Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work
Abstract
:1. Introduction
2. Land Degradation Processes
2.1. Physical Degradation
2.2. Chemical Degradation
2.3. Biological Degradation of Soil Organic Matter
3. Socio-Economic and Policy Processes
- Awareness about soils and land: people living off the land tend to have a strong drive to protect and sustainably manage their land assets; efforts have to be increased to raise awareness of the vital functions of land and soil and the destructive consequences of the “cost of inaction” at the level of politicians and decision-makers.
- Respect for complexity of the subject: the various existing assessments—and especially their incompatibility with each other—have proven that there is no simple solution to the issue.
- Acceptance of the ecosystem approach: all the relevant services that land and soil provide need to be considered.
- Respect for cultural diversity: any global assessment must be open to local interpretations of land and soil quality and be allowed to define and use its own ranking system.
- Science-policy interface and lobby for soils: one of its primary tasks would be to provide a globally-accepted framework for land and soil assessment.
- Explore and pilot smart, scalable LDN business models that secure returns on investment, building on existing profitable and sustainable practices.
- Assess the cost of land degradation and the total economic benefits of LDN and factor them into sustainable land management, restoration, and rehabilitation activities to become maintenance practices that are needed to preserve the value and function of land, just as for any other company asset.
- Increase awareness of the cost of inaction and the benefits of action across the value chain to encourage producers and consumers to change their current production and consumption patterns towards more sustainable ones.
- Support business action through long-term, smart, measurable policies, regulations, and incentives that provide a level playing field.
- Put in place enabling conditions to allow small-scale producers to engage.
- Turn governments and companies into brokers, helping facilitate dialogue and partnerships to ensure the fair distribution of costs and benefits arising from sustainable land management and land restoration.
4. Four Concepts to Make LDN Work
4.1. Systems Thinking and the Heterogeneity and Dynamics of Land and Soil
4.2. Connectivity
4.3. Nature-Based Solutions
4.4. Regenerative Economics
5. Using the Four Concepts to Design Land Degradation Neutral Solutions
6. Paradigm Shifts: Transitions to Economically Viable Sustainability
7. Conclusions
- To arrive at sustainable systems, broad and integrated approaches from an environmental, economic, and social point of view are needed, spanning the socio-ecological continuum of the systems that we wish to protect from degradation and manage sustainably.
- For the successful implementation and realization of the SDGs, a systems approach is necessary. The SGDs are not 17 separate goals that can be dealt with one by one. Instead, they should be seen as interlinked goals that can only be achieved through smart planning using the power of the natural and social system.
- The four approaches in this paper—systems thinking, connectivity, nature-based solutions, and a regenerative economy—are strongly interrelated. Systems thinking lies at the base of the three others, stressing not only feedback loops but also delayed responses. Their simultaneous use will result in more robust solutions, which are sustainable from an environmental, societal, and economic point of view. Short-term management needs to be embedded in long-term landscape vision and planning.
- Paradigm shifts are needed: to move from environmental protection to sustainable use and management and from a dominant economic and function-driven approach towards a natural system-based approach. To accomplish this, new business models are needed; an approach that integrates environmental, social, and economic interests. Only by making the transition towards integrated solutions based on a socio-ecological systems analysis using concepts such as nature-based solutions do we stand a chance to achieve Land Degradation Neutrality by 2030.
Author Contributions
Funding
Conflicts of Interest
References
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Policy: Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- McCormick, N.; Jenkins, M.; Maginnis, S. Biofuels and Degraded Land: The Potential Role of Intensive Agriculture in Landscape Restoration; IUCN: Gland, Switzerland, 2014; 48p. [Google Scholar]
- Scholes, R.; Montanarella, L.; Brainich, A.; Barger, N.; Brink, B.; Cantele, M.; Erasmus, B.; Fisher, J.; Gardner, T.; Holland, T.G.; et al. Summary for Policymakers of the Thematic assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2018; pp. 1–31. [Google Scholar]
- Molenaar, C.; Cleen, M. Sustainable Development Goals: Realizing Transitions by Sustainable Land Restoration, Land Use and Management. 2017. Available online: http://www.worldsoilday2017.eu/conference_presentation.html (accessed on 15 August 2018).
