Remotely Sensed Spectral Indices as Proxies of the Structure of Urban Bird Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fieldwork
2.3. Bird Community Indices
2.4. Remotely Sensed Spectral Indices
2.5. Data Analysis
3. Results
3.1. Spectral Indices as Proxies of Bird Community Structure at the 50 m Spatial Scale
3.2. Spectral Indices as Proxies of Bird Community Structure at the 200 m Spatial Scale
3.3. Spectral Indices as Proxies of Bird Community Structure at the 500 m Spatial Scale
4. Discussion
4.1. Spectral Indices and Bird Abundance
4.2. Spectral Indices and Bird Diversity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chace, J.F.; Walsh, J.J. Urban Effects on Native Avifauna: A Review. Landsc. Urban Plan. 2006, 74, 46–69. [Google Scholar] [CrossRef]
- Clergeau, P.; Croci, S.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.L.; Dinetti, M. Avifauna Homogenization by Urbanization: Analysis at Different European Latitudes. Biol. Conserv. 2006, 3, 336–344. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Brindley, P.; Mears, M.; McEwan, K.; Ferguson, F.; Sheffield, D.; Jorgensen, A.; Riley, J.; Goodrick, J.; Ballard, L.; et al. Where the Wild Things Are! Do Urban Green Spaces with Greater Avian Biodiversity Promote More Positive Emotions in Humans? Urban Ecosyst. 2020, 23, 301–317. [Google Scholar] [CrossRef]
- Kontsiotis, V.J.; Valsamidis, E.; Liordos, V. Organization and Differentiation of Breeding Bird Communities Across a Forested to Urban Landscape. Urban For. Urban Green. 2019, 38, 242–250. [Google Scholar] [CrossRef]
- Liordos, V.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.-L.; Valsamidis, E.; Kontsiotis, V.J. Niche Analysis and Conservation of Bird Species Using Urban Core Areas. Sustainability 2021, 13, 6327. [Google Scholar] [CrossRef]
- Liordos, V.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.-L.; Valsamidis, E.; Kontsiotis, V.J. Patch, matrix and disturbance variables negatively influence bird community structure in small-sized managed green spaces located in urban core areas. Sci. Total Environ. 2021, 801, 149617. [Google Scholar] [CrossRef] [PubMed]
- Devictor, V.; Mouillot, D.; Meynard, C.; Jiguet, F.; Thuiller, W.; Mouquet, N. Spatial Mismatch and Congruence Between Taxonomic, Phylogenetic and Functional Diversity: The Need for Integrative Conservation Strategies in a Changing World. Ecol. Lett. 2010, 13, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Chao, A. Nonparametric Estimation of the Number of Classes in a Population. Scand. J. St. 1984, 11, 265–270. [Google Scholar]
- Hurlbert, S. The Nonconcept of Species Diversity: A Critique and Alternative Parameters. Ecology 1971, 52, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Jost, L. Estimating Diversity and Entropy Profiles Via Discovery Rates of New Species. Methods Ecol. Evol. 2015, 6, 873–882. [Google Scholar] [CrossRef]
- Villéger, S.; Mason, N.W.H.; Mouillot, D. New Multidimensional Functional Diversity Indices for a Multifaceted Framework in Functional Ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef] [PubMed]
- Mason, N.W.H.; Mouillot, D.; Lee, W.G.; Wilson, J.B. Functional Richness, Functional Evenness and Functional Divergence: The Primary Components of Functional Diversity. Oikos 2005, 111, 112–118. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P. A Distance-Based Framework for Measuring Functional Diversity from Multiple Traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Jetz, W.; Thomas, G.H.; Joy, J.B.; Redding, D.W.; Hartmann, K.; Mooers, A.O. Global Distribution and Conservation of Evolutionary Distinctness in Birds. Curr. Biol. 2014, 24, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Botta-Dukát, Z. Rao’s Quadratic Entropy as a Measure of Functional Diversity Based on Multiple Traits. J. Veg. Sci. 2005, 16, 533–540. [Google Scholar] [CrossRef]
- Frishkoff, L.O.; Karp, D.S.; Mendenhall, C.D.; Zook, J.; Kremen, C.; Hadly, E.A.; Daily, G.C. Loss of Avian Phylogenetic Diversity in Neotropical Agricultural Systems. Science 2014, 345, 1343–1346. [Google Scholar] [CrossRef] [PubMed]
- Isaac, N.J.B.; Turvey, S.T.; Collen, B.; Waterman, C.; Baillie, J.E.M. Mammals on the EDGE: Conservation Priorities Based on Threat and Phylogeny. PLoS ONE 2007, 2, e296. [Google Scholar] [CrossRef] [PubMed]
- Morelli, F.; Benedetti, Y.; Ibáñez-Álamo, J.D.; Jokimäki, J.; Mänd, R.; Tryjanowski, P.; Møller, A.P. Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr. 2016, 25, 1284–1293. [Google Scholar] [CrossRef]
