Analysis of Influencing Factors of Soil Erosion Changes Based on Structural Equation Model
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Sources and Data Preprocessing
2.3. Methods
2.3.1. Soil Erosion Assessment
2.3.2. Human Activity Index Simulation
2.3.3. Structural Equation Modeling
3. Result
3.1. Spatiotemporal Characteristics of Soil Erosion
3.2. SEMs for Increased Soil Erosion
3.3. SEMs for Reduced Soil Erosion
4. Discussion
4.1. Accuracy of SEMs
4.2. Characteristics of Soil Erosion Change
4.3. Direct and Indirect Effects of Soil Erosion Change
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | The calculation formula for NDVI is NDVI = (NIR − R)/(NIR + R), among which, “NIR” represents the reflectance of the near-infrared band (Near-Infrared Radiation), and “R” represents the reflectance of the red light band (Red Light). |
References
- Food and Agriculture Organization of the United Nations (FAO). Soil Erosion: The Greatest Challenge to Sustainable Soil Management; FAO: Rome, Italy, 2019; 100p. [Google Scholar]
- Bryan, R.B. Soil Erodibility and Processes of Water Erosion on Hillslope. Geomorphology 2000, 32, 385–415. [Google Scholar] [CrossRef]
- Tang, K. Soil and Water Conservation in China; Science Press: Beijing, China, 2004. [Google Scholar]
- Wen, X.; Deng, X. Current Soil Erosion Assessment in the Loess Plateau of China: A Mini-review. J. Clean. Prod. 2020, 276, 123091. [Google Scholar] [CrossRef]
- Xu, C.; Yang, Z.; Qian, W.; Chen, S.; Liu, X.; Lin, W.; Xiong, D.; Jiang, M.; Chang, C.T.; Huang, J.C.; et al. Runoff and Soil Erosion Responses to Rainfall and Vegetation Cover under Various Afforestation Management Regimes in Subtropical Montane Forest. Land Degrad. Dev. 2019, 30, 1711–1724. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Chen, L.; Li, J.C. Influences of Slope Gradient on Soil Erosion. Appl. Math. Mech. 2001, 22, 510–519. [Google Scholar] [CrossRef]
- Nearing, M.A.; Pruski, F.F.; O’Neal, M.R. Expected Climate Change Impacts on Soil Erosion Rates: A Review. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar]
- Yan, Z.; Liu, B.Y.; Zhang, Q.C.; Xie, Y. Effect of Different Vegetation Types on Soil Erosion by Water. J. Integr. Plant Biol. 2003, 45, 1204. [Google Scholar]
- Li, S.; Li, B.; Zhang, J. Characteristics of Soil Erosion on the Loess Plateau under Different Rainfall Amounts. J. Agro-Environ. Sci. 2005, 1, 94–97. [Google Scholar]
- Zheng, F.-L. Effect of Vegetation Changes on Soil Erosion on the Loess Plateau. Pedosphere 2006, 16, 420–427. [Google Scholar] [CrossRef]
- Le Bissonnais, Y. Aggregate Stability and Assessment of Soil Crustability and Erodibility: I. Theory and Methodology. Eur. J. Soil Sci. 2005, 47, 425–437. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Zhang, W.; Shi, D. Study on Soil Permeability in Karst Depressions Using a Disk Infiltrometer Method. Bull. Soil Water Conserv. 2008, 6, 202–206. [Google Scholar]
- García-Ruiz, J.M. The Effects of Land Uses on Soil Erosion in Spain: A Review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Emadodin, I.; Bork, H.R. Degradation of Soils as a Result of Long-Term Human-Induced Transformation of the Environment in Iran: An Overview. J. Land Use Sci. 2012, 7, 203–219. [Google Scholar] [CrossRef]