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Blanco, M.L.; Arias, R.; Taboada-Castro, M.M.; Nunes, J.P.; Keizer, J.J.; Taboada-Castro, M.T. Sediment Yield at Catchment Scale Using the SWAT (Soil and Water Assessment Tool) Model. Soil Sci. 2016, 181, 326–334. [Google Scholar] [CrossRef]
- Conway, L.S.; Yost, M.A.; Kitchen, N.R.; Sudduth, K.A.; Veum, K.S. Cropping System, Landscape Position, and Topsoil Depth Affect Soil Fertility and Nutrient Buffering. Soil Sci. Soc. Am. J. 2018, 82, 382–391. [Google Scholar] [CrossRef]
- Kisic, I.; Bogunovic, I.; Zgorelec, Z.; Bilandzija, D. Effects of soil erosion by water under different tillage treatments on distribution of soil chemical parameters. Soil Water Res. 2018, 13, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Armenise, E.; Simmons, R.W.; Ahn, S.; Garbout, A.; Doerr, S.H.; Mooney, S.J.; Sturrock, C.J.; Ritz, K. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics. J. Hydrol. 2018, 556, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Bagarello, V.; Di Prima, S.; Iovino, M. Estimating saturated soil hydraulic conductivity by the near steady-state phase of a Beerkan infiltration test. Geoderma 2017, 303, 70–77. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Rickson, R.J. Can control of soil erosion mitigate water pollution by sediments? Sci. Total Environ. 2014, 468–469, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Agouridis, C.T.; Edwards, D.R.; Workman, S.R.; Bicudo, J.R.; Koostra, B.K.; Vanzant, E.S.; Taraba, J.L. Streambank erosion associated with grazing practices in the humid region. Trans. ASAE 2005, 48, 181–190. [Google Scholar] [CrossRef]
- Bogunovic, I.; Bilandzija, D.; Andabaka, Z.; Stupic, D.; Rodrigo-Comino, J.; Cacic, M.; Brezinscak, L.; Maletic, E.; Pereira, P. Soil compaction under different management practices in a Croatian vineyard. Arab. J. Geosci. 2017, 10, 340. [Google Scholar] [CrossRef]
- Van Hardeveld, H.A.; Driessen, P.P.J.; Schot, P.P.; Wassen, M.J. Supporting collaborative policy processes with a multi-criteria discussion of costs and benefits: The case of soil subsidence in Dutch peatlands. Land Use Policy 2018, 77, 425–436. [Google Scholar] [CrossRef]
- Angulo-Jaramillo, R.; Bagarello, V.; Iovino, M.; Lassabatere, L. Infiltration measurements for soil hydraulic characterization. In Infiltration Measurements for Soil Hydraulic Characterization; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Doerr, S.H.; Moody, J.A. Hydrological effects of soil water repellency: On spatial and temporal uncertainties. Hydrol. Processes 2004, 18, 829–832. [Google Scholar] [CrossRef]
- Shirtcliffe, N.J.; McHale, G.; Newton, M.I.; Pyatt, F.B.; Doerr, S.H. Critical conditions for the wetting of soils. Appl. Phys. Lett. 2006, 89, 094101. [Google Scholar] [CrossRef] [Green Version]
- Varjani, S.J.; Gnansounou, E.; Pandey, A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 2017, 188, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques. Ecol. Indic. 2018, 89, 584–589. [Google Scholar] [CrossRef]
- Eswaran, H.; Van Den Berg, E.; Reich, P. Organic Carbon in Soils of the World. Soil Sci. Soc. Am. J. 1993, 57, 192–194. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.; Cotrufo, M.F.; Rumpel, C.; Paustian, K.; Kuikman, P.J.; Elliott, J.A.; McDowell, R.; Griffiths, R.I.; Asakawa, S.; Bustamante, M.; et al. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 2015, 1, 665–685. [Google Scholar] [CrossRef]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; House, J.I.; Bustamante, M.; Sobocká, J.; Harper, R.; Pan, G.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C.; et al. Global change pressures on soils from land use and management. Glob. Chang. Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Piñeiro, G. The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445. [Google Scholar] [CrossRef] [Green Version]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; van der Putten, W.H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef] [PubMed]