- Guimarães Santos, E.; Correa Wiederhecker, H.; Tirelli Pompermaier, V.; Gainsbury, A.M.; Coradini Schirmer, S.; Feitosa Morais, C.V.; Lima Fontenele, J.; Conceição de Morais Santana, M.; Marini, M.Â. Urbanization Reduces Diversity, Simplifies Community and Filter Bird Species Based on their Functional Traits in a Tropical City. Sci. Total Environ. 2024, 935, 173379. [Google Scholar] [CrossRef]
- Ibáñez-Álamo, J.D.; Rubio, E.; Benedetti, Y.; Morelli, F. Global Loss of Avian Evolutionary Uniqueness in Urban Areas. Glob. Change Biol. 2017, 23, 2990–2998. [Google Scholar] [CrossRef]
- Carbó-Ramírez, P.; Zuria, I. The Value of Small Urban Green Spaces for Birds in a Mexican City. Landsc. Urban Plan. 2011, 100, 213–222. [Google Scholar] [CrossRef]
- Kontsiotis, V.J.; Chatzigiovanakis, S.; Valsamidis, E.; Xofis, P.; Liordos, V. Normalized Difference Vegetation Index as a Proxy of Urban Bird Species Presence and Distribution at Different Spatial Scales. Diversity 2023, 15, 1139. [Google Scholar] [CrossRef]
- Benedetti, Y.; Callaghan, C.T.; Ulbrichová, I.; Galanaki, A.; Kominos, T.; Abou Zeid, F.; Ibáñez-Álamo, J.D.; Suhonen, J.; Díaz, M.; Markó, G.; et al. EVI and NDVI as Proxies for Multifaceted Avian Diversity in Urban Areas. Ecol. Appl. 2023, 33, e2808. [Google Scholar] [CrossRef] [PubMed]
- Leveau, L.M.; Isla, F.I.; Bellocq, M.I. From Town to Town: Predicting the Taxonomic, Functional and Phylogenetic Diversity of Birds Using NDVI. Ecol. Indic. 2020, 119, 106703. [Google Scholar] [CrossRef]
- Christidis, N.; Jones, G.S.; Stott, P.A. Dramatically Increasing Chance of Extremely Hot Summers Since the 2003 European Heatwave. Nat. Clim. Chang. 2015, 5, 46–50. [Google Scholar] [CrossRef]
- Bino, G.; Levin, N.; Darawshi, S.; Van Der Hal, N.; Reich-Solomon, A.; Kark, S. Accurate Prediction of Bird Species Richness Patterns in an Urban Environment Using Landsat-Derived NDVI and Spectral Unmixing. Int. J. Remote Sens. 2008, 29, 3675–3700. [Google Scholar] [CrossRef]
- Bae, S.; Müller, J.; Lee, D.; Vierling, K.T.; Vogeler, J.C.; Vierling, L.A.; Hudak, A.T.; Latifi, H.; Thorn, S. Taxonomic, Functional, and Phylogenetic Diversity of Bird Assemblages Are Oppositely Associated to Productivity and Heterogeneity in Temperate Forests. Remote Sens. Environ. 2018, 215, 145–156. [Google Scholar] [CrossRef]
- Callaghan, C.T.; Major, R.E.; Lyons, M.B.; Martin, J.M.; Kingsford, R.T. The Effects of Local and Landscape Habitat Attributes on Bird Diversity in Urban Greenspaces. Ecosphere 2018, 9, e02347. [Google Scholar] [CrossRef]
- Katoh, K.; Matsuba, M. Effectiveness of Nature Reserves for Bird Conservation in Urban Parks in Tokyo. J. For. Res. 2021, 32, 2011–2022. [Google Scholar] [CrossRef]
- Leveau, L.M. Primary Productivity and Habitat Diversity Predict Bird Species Richness and Composition Along Urban-rural Gradients of Central Argentina. Urban For. Urban Green. 2019, 43, 126349. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, S.; Yin, T.; Gastellu-Etchegorry, J.-P. Globally Quantitative Analysis of the Impact of Atmosphere and Spectral Response Function on 2-band Enhanced Vegetation Index (EVI2) Over Sentinel-2 and Landsat-8. ISPRS J. Photogramm. Remote Sens. 2023, 205, 206–226. [Google Scholar] [CrossRef]
- Moreira, F.S.; Regos, A.; Gonçalves, J.F.; Rodrigues, T.M.; Verde, A.; Pagès, M.; Pérez, J.A.; Meunier, B.; Lepetit, J.-P.; Honrado, J.P.; et al. Combining Citizen Science Data and Satellite Descriptors of Ecosystem Functioning to Monitor the Abundance of a Migratory Bird during the Non-Breeding Season. Remote Sens. 2022, 14, 463. [Google Scholar] [CrossRef]
- Cooper, W.J.; McShea, W.J.; Forrester, T.; Luther, D.A. The Value of Local Habitat Heterogeneity and Productivity When Estimating Avian Species Richness and Species of Concern. Ecosphere 2020, 11, e03107. [Google Scholar] [CrossRef]
- Hobi, M.L.; Dubinin, M.C.; Graham, H.; Coops, N.C.; Clayton, M.K.; Pidgeon, A.M.; Radeloff, V.C. A Comparison of Dynamic Habitat Indices Derived from Different MODIS Products as Predictors of Avian Species Richness. Remote Sens. Environ. 2017, 195, 142–152. [Google Scholar] [CrossRef]
- Echeverría-Caro, A.; Feldman, R.E.; Bahn, V. Geographic Context is a Key Driver of Spatial Variation of Bird Species Richness During Migration. Global Ecol. Biogeogr. 2022, 31, 1303–1312. [Google Scholar] [CrossRef]
