doi.org/10.3390/land14020300