- Waltner, I.; Saeidi, S.; Grósz, J.; Centeri, C.; Laborczi, A.; Pásztor, L. Spatial Assessment of the Effects of Land Cover Change on Soil Erosion in Hungary from 1990 to 2018. ISPRS Int. J. Geo-Inf. 2020, 9, 667. [Google Scholar] [CrossRef]
- Liu, S.L.; Dong, Y.H.; Li, D.; Liu, Q.; Wang, J.; Zhang, X.L. Effects of Different Terrace Protection Measures in a Sloping Land Consolidation Project Targeting Soil Erosion at the Slope Scale. Ecol. Eng. 2013, 53, 46–53. [Google Scholar] [CrossRef]
- Wang, B.; Yang, Q.; Liu, Z. Effect of Conversion of Farmland to Forest or Grassland on Soil Erosion Intensity Changes in Yanhe River Basin, Loess Plateau of China. Front. For. China 2009, 4, 68–74. [Google Scholar] [CrossRef]
- Ma, T.; Liu, B.; He, L.; Dong, L.; Yin, B.; Zhao, Y. Response of Soil Erosion to Vegetation and Terrace Changes in a Small Watershed on the Loess Plateau over the Past 85 Years. Geoderma 2024, 443, 116837. [Google Scholar] [CrossRef]
- Xiao, X.; Yang, Y.; Guo, B.; Lu, Y.; Zhang, R.; Zhang, D.; Zhen, X.; Chen, S.; Wu, H.; Wei, C.; et al. Spatial–Temporal Evolution Patterns of Soil Erosion in the Yellow River Basin from 1990 to 2015: Impacts of Natural Factors and Land Use Change. Geomat. Nat. Hazards Risk 2020, 12, 103–122. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Y.; Wang, T.; Li, J.; Yang, J.; Luo, M. Have Anthropogenic Factors Mitigated or Intensified Soil Erosion over the Past Three Decades in South China? J. Environ. Manag. 2022, 302 Pt B, 114093. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, X.; Chen, S.; Cai, H. An Assessment of Erosivity Distribution and Its Influence on the Effectiveness of Land Use Conversion for Reducing Soil Erosion in Jiangxi, China. Catena 2015, 125, 50–60. [Google Scholar] [CrossRef]
- Liu, X.Y.; Song, H.L.; Li, R.J.; Zhu, W.B. Spatio-Temporal Dynamic Changes of Soil Erosion in the Yellow River Basin of Qinghai from 2000 to 2020. South-to-North Water Transf. Water Sci. Technol. 2025, 1, 1–10. [Google Scholar]
- Xiao, J.; Sun, Z.; Liu, Z.; Zheng, J.; Liu, Y.; Feng, L.; Bai, W. Effects of Rainfall Erosion Factor, Vegetation Type and Coverage on Soil Erosion of Sloping Farmland. Trans. Chin. Soc. Agric. Eng. 2017, 33, 159–166. [Google Scholar]
- Yao, X.; Yu, J.; Jiang, H.; Sun, W.; Li, Z. Roles of Soil Erodibility, Rainfall Erosivity and Land Use in Affecting Soil Erosion at the Basin Scale. Agric. Water Manag. 2016, 174, 82–92. [Google Scholar] [CrossRef]
- Guo, L.; Liu, R.; Men, C.; Wang, Q.; Miao, Y.; Shoaib, M.; Wang, Y.; Jiao, L.; Zhang, Y. Multiscale Spatiotemporal Characteristics of Landscape Patterns, Hotspots, and Influencing Factors for Soil Erosion. Sci. Total Environ. 2021, 779, 146474. [Google Scholar] [CrossRef]
- Xu, E.; Zhang, H. Change Pathway and Intersection of Rainfall, Soil, and Land Use Influencing Water-Related Soil Erosion. Ecol. Indic. 2020, 113, 106281. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, L.; Kang, S.; Ao, Y.; Han, L.; Ma, C. Quantitative Analysis of Factors Influencing Spatial Distribution of Soil Erosion Based on Geo-Detector Model under Diverse Geomorphological Types. Land 2021, 10, 604. [Google Scholar] [CrossRef]