- Taddeo, S.; Dronova, I.; Depsky, N. Spectral Vegetation Indices of Wetland Greenness: Responses to Vegetation Structure, Composition, and Spatial Distribution. Remote Sens. Environ. 2019, 234, 111467. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Somvanshi, S.S.; Kumari, M. Comparative Analysis of Different Vegetation Indices with Respect to Atmospheric Particulate Pollution Using Sentinel Data. Appl. Comput. Geosci. 2020, 7, 100032. [Google Scholar] [CrossRef]
- Viswambharan, S.; Kumaramkandath, I.T.; Tali, J.A. A Geospatial Approach in Monitoring the Variations on Surface Soil Moisture and Vegetation Water Content: A Case Study of Palakkad District, Kerala, India. Environ. Earth Sci. 2022, 81, 494. [Google Scholar] [CrossRef]
- Abdi, A.M. Integrating Open Access Geospatial Data to Map the Habitat Suitability of the Declining Corn Bunting (Miliaria calandra). ISPRS Int. J. Geo-Inf. 2013, 2, 935–954. [Google Scholar] [CrossRef]
- Abril-Colón, I.; Alonso, J.C.; Palacín, C.; Álvarez-Martínez, J.M.; Ucero, A. Short-Distance Nocturnal Migration in an Island Endemic Bustard. IBIS 2022, 164, 1145–1159. [Google Scholar] [CrossRef]
- Malik, M.; Jai, S.; Satanand, M. Relationship of LST, NDBI and NDVI Using Landsat-8 data in Kandaihimmat Watershed, Hoshangabad, India. Indian J. Mar. Sci. 2019, 48, 25–31. [Google Scholar]
- MacGregor-Fors, I.; Schondube, J.E. Gray vs. Green Urbanization: Relative Importance of Urban Features for Urban Bird Communities. Basic Appl. Ecol. 2011, 12, 372–381. [Google Scholar] [CrossRef]
- Amaya-Espinel, J.D.; Hostetler, M.; Henríquez, C.; Bonacic, C. The Influence of Building Density on Neotropical Bird Communities Found in Small Urban Parks. Landsc. Urban Plan. 2019, 190, 103578. [Google Scholar] [CrossRef]
- Ortega-Álvarez, R.; MacGregor-Fors, I. Living in the Big City: Effects of Urban Land Use on Bird Community Structure, Diversity, and Composition. Landsc. Urban Plan. 2009, 90, 189–195. [Google Scholar] [CrossRef]
- Zhang, A.; Li, W.; Xia, C.; Guo, H. The Impact of Urban Landscape Patterns on Land Surface Temperature at the Street Block Level: Evidence from 38 Big Chinese Cities. Environ. Impact Assess. Rev. 2025, 110, 107673. [Google Scholar] [CrossRef]
- van Oorschot, J.; Slootweg, M.; Remme, R.P.; Sprecher, B.; van der Voet, E. Optimizing Green and Gray Infrastructure Planning for Sustainable Urban Development. npj Urban Sustain. 2024, 4, 41. [Google Scholar] [CrossRef]
- Şahin Körmeçli, P.; Seçkin Gündoğan, G. Assessment of Vegetation Change Uing NDVI, LST, and Carbon Analyses in Çankırı Karatekin University, Turkey. Environ. Monit. Assess. 2024, 196, 331. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xiao, H.; Gu, X. Integrating Species Distribution and Piecewise Linear Regression Model to Identify Functional Connectivity Thresholds to Delimit Urban Ecological Corridors. Comput. Environ. Urban. Syst. 2024, 113, 102177. [Google Scholar] [CrossRef]
- Bacaro, G.; Santi, E.; Rocchini, D.; Pezzo, F.; Puglisi, L.; Chiarucci, A. Geostatistical Modelling of Regional Bird Species Richness: Exploring Environmental Proxies for Conservation Purpose. Biodivers. Conserv. 2011, 20, 1677–1694. [Google Scholar] [CrossRef]
- ELSTAT (Hellenic Statistical Authority). Population Census. 2021. Available online: https://www.statistics.gr/2021-census-pop-hous-results (accessed on 20 November 2024).
- Bibby, C.; Burgess, N.; Hill, D.; Mustoe, S. Bird Census Techniques, 3rd ed.; Academic: London, UK, 2000. [Google Scholar]
- Chao, A.; Ma, K.H.; Hsieh, T.C.; Chiu, C.-H. SpadeR: Species-Richness Prediction and Diversity Estimation with R. R Package Version 0.1.1.2016. Available online: https://CRAN.R-project.org/package=SpadeR (accessed on 20 November 2024).
- McGlinn, D.; Xiao, X.; McGill, B.; May, F.; Engel, T.; Oliver, C.; Blowes, S.; Knight, T.; Purschke, O.; Gotelli, N.; et al. Mobr: Measurement of Biodiversity. 2020. R Package Version 2.0.0. Available online: https://CRAN.R-project.org/package=mobr (accessed on 20 November 2024).
- Pearman, P.B.; Lavergne, S.; Roquet, C.; Wüest, R.; Zimmermann, W.; Thuiller, N.E. Phylogenetic Patterns of Climatic, Habitat and Trophic Niches in a European Avian Assemblage. Global Ecol. Biogeogr. 2014, 23, 414–424. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P.; Shipley, B. Measuring Functional Diversity (FD) from Multiple Traits, and Other Tools for Functional Ecology: R Package Version 1.0-12. 2015. Available online: https://cran.r-project.org/web//packages/FD/FD.pdf (accessed on 20 November 2024).