- De Vries, F.T.; Thébault, E.; Liiri, M.; Birkhofer, K.; Tsiafouli, M.A.; Bjørnlund, L.; Jørgensen, H.B.; Brady, M.V.; Christensen, S.; de Ruiter, P.C.; et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. USA 2013, 110, 14296–14301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, B.S.; Römbke, J.; Schmelz, R.M.; Scheffczyk, A.; Faber, J.H.; Bloem, J.; Pérès, G.; Cluzeau, D.; Chabbi, A.; Suhadolc, M.; et al. Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecol. Indic. 2016, 69, 213–223. [Google Scholar] [CrossRef] [Green Version]
- United Nations Convention to Combat Desertification. The Economics of Desertification, Land Degradation and Drought: Methodologies and Analysis for Decision-Making. In Proceedings of the UNCCD 2nd Scientific Conference, Bonn, Germany, 9–12 April 2013. [Google Scholar]
- Caspari, T.; Van Lynden, G.; Bai, Z. TEXTE 62/2015 Environmental Research of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety; Project No. 46658 Report No. (UBA-FB) 002163/E Land Degradation Neutrality: An Evaluation of Methods; Publikationsversand der Bundesregierung: Rostock, Germany, 2013. [Google Scholar]
- Rood, T.; Muilwijk, H.; Westhoek, H. Food for the Circular Economy; PBL Publication Number: 2878; PBL Policy Brief, PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2017. [Google Scholar]
- WBCSD. Land Degradation Neutrality. A Business Perspective; World Business Council for Sustainable Development: Geneva, Switzerland, 2015. [Google Scholar]
- Meadows, D.H. Thinking in Systems: A Primer; Earthscan: London, UK, 2009. [Google Scholar]
- Chorley, R.J.; Kennedy, B.A. Physical Geography: A Systems Approach; Prentice Hall: Upper Saddle River, NJ, USA, 1971. [Google Scholar]
- Hack, J.T. Dynamic equilibrium and landscape evolution. Theor. Landf. Dev. 1975, 1, 87–102. [Google Scholar]
- Ahnert, F. Equilibrium, scale and inheritance in geomorphology. Geomorphology 1994, 11, 125–140. [Google Scholar] [CrossRef]
- Heimsath, A.M.; Dietrich, W.E.; Nishiizumi, K.; Finkel, R.C. The soil production function and landscape equilibrium. Nature 1997, 388, 358. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G.; Ravit, B.; Elgersma, K. Feedback in the plant-soil system. Annu. Rev. Environ. Resour. 2005, 30, 75–115. [Google Scholar] [CrossRef]
- Raworth, K. Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist; Chelsea Green Publishing: White River Junction, VT, USA, 2017. [Google Scholar]
- van de Koppel, J.; van der Wal, D.; Bakker, J.P.; Herman, P.M.J. Self-organization and vegetation collapse in salt marsh ecosystems. Am. Nat. 2005, 165, E1–E12. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.; Gourgue, O.; van Belzen, J.; Zhu, Z.; Bouma, T.J.; van de Koppel, J.; Ruessink, G.; Claude, N.; Temmerman, S. Self-organization of a biogeomorphic landscape controlled by plant life-history traits. Nat. Geosci. 2018, 11, 672–677. [Google Scholar] [CrossRef]
- Parsons, A.J.; Bracken, L.; Poeppl, R.E.; Wainwright, J.; Keesstra, S.D. Introduction to special issue on connectivity in water and sediment dynamics. Earth Surf. Process. Landf. 2015, 40, 1275–1277. [Google Scholar] [CrossRef] [Green Version]
- Poeppl, R.E.; Keesstra, S.D.; Maroulis, J. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology 2017, 277, 237–250. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.P.; Saco, P.; Parsons, T.; Poeppl, R.; Masselink, R.; Cerdà, A. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci. Total Environ. 2018, 644, 1557–1572. [Google Scholar] [CrossRef]