- Cao, Y.; Hua, L.; Peng, D.; Liu, Y.; Jiang, L.; Tang, Q.; Cai, C. Decoupling the Effects of Air Temperature Change on Soil Erosion in Northeast China. J. Environ. Manag. 2024, 351, 119626. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zeng, Y.; Li, M.; Chen, D.; Wang, H.; Wang, Y.; Ni, L.; Fang, N. Evaluation of the Driving Effects of Socio-Economic Development on Soil Erosion from the Perspective of Prefecture-Level. Front. Environ. Sci. 2022, 10, 1066889. [Google Scholar] [CrossRef]
- Yu, S.; Wang, L.; Zhao, J.; Shi, Z. Using Structural Equation Modelling to Identify Regional Socio-Economic Driving Forces of Soil Erosion: A Case Study of Jiangxi Province, Southern China. J. Environ. Manag. 2021, 279, 111616. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Yang, L.; Zhang, L.; Guo, M.; Huang, H.; Zhou, C. Quantifying the Direct Effects of Long-Term Dynamic Land Use Intensity on Vegetation Change and Its Interacted Effects with Economic Development and Climate Change in Jiangsu, China. J. Environ. Manag. 2023, 325 Pt B, 116562. [Google Scholar] [CrossRef]
- Yin, Z.; Chang, J.; Huang, Y. Multiscale Spatiotemporal Characteristics of Soil Erosion and Its Influencing Factors in the Yellow River Basin. Water 2022, 14, 2658. [Google Scholar] [CrossRef]
- Xu, C.A.; Wang, N.J. Spatio-Temporal Differentiation and Quantitative Attribution of Soil Erosion in Southern Anhui Based on RUSLE and Geodetector. Res. Soil Water Conserv. 2025, 32, 21–29. [Google Scholar]
- Tian, T.; Yang, Z.; Guo, J.; Zhang, T.; Wang, Z.; Miao, P. Spatio-Temporal Evolution of Soil Erosion and Its Driving Mechanism in the Mongolian Section of the Yellow River Basin. Land 2023, 12, 801. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, J.; Tan, M.L.; Lu, P.; Xue, Z.; Liu, M.; Wang, X. Impacts of Vegetation Restoration on Soil Erosion in the Yellow River Basin, China. Catena 2024, 234, 107547. [Google Scholar] [CrossRef]
- Wang, N.; Yue, B.J.; Dang, T.M.; Zeng, L.Q.; Liu, W.W. Analysis of Influencing Factors of Soil and Water Loss in Typical Counties in the Farming-Pastoral Ecotone of the Loess Plateau. Yellow River 2024, 46, 90–91+93. [Google Scholar]
- Tang, S. Evaluating the Effect of Wepp Predictions of Runoff and Soil Losses in the Loess Plateau Region of China. Pak. J. Agric. Sci. 2019, 56, 774–779. [Google Scholar]
- Zhang, L.; Wang, N. Analysis of the Current Situation of Soil and Water Conservation and Countermeasures in Jiangxi Province. Innov. Tech. Soil Water Conserv. 2015, 6, 42–46. [Google Scholar]
- Wang, G.; Zhang, Q.; Zheng, H.; Yang, J.; Xiao, R. Analysis of Soil Erosion Trends and Socio-Economic Driving Forces in Jiangxi Province from 1987 to 2013. Ecol. Sci. 2017, 3, 115–120. [Google Scholar]
- ArcMap, Ver. 10.8. Software for Geographical Information System (GIS) Mapping. Esri: Redlands, CA, USA, 2020.
- ANUSPLIN, Ver. 4.37. Software for Spatial Interpolation. Hutchinson, M. F.: Canberra, Australia, 2007.