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Xofis, P.; Feloni, E.; Emmanouloudis, D.; Chatzigiovanakis, S.; Kravari, K.; Samourkasidou, E.; Kefalas, G.; Nastos, P. Long-term Monitoring of Trends in Xerothermality and Vegetation Condition of a Northeast Mediterranean Island, Using Meteorological and Remote Sensing Data. Land 2024, 13, 2129. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 20 November 2024).
- Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.17. 2020. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 20 November 2024).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Breheny, P.; Burchett, W. Visualization of Regression Models Using visreg. R J. 2017, 9, 56–71. [Google Scholar] [CrossRef]
- Capari, L.; Wilfing, H.; Exner, A.; Höflehner, T.; Haluza, D. Cooling the City? A Scientometric Study on Urban Green and Blue Infrastructure and Climate Change-Induced Public Health Effects. Sustainability 2022, 14, 4929. [Google Scholar] [CrossRef]
- Cai, Z.; La Sorte, F.A.; Chen, Y.; Wu, J. The Surface Urban Heat Island Effect Decreases Bird Diversity in Chinese Cities. Sci. Total Environ. 2023, 902, 166200. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.D.; Schneider, S.C.; Ahlers, A.A.; Miller, J.R. Categorizing Wildlife Responses to Urbanization and Conservation Implications of Terminology. Conserv. Biol. 2015, 29, 1246–1248. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.C.; Fischer, J.D.; Miller, J.R. Two-Sided Edge Responses of Avian Communities in an Urban Landscape. Urban Ecosyst. 2015, 18, 539–551. [Google Scholar] [CrossRef]
- Awoyemi, A.G.; Barshep, Y.; Manu, S.; Ibáñez-Álamo, J.D. Associations between urbanization and avian communities in the Afrotropics: Evidence from taxonomic, functional and phylogenetic diversity. Global Ecol. Conserv. 2024, 54, e03108. [Google Scholar] [CrossRef]
- Mao, Q.; Sun, J.; Deng, Y.; Wu, Z.; Bai, H. Assessing Effects of Multi-Scale Landscape Pattern and Habitats Attributes on Taxonomic and Functional Diversity of Urban River Birds. Diversity 2023, 15, 486. [Google Scholar] [CrossRef]
- Melo, M.A.; Piratelli, A.J. Increase in Size and Shrub Cover Improves Bird Functional Diversity in Neotropical Urban Green Spaces. Austral Ecol. 2023, 48, 440–460. [Google Scholar] [CrossRef]
- Morelli, F.; Benedetti, Y.; Ibáñez-Álamo, J.D.; Tryjanowski, P.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.-L.; Suhonen, J.; Díaz, M.; Møller, A.P.; Moravec, D.; et al. Effects of Urbanization on Taxonomic, Functional and Phylogenetic Avian Diversity in Europe. Sci. Total Environ. 2021, 795, 148874. [Google Scholar] [CrossRef]
- Kavana, D.J.; Mbije, N.; Mayeji, T.S.; Yu, B. Functional Diversity of Avian Communities in Response to Habitat Fragmentation in Human-Dominated Landscapes of Tanzania Miombo Woodlands. Afr. J. Ecol. 2024, 62, e13293. [Google Scholar] [CrossRef]
- Undin, M.; Atrena, A.; Carlsson, F.; Edman, M.; Gunnar Jonsson, B.; Sandström, J. To What Extent Does Surrounding Landscape Explain Stand-Level Occurrence of Conservation-Relevant Species in Fragmented Boreal and Hemi-Boreal Forest?—A Systematic Review. Environ. Evid. 2024, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Fleishman, E.; Fay, J.P.; Betrus, C.J. Linking Spatial Patterns of Bird and Butterfly Species Richness with Landsat TM Derived NDVI. Int. J. Remote Sens. 2004, 25, 4309–4324. [Google Scholar] [CrossRef]
- Keppel, G.; Van Niel, K.; Wardell-Johnson, G.; Yates, C.; Byrne, M.; Mucina, L.; Schut, A.; Hopper, S.; Franklin, S. Refugia: Identifying and Understanding Safe Havens for Biodiversity under Climate Change. Glob. Ecol. Biogeogr. 2011, 21, 393–404. [Google Scholar] [CrossRef]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental Heterogeneity as a Universal Driver of Species Richness across Taxa, Biomes and Spatial Scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef]