- Trimble, S.W. Decreased Rates of Alluvial Sediment Storage in the Coon Creek Basin, Wisconsin, 1975-93. Science 1999, 285, 1244–1246. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- MacKinnon, K.; Sobrevila, C.; Hickey, V. Biodiversity, Climate Change and Adaptation; Nature-Based Solutions from the World Bank Portfolio; The International Bank for Reconstruction and Development/THE WORLD BANK: Washington, DC, USA, 2008. [Google Scholar]
- Dudley, N.; Stolton, S.; Belokurov, A.; Krueger, L.; Lopoukhine, N.; MacKinnon, K.; Sandwith, T.; Sekhran, N. Natural solutions: Protected areas helping people cope with climate change. In Natural Solutions: Protected Areas Helping People Cope with Climate Change; IUCN-WCPA: Gland, Switzerland, 2010. [Google Scholar]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Stive, M.J.F.; de Schipper, M.A.; Luijendijk, A.P.; Aarninkhof, S.G.J.; van Gelder-Maas, C.; van Thiel de Vries, J.S.M.; de Vries, S.; Henriquez, M.; Marx, S.; Ranasinghe, R. A New Alternative to Saving Our Beaches from Sea-Level Rise: The Sand Engine. J. Coast. Res. 2013, 1001–1008. [Google Scholar] [CrossRef]
- de Bruijn, H.; de Bruijne, M.; Heuvelhof, E. The Politics of Resilience in the Dutch ‘Room for the River’-project. Procedia Comput. Sci. 2015, 44, 659–668. [Google Scholar] [CrossRef]
- Quin, A.; Destouni, G. Large-scale comparison of flow-variability dampening by lakes and wetlands in the landscape. Land Degrad. Dev. 2018, 29, 3617–3627. [Google Scholar] [CrossRef]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-Based Solutions: New Influence for Environmental Management and Research in Europe. Available online: Https://www.ingentaconnect.com/content/oekom/gaia/2015/00000024/00000004/art00010 (accessed on 10 September 2018).
- Maes, J.; Jacobs, S. Nature-Based Solutions for Europe’s Sustainable Development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, N.; Mahmoodabadi, M.; Cerdà, A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 2016, 266, 58–65. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walmsley, A.; Cerdà, A. Soil macrofauna and organic matter in irrigated orchards under Mediterranean climate. Biol. Agric. Hortic. 2017, 33, 247–257. [Google Scholar] [CrossRef]
- García-Díaz, A.; Bienes, R.; Sastre, B.; Novara, A.; Gristina, L.; Cerdà, A. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agric. Ecosyst. Environ. 2017, 236, 256–267. [Google Scholar] [CrossRef]
- Chen, W.; Song, L.; Gan, N.; Li, L. Sorption, degradation and mobility of microcystins in Chinese agriculture soils: Risk assessment for groundwater protection. Environ. Pollut. 2006, 144, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Keesstra, S.; Geissen, V.; Mosse, K.; Piiranen, S.; Scudiero, E.; Leistra, M.; van Schaik, L. Soil as a filter for groundwater quality. Curr. Opin. Environ. Sustain. 2012, 4, 507–516. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Guaitoli, F.; Santoro, A.; Cerdà, A. Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 2013, 4, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Trimble, S.W. Effects of Riparian Vegetation on Stream Channel Stability and Sediment Budgets. In Riparian Vegetation and Fluvial Geomorphology; American Geophysical Union (AGU): Washington, DC, USA, 2013; pp. 153–169. ISBN 978-1-118-66611-1. [Google Scholar]
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- UNEP. Global Material Flows and Resource Productivity: A Report of the International Resource Panel. 2016. Available online: https://mahb.stanford.edu/wp-content/uploads/2016/08/16-00169_LW_GlobalMaterialFlowsUNEReport_FINAL_160701.pdf (accessed on 20 June 2018).