- Zhang, X.C. Discussion on Some Problems in Estimating Soil Erosion Using 137Cs Tracer Technique. Bull. Soil Water Conserv. 2013, 37, 342–346. [Google Scholar]
- Li, P.R.; Wang, B.Z.; He, J. Research on Cement Soil under the Influence of Erosion Environment. Pioneer. Sci. Tech. Mon. 2012, 25, 150–151. [Google Scholar]
- Zhou, P.; Meng, J.J. The Relationship between Spatio-Temporal Changes of Soil Hydraulic Erosion and Land Use in Ordos City from 1988 to 2000. J. Nat. Resour. 2009, 24, 1706–1717. [Google Scholar]
- Jiangxi Provincial Bureau of Statistics, Jiangxi Survey Team of the National Bureau of Statistics. Jiangxi Statistical Yearbook 2023; China Statistics Press: Beijing, China, 2023. [Google Scholar]
- Liu, B.; Zhang, K.; Xie, Y. An Empirical Soil Loss Equation Proceedings-Process of Soil Erosion and Its Environment Effect. In Proceedings of the 12th International Soil Conservation, Beijing, China, 26–31 May 2002; pp. 21–25. [Google Scholar]
- Wang, Z.; Yang, X.; Cai, H. Optimizing Key Parameters (Biological-Control Factor) of Soil Erosion Simulation Models at a Regional Scale—The Case of Jiangxi Province, China. Catena 2024, 247, 108488. [Google Scholar] [CrossRef]
- Soil and Water Conservation Department, Ministry of Water Resources. Technical Regulations for Dynamic Monitoring of Soil and Water Loss in the Region. 2018. Available online: https://max.book118.com/html/2019/0605/5211212333002042.shtm (accessed on 24 December 2024).
- Xiao, Z.; Tian, X.; Li, Y. Study on Regional Soil Erosion Changes and Their Relationship with Human Activities Based on Remote Sensing and GIS: A Case Study of Jiangxi Province. Remote Sens. Technol. Appl. 2022, 4, 971–981. [Google Scholar]
- Zheng, W.; Zou, J.; Tian, Y.; Deng, Y. Spatial Simulation of Regional Human Activity Intensity Based on RS and GIS. Trop. Geogr. 2011, 1, 77–81. [Google Scholar]
- Xu, Y.; Xu, X.; Tang, Q. Human Activity Intensity of Land Surface: Concept, Methods and Application in China. J. Geogr. Sci. 2016, 26, 1349–1361. [Google Scholar] [CrossRef]
- Hu, Z.; He, X.; Li, Y.; Zhu, J.; Li, X. Human Activity Intensity and Its Characteristics in the Upper Minjiang River Basin. J. Ecol. 2007, 4, 539–543. [Google Scholar]
- Pearl, J. Graphs, Causality, and Structural Equation Models. Sociol. Methods Res. 1998, 27, 226–284. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A.; Chen, H.; Mamic, I. Factor Analysis and Structural Equation Modelling of Sustainable Behaviour in Contaminated Land Remediation. J. Clean. Prod. 2014, 84, 439–449. [Google Scholar] [CrossRef]
- Zhou, Y.; Yi, Y.; Liu, H.; Tang, C.; Zhang, S. Spatio-Temporal Dynamic of Soil Erosion and the Key Factors Impact Processes over Semi-Arid Catchments in Southwest China. Ecol. Eng. 2024, 201, 107217. [Google Scholar] [CrossRef]
- Adnan, S.; Aldefae, A.H.; Humaish, W.H. Soil Erosion and the Influenced Factors: A Review Article. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1058, 012041. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Wang, Z.; Li, D.; Zhang, Y.; Qin, D.; Li, S. Elevation-Dependent Decline in Vegetation Greening Rate Driven by Increasing Dryness Based on Three Satellite NDVI Datasets on the Tibetan Plateau. Ecol. Indic. 2019, 107, 105569. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, K.; Liu, C.; Cen, Y.; Xia, J. Effects of Different Vegetation Components on Soil Erosion and Response to Rainfall Intensity under Simulated Rainfall. Catena 2024, 235, 107652. [Google Scholar] [CrossRef]
- Amos, Ver. 24.0. Software for Statistical Analysis. IBM SPSS: Armonk, NY, USA, 2017.