Index | Code | Definition |
---|---|---|
Taxonomic diversity | ||
Species richness | Chao 1 richness | Chao1 estimator, the lower bound of undetected species richness in terms of the numbers of singletons and doubletons [8] |
Probability of Interspecific Encounter | PIE | The probability that two randomly sampled individuals from the assemblage represent two different species; a diversity metric not sensitive to rare species; high PIE values indicate high species evenness [9] |
Shannon entropy (Shannon–Wiener index) | Chao Shannon | A diversity index that weighs species exactly by their frequencies, without favoring rare or common species [10] |
Functional diversity | ||
Functional richness | FRic | It is the amount of functional space occupied by a community; high values suggest that most of the existing niches are used by the species in that community [11] |
Functional evenness | FEve | It represents the evenness of distribution of abundance in a functional trait space [11,12] |
Functional divergence | FDiv | It is the distance of species abundances to the center of the functional space in a community; it represents the overall functional diversity in that community [11,12] |
Functional dispersion | FDis | The mean distance in multidimensional trait space of individual species to the centroid of all species; can account for species abundances by shifting the position of the centroid toward the more abundant species and weighting distances of individual species by their relative abundances [13] |
Rao’s quadratic entropy | Rao’s Q | Includes both the relative abundances of species and a measure of the pairwise functional differences between species in a community; conceptually similar to FDis [15] |
Phylogenetic diversity | ||
Community evolutionary distinctiveness | CED | The mean evolutionary distinctiveness of the species in a community; a species’ evolutionary distinctiveness score is a measure of the species’ uniqueness [16,17] |
Maximum community evolutionary distinctiveness | maxCED | The maximum value of a species’ evolutionary distinctiveness score recorded in a community [16,17] |
Index | Code | Definition |
---|---|---|
Normalized difference vegetation index | NDVI Mean | It uses an algorithm that extracts information from two channels of a satellite image, red and near-infrared (NIR); its values range from −1 to +1 depending on the relative reflectance of geographic features in the two spectral bands; vegetated areas tend to give high NDVI values due to the high reflectance of green vegetation in NIR and low reflectance in the red band; rocks and impervious surfaces have similar reflectance in both bands and give values close to zero; open water gives negative values [25]. |
NDVI SD | ||
Green normalized difference vegetation index | GNDVI Mean | An index of the plant’s “greenness” or photosynthetic movement; uses the green instead of the red band used in NDVI; ranges between −1 and +1 [37]. |
GNDVI SD | ||
Enhanced vegetation index 2 | EVI2 Mean | Quantifies vegetation greenness; similar to NDVI; calculated using the near-infrared (NIR) and red spectral bands; corrects for some atmospheric conditions and canopy background noise; more sensitive in areas with dense vegetation; reduces the limitations imposed by the blue band in the EVI; ranges between −2.5 and +2.5 [31,32]. |
EVI2 SD | ||
Soil-adjusted vegetation index | SAVI Mean | Developed to reduce the influence of soil on canopy spectra by incorporating a soil adjustment factor (L) into the denominator of the NDVI equation; ranges between −1.5 and +1.5 [38,39]. |
SAVI SD | ||
Atmospherically resistant vegetation index | ARVI Mean | An enhanced vegetation index calculated using the near-infrared (NIR), red, and blue spectral bands; resistant to atmospheric effects due to a self-correction process for the atmospheric effect on the red band; ranges between −1 and +1 [40,41]. |