- Raworth, K. A Doughnut for the Anthropocene: humanity’s compass in the 21st century. Lancet Planet. Health 2017, 1, e48–e49. [Google Scholar] [CrossRef]
- Mazzucato, M. The Entrepreneurial State: Debunking Public vs. Private Sector Myths; Anthem Press: London, UK, 2016; Volume 1. [Google Scholar]
- De Cleen, M.; Molenaar, C.; Masson, J.; Other Members of the MAES Soil Pilot Group. Towards societal benefits by soil service, Background paper. In Proceedings of the Soil Stakeholders’ Conference, Brussels, Belgium, 5 December 2016. [Google Scholar]
- Frison, E.A. From uniformity to diversity: A paradigm shift from industrial agriculture to diversified agroecological systems. International Panel of Experts on Sustainable Food systems. In IPBES-Food; IPBES: London, UK, 2016. [Google Scholar]
- Robinson, D.A.; Panagos, P.; Borrelli, P.; Jones, A.; Montanarella, L.; Tye, A.; Obst, C.G. Soil natural capital in Europe; a framework for state and change assessment. Sci. Rep. 2017, 7, 6706. [Google Scholar] [CrossRef] [PubMed]
- Ruijs, A.; van der Heide, M.; van den Berg, J. Natural Capital Accounting for the Sustainable Development Goals. In Current and Potential Uses and Steps Forward; Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2018. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Cerdà, A.; Flanagan, D.C.; le Bissonnais, Y.; Boardman, J. Soil erosion and agriculture. Soil Tillage Res. 2009, 106, 107–108. [Google Scholar] [CrossRef]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 551–552, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Hvězdová, M.; Kosubová, P.; Košíková, M.; Scherr, K.E.; Šimek, Z.; Brodský, L.; Šudoma, M.; Škulcová, L.; Sáňka, M.; Svobodová, M.; et al. Currently and recently used pesticides in Central European arable soils. Sci. Total Environ. 2018, 613–614, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. Hydrological and erosional impact and farmer’s perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, Eastern Spain. Agric. Ecosyst. Environ. 2018, 258, 49–58. [Google Scholar] [CrossRef]
- Lenton, T.M. Early warning of climate tipping points. Nat. Clim. Chang. 2011, 1, 201–209. [Google Scholar] [CrossRef]
Land Degradation Processes | Ecosystem Services (Table 2) | Sustainable Development Goals (SDGs) | |
---|---|---|---|
Physical processes | Compaction | 1,3,4,5,7,8 | 2,6,12,15 |
Erosion | 1,2,3,4,5,6,7,9,10,11, | 1,2,6,12,13,15 | |
Chemical processes | Salinization/acidification | 1,2,4,5,6,7,8,10,11 | 1,2,6,12,15 |
Contamination | 1,2,5,7,8,9,10,11 | 1,2,3,12,15 | |
Biological processes | OM decline | 1,4,5,6,7,8 | 1,2,3,12,13,15 |
Biodiversity loss | 1,2,4,5,6,7, 8,9,10,11 | 1,2,12,15 |
Ecosystem Services | Sustainable Development Goals Relevant for Land Degradation Neutrality | ||
---|---|---|---|
1 | Provision of food, wood and fiber | 1 | No poverty |
2 | Provision of raw materials | 2 | Zero hunger |
3 | Provision of support for infrastructure for humans and animals | 6 | Clean water and sanitation |
4 | Flood mitigation | 7 | Affordable and clean energy |
5 | Filtering of nutrients and contaminants | 8 | Sustainable economic growth |
6 | Carbon storage and greenhouse gases regulation | 9 | Resilient Infrastructure |
7 | Detoxification and the recycling of wastes | 11 | Sustainable cities |
8 | Regulation of pests and disease populations | 12 | Responsible consumption and production |
9 | Recreation | 13 | Climate Action |
10 | Aesthetics | 15 | Life on land |
11 | Heritage values | ||
12 | Cultural identity |
Concepts | Case 1 | Case 2 | Case 3 |
---|---|---|---|
Systems Thinking | - | + | + |
Connectivity | - | + | + |
Nature-Based Solutions | - | + | + |
Regenerative Economics | - | + | + |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, C.; De Cleen, M.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. https://doi.org/10.3390/land7040133
Keesstra S, Mol G, De Leeuw J, Okx J, Molenaar C, De Cleen M, Visser S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land. 2018; 7(4):133. https://doi.org/10.3390/land7040133
Chicago/Turabian StyleKeesstra, Saskia, Gerben Mol, Jan De Leeuw, Joop Okx, Co Molenaar, Margot De Cleen, and Saskia Visser. 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work" Land 7, no. 4: 133. https://doi.org/10.3390/land7040133
APA StyleKeesstra, S., Mol, G., De Leeuw, J., Okx, J., Molenaar, C., De Cleen, M., & Visser, S. (2018). Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land, 7(4), 133. https://doi.org/10.3390/land7040133