- Grace, J.B.; Anderson, T.M.; Seabloom, E.W.; Borer, E.T.; Adler, P.B.; Harpole, W.S.; Hautier, Y.; Hillebrand, H.; Lind, E.M.; Pärtel, M.; et al. Integrative modeling reveals mechanisms linking productivity and plant species richness. Nature 2016, 529, 390–393. [Google Scholar]
- Lang, Y.; Yang, X.; Cai, H. Quantifying Anthropogenic Soil Erosion at a Regional Scale—The Case of Jiangxi Province, China. Catena 2023, 226, 107081. [Google Scholar] [CrossRef]
- Ziadat, F.M.; Taimeh, A.Y. Effect of Rainfall Intensity, Slope, Land Use and Antecedent Soil Moisture on Soil Erosion in an Arid Environment. Land Degrad. Dev. 2013, 24, 582–590. [Google Scholar] [CrossRef]
- Zhang, X.W.; Wu, B.F. Analysis of the Influence of the Coupling Relationship between Rainfall and Vegetation on soil erosion: A case study of the upper reaches of Miyun Reservoir. J. Ecol. Environ 2010, 19, 1290–1294. [Google Scholar]
- Wang, J.H.; Lv, G.; Li, H.; Li, K.H.; Liang, Q.Z. Response of Soil Erosion Characteristics on the Slope of the Waste Dump to Rainfall Intensity and Vegetation Coverage. Irrig. Drain. 2021, 40, 36–39+49. [Google Scholar]
- Liu, T.; Liu, H.; Qi, Y. Construction land expansion and cultivated land protection in urbanizing China: Insights from national land surveys, 1996–2006. Habitat Int. 2015, 46, 13–22. [Google Scholar] [CrossRef]
- Zinda, J.A.; Trac, C.J.; Zhai, D.; Harrell, S. Dual-function forests in the returning farmland to forest program and the flexibility of environmental policy in China. Geoforum 2017, 78, 119–132. [Google Scholar] [CrossRef]
- Liu, X.N. Soil and water conservation measures in farmland water conservancy construction. Water Resour. Electr. Power Technol. Appl. 2024, 6, 146–148. [Google Scholar]
- Xin, J.J.; Zhao, G.N.; Huang, Z.L.; Luo, S.H. Spatio-temporal distribution characteristics of meteorological drought in Jiangxi Province from 1961 to 2021. Meteorol. Disaster Reduct. Res. 2023, 46, 9–17. [Google Scholar]
- Provincial Department of Water Resources of Jiangxi. Jiangxi Soil and Water Conservation Plan (2016–2030). 2016. Available online: http://www.hfzf.gov.cn/hfzf/zcjdt/202202/0905786e724e4ae9a604f5c09fd921a7/files/8a4bd06057344ceead7ababedf5b0422.pdf (accessed on 24 December 2024).
- Wen, T.F.; Zhang, F.P.; Hu, J.M.; Liu, Z.J. Spatio-temporal variation characteristics of rainfall erosivity in the Ganjiang River Basin from 1958 to 2014. Res. Soil Water Conserv. 2020, 27, 7–14+20. [Google Scholar]
- Qi, S.J.; Zhang, X.N.; Xia, D.Z.; Liu, Y.Y.; Liu, B.J. Analysis of land use/cover change characteristics and their driving forces in the Jialing River Basin. J. Yangtze River Sci. Res. Inst. 2013, 30, 1–7. [Google Scholar]
- Cui, J.; Kong, X.; Chen, J.; Sun, J.; Zhu, Y. Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt. Land 2021, 10, 43. [Google Scholar] [CrossRef]
- Barbero, M.; Bonin, G.; Loisel, R.; Quzel, P. Changes and disturbances of forest ecosystems caused by human activities in the western part of the Mediterranean basin. Vegetatio 1990, 87, 151–173. [Google Scholar] [CrossRef]