ARVI SD | ||
Normalized difference moisture index | NDMI Mean | Assesses vegetation water content in plants; calculated using the near-infrared (NIR) and short-wave infrared (SWIR) spectral bands; ranges between −1 and +1; the lowest values indicate low vegetation water content and the highest values correspond to high water content [42]. |
NDMI SD | ||
Normalized difference built-up index | NDBI Mean | Used to identify urban and built-up areas from satellite imagery; leverages the near-infrared (NIR) and short-wave infrared (SWIR) spectral bands; ranges between −1 and +1 [45]. |
NDBI SD | ||
Land surface temperature | LST Mean | The temperature of the land surface in degrees Celsius (°C); can change significantly inside a relatively small heterogeneous urban area; satellites use thermal infrared (TIR) sensors to measure the heat emitted from the Earth’s surface [49]. |
LST SD |
LogLik | AICc | ΔAICc | wi | Cumulative wi | Rate Ratio (95% CI) | |
---|---|---|---|---|---|---|
Abundance | ||||||
LST SD | −90.52 | 185.85 | 0.00 | 1.00 | 1.00 | 1.80 (1.51–2.14) |
Richness (Chao1) | ||||||
NDVI Mean | −41.49 | 90.69 | 0.00 | 0.29 | 0.29 | 31.96 (16.67–47.25) |
SAVI Mean | −41.49 | 90.69 | 0.00 | 0.29 | 0.58 | 21.31 (11.12–31.50) |
EVI2 Mean | −41.74 | 91.19 | 0.50 | 0.22 | 0.80 | 16.86 (8.57–25.14) |
Evenness (PIE) | ||||||
NDVI Mean | 23.02 | −38.33 | 0.00 | 0.22 | 0.22 | 1.69 (1.10–2.58) |
SAVI Mean | 23.02 | −38.33 | 0.00 | 0.22 | 0.44 | 1.42 (1.07–1.88) |
EVI2 Mean | 22.90 | −38.09 | 0.24 | 0.20 | 0.64 | 1.32 (1.05–1.65) |
GNDVI Mean | 22.82 | −37.93 | 0.40 | 0.17 | 0.81 | 1.74 (1.09–2.79) |
Diversity (Shannon entropy) | ||||||
NDVI Mean | −3.76 | 15.24 | 0.00 | 0.29 | 0.29 | 36.74 (5.61–67.79) |
SAVI Mean | −3.76 | 15.24 | 0.00 | 0.29 | 0.58 | 11.06 (3.16–38.72) |
EVI2 Mean | −4.01 | 15.73 | 0.49 | 0.23 | 0.81 | 6.66 (2.40–18.45) |
ARVI Mean | −4.38 | 16.48 | 1.23 | 0.17 | 0.98 | 37.09 (4.85–83.64) |
Functional richness (FRic) | ||||||
NDBI SD | −87.00 | 181.71 | 0.00 | 0.17 | 0.17 | 2.78 (1.39–4.45) |
ARVI Mean | −87.58 | 182.88 | 1.17 | 0.09 | 0.26 | 1.83 (1.47–2.71) |
ARVI SD | −87.63 | 182.98 | 1.27 | 0.09 | 0.35 | 1.52 (1.25–1.99) |
EVI2 SD | −87.77 | 183.26 | 1.54 | 0.08 | 0.43 | 1.33 (1.04–2.47) |
Functional evenness (FEve) | ||||||
GNDVI Mean | 20.15 | −32.59 | 0.00 | 0.19 | 0.19 | 1.73 (1.03–2.14) |
LST SD | 19.72 | −31.73 | 0.86 | 0.12 | 0.31 | 0.89 (0.78–0.99) |
SAVI Mean | 19.66 | −31.61 | 0.99 | 0.11 | 0.42 | 1.34 (1.01–1.84) |
NDVI Mean | 19.66 | −31.61 | 0.99 | 0.11 | 0.53 | 1.55 (1.02–2.58) |
EVI2 Mean | 19.59 | −31.46 | 1.13 | 0.11 | 0.64 | 1.26 (0.95–1.65) |
Functional diversity (FDiv) | ||||||
LST SD | 26.13 | −44.55 | 0.00 | 0.18 | 0.18 | 0.91 (0.85–0.98) |
GNDVI Mean | 25.98 | −44.25 | 0.30 | 0.16 | 0.34 | 1.43 (1.06–2.02) |
LST Mean | 25.62 | −43.53 | 1.02 | 0.11 | 0.44 | 1.01 (1.00–1.03) |
Functional dispersion (FDis) | ||||||
ARVI SD | 11.23 | −14.75 | 0.00 | 0.28 | 0.28 | 46.12 (7.5–84.23) |
EVI2 SD | 11.02 | −14.33 | 0.42 | 0.23 | 0.51 | 5.17 (1.27–21.09) |
NDVI SD | 10.67 | −13.63 | 1.12 | 0.16 | 0.67 | 26.92 (1.53–72.9) |
SAVI SD | 10.33 | −12.95 | 1.80 | 0.11 | 0.78 | 8.98 (1.33–40.72) |
Rao’s quadratic entropy (Q) | ||||||
EVI2 SD | −37.29 | 82.29 | 0.00 | 0.20 | 0.20 | 16.84 (3.68–29.99) |
ARVI SD | −37.44 | 82.59 | 0.30 | 0.17 | 0.37 | 35.23 (6.88–63.58) |
NDVI SD | −37.46 | 82.63 | 0.34 | 0.18 | 0.55 | 33.36 (6.40–60.31) |
SAVI SD | −37.46 | 82.63 | 0.34 | 0.18 | 0.73 | 22.24 (4.27–40.21) |
Community evolutionary distinctiveness (CED) | ||||||
NDVI Mean | −11.01 | 29.73 | 0.00 | 0.22 | 0.22 | 62.05 (3.74–131.99) |
SAVI Mean | −11.01 | 29.73 | 0.00 | 0.22 | 0.44 | 15.68 (2.41–52.18) |
GNDVI Mean | −11.09 | 29.90 | 0.17 | 0.20 | 0.64 | 87.62 (3.99–192.68) |
EVI2 Mean | −11.32 | 30.36 | 0.64 | 0.16 | 0.80 | 8.40 (1.82–38.81) |
Maximum community evolutionary distinctiveness (maxCED) | ||||||
LST SD | −48.56 | 104.83 | 0.00 | 0.22 | 0.22 | 8.40 (2.59–14.42) |
LogLik | AICc | ΔAICc | wi | Cumulative wi | Rate Ratio (95% CI) | |
---|---|---|---|---|---|---|
Abundance | ||||||
LST SD | −91.77 | 188.33 | 0.00 | 1.00 | 1.00 | 1.51 (1.32–1.72) |
Richness (Chao1) | ||||||
ARVI SD | −39.26 | 86.24 | 0.00 | 0.38 | 0.38 | 129.45 (79.47–179.23) |
EVI2 SD | −39.89 | 87.50 | 1.26 | 0.20 | 0.58 | 59.63 (35.33–93.83) |
Evenness (PIE) | ||||||
ARVI SD | 23.83 | −39.95 | 0.00 | 0.28 | 0.28 | 8.55 (1.92–28.14) |
EVI2 SD | 22.99 | −38.26 | 1.69 | 0.12 | 0.40 | 2.47 (1.18–5.18) |
SAVI SD | 22.89 | −38.07 | 1.89 | 0.11 | 0.50 | 4.01 (1.26–12.74) |
NDVI SD | 22.89 | −38.07 | 1.89 | 0.11 | 0.61 | 8.02 (1.41–25.44) |
Diversity (Shannon entropy) | ||||||
ARVI SD | −3.67 | 15.04 | 0.00 | 0.33 | 0.33 | 13.36 (6.47–20.25) |
EVI2 SD | −4.52 | 16.75 | 1.71 | 0.14 | 0.47 | 5.94 (2.54–9.34) |
Functional richness (FRic) | ||||||
GNDVI SD | −86.95 | 181.62 | 0.00 | 0.20 | 0.20 | 79.91 (13.87–141.98) |
SAVI SD | −87.31 | 182.33 | 0.71 | 0.14 | 0.34 | 65.32 (9.74–111.22) |
NDVI SD | −87.31 | 182.33 | 0.71 | 0.14 | 0.48 | 67.24 (12.45–103.76) |
ARVI SD | −87.57 | 182.86 | 1.24 | 0.11 | 0.58 | 66.64 (7.88–105.43) |
Functional evenness (FEve) | ||||||
ARVI SD | 20.10 | −32.49 | 0.00 | 0.30 | 0.30 | 6.16 (1.18–12.74) |
EVI2 SD | 19.54 | −31.37 | 1.12 | 0.18 | 0.48 | 2.08 (0.85–5.08) |
GNDVI Mean | 19.51 | −31.31 | 1.18 | 0.17 | 0.65 | 1.63 (0.89–2.97) |
Functional diversity (FDiv) | ||||||
NDMI SD | 27.21 | −46.71 | 0.00 | 0.28 | 0.28 | 0.05 (0.01–0.54) |
LST Mean | 27.06 | −46.41 | 0.30 | 0.24 | 0.52 | 1.04 (1.01–1.06) |
LST SD | 26.38 | −45.05 | 1.66 | 0.12 | 0.65 | 0.94 (0.88–0.99) |
Functional dispersion (FDis) | ||||||
LST Mean | 18.34 | −28.97 | 0.00 | 0.27 | 0.27 | 1.09 (1.02–1.22) |
GNDVI Mean | 17.97 | −28.23 | 0.74 | 0.19 | 0.46 | 0.41 (0.08–2.19) |
EVI2 Mean | 17.73 | −27.75 | 1.22 | 0.15 | 0.61 | 0.69 (0.29–1.66) |
NDVI Mean | 17.65 | −27.59 | 1.38 | 0.14 | 0.75 | 0.53 (0.11–1.66) |
SAVI Mean | 17.43 | −27.15 | 1.82 | 0.11 | 0.86 | 0.65 (0.22–1.89) |
Rao’s quadratic entropy (Q) | ||||||
GNDVI SD | −39.49 | 86.69 | 0.00 | 0.27 | 0.27 | 1.88 (1.31–2.67) |
GNDVI Mean | −39.68 | 87.08 | 0.39 | 0.22 | 0.49 | 1.61 (1.19–2.83) |
LST SD | −39.82 | 87.35 | 0.66 | 0.19 | 0.68 | 1.14 (0.09–3.41) |
Community evolutionary distinctiveness (CED) | ||||||
NDBI SD | −8.39 | 24.49 | 0.00 | 0.86 | 0.86 | 21.80 (11.27–32.33) |
Maximum community evolutionary distinctiveness (maxCED) | ||||||
NDBI SD | −48.03 | 103.78 | 0.00 | 0.36 | 0.36 | 11.8 (5.73–21.34) |
NDMI SD | −48.62 | 104.95 | 1.17 | 0.20 | 0.56 | 8.15 (2.33–22.82) |
LogLik | AICc | ΔAICc | wi | Cumulative wi | Rate Ratio (95% CI) | |
---|---|---|---|---|---|---|
Abundance | ||||||
GNDVI Mean | −94.67 | 194.14 | 0.00 | 0.64 | 0.64 | 0.05 (0.02–0.14) |
Richness (Chao1) | ||||||
NDMI Mean | −44.38 | 96.47 | 0.00 | 0.24 | 0.24 | 74.93 (22.30–127.56) |
NDBI Mean | −45.11 | 97.93 | 1.46 | 0.11 | 0.35 | 0.23 (0.04–0.88) |
ARVI Mean | −45.12 | 97.95 | 1.49 | 0.11 | 0.46 | 27.74 (5.36–50.13) |
NDVI Mean | −45.23 | 98.17 | 1.70 | 0.10 | 0.56 | 26.50 (4.62–48.37) |
SAVI Mean | −45.23 | 98.17 | 1.70 | 0.10 | 0.66 | 17.67 (3.08–32.25) |
Evenness (PIE) | ||||||
NDMI Mean | 21.36 | −35.01 | 0.00 | 0.18 | 0.18 | 2.79 (1.44–7.49) |
LST Mean | 21.35 | −34.99 | 0.02 | 0.18 | 0.36 | 0.95 (0.89–1.02) |
NDBI Mean | 20.89 | −34.06 | 0.95 | 0.11 | 0.47 | 0.63 (0.28–1.42) |
SAVI Mean | 20.85 | −33.99 | 1.02 | 0.11 | 0.58 | 1.23 (0.85–1.78) |
NDVI Mean | 20.85 | −33.99 | 1.02 | 0.11 | 0.69 | 1.36 (0.78–2.37) |
Diversity (Shannon entropy) | ||||||
NDMI Mean | −7.02 | 21.74 | 0.00 | 0.19 | 0.19 | 7.52 (1.28–14.13) |