- Liao, H.; Wei, W.; Shi, Y. Spatiotemporal evolution characteristics and driving mechanisms of soil erosion in typical watersheds of the Loess Plateau: A case study of the Zuli River. Environ. Sci. Ecotechnol. 2024, 6, 908–918. [Google Scholar]
- Lu, L. Issues in the development and utilization of arid land resources in Xinjiang. Arid Land Res. Manag. 1989, 1, 57–62. [Google Scholar]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-erosion and runoff prevention by plant covers: A review. Sustain. Agric. 2009, 28, 785–811. [Google Scholar]
- Liu, Y.; Shen, H.; Ge, G.; Xing, A.; Tang, Z.; Fang, J. Classification and distribution of evergreen broad-leaved forests in Jiangxi, East China. J. Plant Ecol. 2023, 16, rtac059. [Google Scholar] [CrossRef]
- Gürcan, E.C. On the development of China’s environmental policies towards an ecological civilization. BRIQ Belt Road Initiat. Q. 2021, 2, 7–25. [Google Scholar]
- Ritchie, J.T. Atmospheric and soil water influences on the plant water balance. Agric. Meteorol. 1974, 14, 183–198. [Google Scholar] [CrossRef]
- Bodner, G.; Mentler, A.; Keiblinger, K. Plant roots for sustainable soil structure management in cropping systems. Root Syst. Sustain. Agric. Intensif. 2021, 45–90. [Google Scholar]
- Armstrong, W.; Drew, M.C. Root growth and metabolism under oxygen deficiency. In Plant Roots; CRC Press: Boca Raton, FL, USA, 2002; pp. 1139–1187. [Google Scholar]
- Jiang, F.-S.; Huang, Y.-H.; Wang, M.-K.; Lin, J.-S.; Zhao, G.; Ge, H.-L. Effects of Rainfall Intensity and Slope Gradient on Steep Colluvial Deposit Erosion in Southeast China. Soil Sci. Soc. Am. J. 2014, 78, 1741–1752. [Google Scholar] [CrossRef]
- Cao, J.C.; Wu, H.; Yang, J.B.; Liu, J.Z. Optimizing the layout of meteorological stations and integrating rural revitalization to enhance meteorological service precision. Chin. Agric. Sci. Bull. 2021, 4, 91–97. [Google Scholar]
- Lu, Z.R.; Li, Y.M.; Yang, C.H.; Xia, Z.T.; Cheng, W.W.; Wang, Z.L.; Zhao, J.X.; Fan, M.P. Effects of Continuous Annual Crop Rotation and Fallow on Soil Aggregate Stability and Organic Carbon. Huan Jing Ke Xue 2024, 45, 1644–1654. [Google Scholar] [PubMed]
- Song, G.; Shi, D.M.; Zhu, H.Y.; Jin, H.F.; Zhang, Q.; Lou, Y.B. Effects of different tillage practices on the quality of the plow layer in red soil sloping fields. Soil Sci. 2020, 3, 610–622. [Google Scholar]
- Dai, Z. Study on the Improvement Effect and Biochemical Mechanism of Biochar on Acidified Soil; Zhejiang University: Hangzhou, China, 2017. [Google Scholar]
Data | Data Sources | Data Type | Spatial Resolution | Time Scale |
---|---|---|---|---|
Land use/land cover | Resource and Environmental Science and Data Center, Chinese Academy of Sciences | grid | 30 m | 2000/2005/2010/2015/2020 |
DEM | National Aeronautics and Space Administration | grid | 30 m | |
NDVI | Resource and Environmental Science and Data Center, Chinese Academy of Sciences | grid | 30 m | 1998–2020 |
Meteorology | National Meteorological Science Data Center | table | / | 1998–2020 |
Statistical data | Jiangxi Province Statistical Yearbook [45] | table | / | 2000/2005/2010/2015/2020 |
SER (t·km−2·a−1) | 2000 | 2005 | 2010 | 2015 | 2020 | |
---|---|---|---|---|---|---|
Slight | <500 | 80.12 | 83.83 | 82.31 | 81.82 | 81.53 |
Light | 500–2500 | 14.32 | 11.62 | 12.59 | 12.83 | 13.12 |
Moderate | 2500–5000 | 2.76 | 2.59 | 2.71 | 2.72 | 2.75 |
Intensive | 5000–8000 | 1.48 | 1.26 | 1.36 | 1.47 | 1.47 |
Very intensive | 8000–15,000 | 1.03 | 0.62 | 0.83 | 0.92 | 0.91 |
Severe | >15,000 | 0.29 | 0.08 | 0.20 | 0.23 | 0.22 |
2000 | 2005 | 2010 | 2015 | 2020 | |
---|---|---|---|---|---|
Cropland | 1838.5 | 1500.0 | 1650.4 | 1738.2 | 1752.4 |
Grassland | 657.7 | 556.3 | 564.4 | 596.4 | 591.1 |
Forest | 84.0 | 74.1 | 76.8 | 78.7 | 78.0 |
2020 | Total | |||||||
---|---|---|---|---|---|---|---|---|
Slight | Light | Moderate | Intensive | Very Intensive | Severe | |||
2000 | Slight | 78.94 | 1.02 | 0.09 | 0.05 | 0.02 | 0.002 | 80.12 |
Light | 2.51 | 11.68 | 0.12 | 0.01 | 0.001 | 0 | 14.32 | |
Moderate | 0.05 | 0.39 | 2.22 | 0.11 | 0.001 | 0 | 2.76 | |
Intensive | 0.02 | 0.02 | 0.32 | 1.07 | 0.05 | 0 | 1.48 | |
Very intensive | 0.01 | 0.01 | 0.01 | 0.23 | 0.76 | 0.02 | 1.03 | |
Severe | 0.003 | 0 | 0.001 | 0.0004 | 0.08 | 0.20 | 0.29 | |
Total | 81.53 | 13.12 | 2.75 | 1.47 | 0.91 | 0.22 | 100.00 |
Fitting Index | CFI | GFI | AGFI | RMSEA | SRMR | CD_Ratio | p_Value | |
---|---|---|---|---|---|---|---|---|
Threshold | ≥0.9 | ≥0.9 | ≥0.8 | <0.1 | <0.1 | <3 | >0.05 | |
Areas with increased soil erosion | Total | 1 | 1 | 1 | 0.003 | 0.028 | 2.428 | 0.119 |
Forest | 1 | 1 | 1 | 0.006 | 0.01 | 2.721 | 0.099 | |
Grassland | 1 | 0.992 | 1 | 0.027 | 0 | 2.867 | 0.09 | |
Cropland | 1 | 1 | 0.999 | 0.01 | 0.012 | 2.684 | 0.101 | |
Areas with reduced soil erosion | Total | 1 | 1 | 1 | 0.001 | 0.019 | 1.258 | 0.262 |
Forest | 0.999 | 1 | 0.995 | 0.025 | 0.04 | 2.882 | 0.083 | |
Grassland | 1 | 0.998 | 1 | 0.013 | 0 | 2.025 | 0.132 | |
Cropland | 1 | 0.999 | 1 | 0.008 | 0 | 2.689 | 0.102 |
2005 | Transferred Out in 2000 | |||||
Cropland | Forest | Grassland | Construction Land | |||
2000 | Cropland | 62 | 50 | 455 | 567 | |
Forest | 247 | 48 | 102 | 397 | ||
Grassland | 56 | 178 | 8 | 242 | ||
Construction land | 8 | 2 | 10 | |||
2020 | Transferred Out in 2000 | |||||
Cropland | Forest | Grassland | Construction Land | |||
2005 | Cropland | 108 | 12 | 1583 | 1703 | |
Forest | 418 | 594 | 1009 | 2021 | ||
Grassland | 75 | 436 | 162 | 673 | ||
Construction land | 183 | 19 | 5 | 207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yang, X.; Cai, H. Analysis of Influencing Factors of Soil Erosion Changes Based on Structural Equation Model. Land 2025, 14, 304. https://doi.org/10.3390/land14020304
Wang Z, Yang X, Cai H. Analysis of Influencing Factors of Soil Erosion Changes Based on Structural Equation Model. Land. 2025; 14(2):304. https://doi.org/10.3390/land14020304
Chicago/Turabian StyleWang, Ziwei, Xiaohuan Yang, and Hongyan Cai. 2025. "Analysis of Influencing Factors of Soil Erosion Changes Based on Structural Equation Model" Land 14, no. 2: 304. https://doi.org/10.3390/land14020304
APA StyleWang, Z., Yang, X., & Cai, H. (2025). Analysis of Influencing Factors of Soil Erosion Changes Based on Structural Equation Model. Land, 14(2), 304. https://doi.org/10.3390/land14020304