ARVI Mean | −7.69 | 23.09 | 1.35 | 0.10 | 0.29 | 14.29 (0.87–74.67) |
SAVI Mean | −7.72 | 23.15 | 1.41 | 0.10 | 0.39 | 5.52 (0.89–33.93) |
NDVI Mean | −7.72 | 23.15 | 1.41 | 0.10 | 0.49 | 12.98 (0.85–197.53) |
EVI2 Mean | −7.8 | 23.31 | 1.56 | 0.09 | 0.58 | 3.94 (0.88–17.54) |
Functional richness (FRic) | ||||||
NDMI Mean | −88.23 | 184.18 | 0.00 | 0.17 | 0.17 | 348.44 (33.32–750.22) |
LST Mean | −88.47 | 184.66 | 0.48 | 0.14 | 0.31 | 0.02 (0.00–35.42) |
NDBI Mean | −88.56 | 184.84 | 0.65 | 0.12 | 0.43 | 0.01 (0.00–57.84) |
ARVI Mean | −88.59 | 184.89 | 0.71 | 0.12 | 0.55 | 1.67 (0.65–3.85) |
SAVI Mean | −88.63 | 184.98 | 0.80 | 0.12 | 0.67 | 1.45 (0.32–5.11) |
NDVI Mean | −88.63 | 184.98 | 0.80 | 0.12 | 0.79 | 1.12 (0.45–4.38) |
Functional evenness (FEve) | ||||||
GNDVI Mean | 18.70 | −29.69 | 0.00 | 0.18 | 0.18 | 2.66 (1.37–3.26) |
GNDVI SD | 18.60 | −29.49 | 0.20 | 0.17 | 0.35 | 2.43 (1.11–2.58) |
EVI2 Mean | 18.19 | −28.67 | 1.02 | 0.11 | 0.46 | 1.16 (0.82–1.64) |
SAVI Mean | 18.19 | −28.67 | 1.02 | 0.11 | 0.57 | 1.19 (0.69–1.82) |
NDVI Mean | 18.19 | −28.67 | 1.02 | 0.11 | 0.68 | 1.31 (0.69–2.45) |
ARVI Mean | 17.88 | −28.05 | 1.64 | 0.08 | 0.76 | 1.26 (0.66–2.43) |
Functional diversity (FDiv) | ||||||
NDVI SD | 27.49 | −47.26 | 0.00 | 0.22 | 0.22 | 3.45 (1.35–8.81) |
SAVI SD | 27.49 | −47.26 | 0.00 | 0.22 | 0.44 | 2.28 (1.22–4.27) |
EVI2 SD | 27.43 | −47.14 | 0.11 | 0.21 | 0.65 | 1.73 (1.14–2.62) |
ARVI SD | 27.20 | −46.69 | 0.56 | 0.16 | 0.81 | 3.53 (1.51–9.67) |
Functional dispersion (FDis) | ||||||
NDMI Mean | −11.32 | 30.35 | 0.00 | 0.27 | 0.27 | 2.48 (0.07–204.35) |
NDMI SD | −11.44 | 30.59 | 0.24 | 0.24 | 0.51 | 0.00 (0.00–100.71) |
LST SD | −11.89 | 31.49 | 1.14 | 0.15 | 0.66 | 0.87 (0.61–1.24) |
NDBI Mean | −12.15 | 32.01 | 1.66 | 0.12 | 0.78 | 0.41 (0.03–5.16) |
Rao’s quadratic entropy (Q) | ||||||
NDMI Mean | −39.76 | 87.23 | 0.00 | 0.23 | 0.23 | 15.44 (1.09–67.73) |
NDBI Mean | −39.96 | 87.63 | 0.40 | 0.19 | 0.42 | 0.01 (0.00–37.32) |
ARVI Mean | −40.1 | 87.92 | 0.69 | 0.17 | 0.59 | 4.78 (0.11–54.88) |
SAVI Mean | −40.59 | 88.89 | 1.66 | 0.10 | 0.69 | 2.32 (0.08–57.41) |
NDVI Mean | −40.59 | 88.89 | 1.66 | 0.10 | 0.79 | 3.20 (0.00–254.65) |
Community evolutionary distinctiveness (CED) | ||||||
LST Mean | −13.9 | 35.51 | 0.00 | 0.25 | 0.25 | 0.87 (0.65–0.97) |
GNDVI Mean | −14.26 | 36.24 | 0.72 | 0.17 | 0.42 | 9.41 (0.09–542.00) |
SAVI Mean | −14.33 | 36.38 | 0.86 | 0.16 | 0.58 | 3.26 (0.23–44.88) |
NDVI Mean | −14.33 | 36.38 | 0.86 | 0.16 | 0.74 | 5.89 (0.11–300.45) |
Maximum community evolutionary distinctiveness (maxCED) | ||||||
LST SD | −49.89 | 107.49 | 0.00 | 0.32 | 0.32 | 59.08 (2.45–420.77) |
LST Mean | −50.07 | 107.85 | 0.35 | 0.27 | 0.32 | 1.12 (0.22–3.85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontsiotis, V.J.; Chatzigiovanakis, S.; Valsamidis, E.; Nalmpantis, E.; Xofis, P.; Liordos, V. Remotely Sensed Spectral Indices as Proxies of the Structure of Urban Bird Communities. Land 2025, 14, 308. https://doi.org/10.3390/land14020308
Kontsiotis VJ, Chatzigiovanakis S, Valsamidis E, Nalmpantis E, Xofis P, Liordos V. Remotely Sensed Spectral Indices as Proxies of the Structure of Urban Bird Communities. Land. 2025; 14(2):308. https://doi.org/10.3390/land14020308
Chicago/Turabian StyleKontsiotis, Vasileios J., Stavros Chatzigiovanakis, Evangelos Valsamidis, Eleftherios Nalmpantis, Panteleimon Xofis, and Vasilios Liordos. 2025. "Remotely Sensed Spectral Indices as Proxies of the Structure of Urban Bird Communities" Land 14, no. 2: 308. https://doi.org/10.3390/land14020308
APA StyleKontsiotis, V. J., Chatzigiovanakis, S., Valsamidis, E., Nalmpantis, E., Xofis, P., & Liordos, V. (2025). Remotely Sensed Spectral Indices as Proxies of the Structure of Urban Bird Communities. Land, 14(2), 308. https://doi.org/10.3390/land14020308