Temporal Variation in Preferential Water Flow during Natural Vegetation Restoration on Abandoned Farmland in the Loess Plateau of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Dye-Tracer Experiment
2.4. Soil and Root Sampling
2.5. Statistical Analysis
3. Results
3.1. Soil and Root Characteristics
3.2. Infiltration Patterns
3.3. Contribution of Preferential Flow
4. Discussion
4.1. Relationship between the Preferential Water Flow and the Soil and Root Features
4.2. Variation Patterns of Water Flow Behaviors during Natural Vegetation Restoration
4.3. Contribution of the Preferential Flow on Soil Water Storage
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, G.H.; Tang, M.K.; Zhang, X.C. Temporal variation in soil detachment under different land uses in the Loess Plateau of China. Earth Surf. Process. Landf. 2010, 34, 1302–1309. [Google Scholar] [CrossRef]
- An, S.S.; Darboux, F.; Cheng, M. Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China). Geoderma 2013, 209, 75–85. [Google Scholar] [CrossRef]
- Hou, J.; Fu, B.J.; Liu, Y.; Lu, N.; Gao, G.Y.; Zhou, J. Ecological and hydrological response of farmlands abandoned for different lengths of time: Evidence from the Loess Hill Slope of China. Glob. Planet. Chang. 2014, 113, 59–67. [Google Scholar] [CrossRef]
- Zhang, B.J.; Zhang, G.H.; Yang, H.Y.; Zhu, P.Z. Temporal variation in soil erosion resistance of steep slopes restored with different vegetation communities on the Chinese Loess Plateau. Catena 2019, 182, 104–170. [Google Scholar] [CrossRef]
- Tang, B.Z.; Jiao, J.Y.; Yan, F.C.; Li, H. Variations in soil infiltration capacity after vegetation restoration in the hilly and gully regions of the Loess Plateau, China. J. Soils Sediments 2019, 19, 1456–1466. [Google Scholar] [CrossRef]
- Jiao, J.Y.; Tzanopoulos, J.; Xofis, P.; Mitchley, J. Factors affecting distribution of vegetation types on abandoned cropland in the hilly-gullied Loess Plateau region of China. Pedosphere 2008, 18, 24–33. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, W.; Chen, L.D.; Feng, T.J.; Daryanto, S.; Wang, L.X. Land preparation and vegetation type jointly determine soil conditions after long-term land stabilization measures in a typical hilly catchment, Loess Plateau of China. J. Soils Sediments 2017, 17, 144–156. [Google Scholar] [CrossRef]
- Cerdà, A. Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma 1996, 69, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Stumpp, C.; Maloszewski, P. Quantification of preferential flow and flow heterogeneities in an unsaturated soil planted with different crops using the environmental isotope δ18O. J. Hydrol. 2010, 394, 407–415. [Google Scholar] [CrossRef]
- Alaoui, A.; Caduff, U.; Gerke, H.H.; Weingartner, R. A preferential flow effects on infiltration and runoff in grassland and forest soils. Vadose Zone J. 2011, 10, 367–377. [Google Scholar] [CrossRef]
- Allaire, S.E.; Roulier, S.; Cessna, A.J. Quantifying preferential flow in soils: A review of different techniques. J. Hydrol. 2009, 378, 179–204. [Google Scholar] [CrossRef]
- Bargués, T.A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Ilstedt, U. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resour. Res. 2014, 50, 3342–3354. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.J.; Liu, W.; Chen, C.; Liu, J.; Yuan, Z.Q.; Jin, B.; Yu, X. Effects of three morphometric features of roots on soil water flow behavior in three sites in China. Geoderma 2018, 320, 161–171. [Google Scholar] [CrossRef]
- Holman, I.P.; Dubus, I.G.; Hollis, J.M.; Brown, C.D. Using a linked soil model emulator and unsaturated zone leaching model to account for preferential flow when assessing the spatially distributed risk of pesticide leaching to groundwater in England and Wales. Sci. Total. Environ. 2004, 318, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Flury, M.; Flühler, H. Brilliant Blue FCF as a dye tracer for solute transport studies—A toxicological overview. J. Environ. Qual. 1994, 23, 1108–1112. [Google Scholar] [CrossRef]
- Van Schaik, N. Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. Catena 2009, 78, 36–47. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, J.; Zhang, M. Interaction between plant roots and soil water flow in response to preferential flow paths in northern China. Land Degrad. Dev. 2017, 28, 648–663. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and water flow in soils revisited. Water Resour. Res. 2013, 49, 3071–3092. [Google Scholar] [CrossRef] [Green Version]
- Truax, B.; Gagnon, D.; Fortier, J.; Lambert, F. Yield in 8 year-old hybrid poplar plantations on abandoned farmland along climatic and soil fertility gradients. For. Ecol. Manag. 2012, 267, 228–239. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.H.; Li, N.N.; Zhang, B.J.; Yang, H.Y. Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China. Catena 2019, 174, 24–35. [Google Scholar] [CrossRef]
- Raiesi, F. Land abandonment effect on N mineralization and microbial biomass N in a semi-arid calcareous soil from Iran. J. Arid Environ. 2012, 76, 80–87. [Google Scholar] [CrossRef]
- Ola, A.; Dodd, I.C.; Quinton, J.N. Can we manipulate root system architecture to control soil erosion? Soil 2015, 1, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Liu, X.; Wang, E. Effects of tillage pan on soil water distribution in alfalfa-corn crop rotation systems using a dye tracer and geostatistical methods. Soil Tillage Res. 2015, 150, 68–77. [Google Scholar] [CrossRef]
- Mei, X.; Zhu, Q.; Ma, L. Effect of stand origin and slope position on infiltration pattern and preferential flow on a Loess hillslope. Land Degrad. Dev. 2018, 29, 1353–1365. [Google Scholar] [CrossRef]
- Cey, E.E.; Rudolph, D.L. Field study of macropore flow processes using tension infiltration of a dye tracer in partially saturated soils. Hydrol. Process. 2009, 23, 1768–1779. [Google Scholar] [CrossRef]
- Yu, Y.; Loiskandl, W.; Kaul, H.P.; Himmelbauer, M.; Wei, W.; Chen, L.D.; Bodner, G. Estimation of runoff mitigation by morphologically different cover crop root system. J. Hydrol. 2016, 538, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Burgos, P.; Engracia, M.; Alfredo, P. Spatial variability of the chemical characteristics of a trace-element-contaminated soil before and after remediation. Geoderma 2006, 130, 157–175. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, W.; Chen, L.D.; Feng, T.J.; Daryanto, S. Quantifying the effects of precipitation, vegetation, and land preparation techniques on runoff and soil erosion in a Loess watershed of China. Sci. Total. Environ. 2019, 652, 755–764. [Google Scholar] [CrossRef]
- Singh, Y.P.; Nayak, A.K.; Sharma, D.K.; Singh, G.; Mishra, V.K.; Singh, D. Evaluation of Jatropha curcas genotypes for rehabilitation of degraded sodic lands. Land Degrad. Dev. 2015, 26, 510–520. [Google Scholar] [CrossRef]
- Jarvis, N.J. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 2007, 58, 523–546. [Google Scholar] [CrossRef]
- Kaarakka, L.; Smolander, A.; Lindroos, A.J.; Nojd, P.; Korpela, L.; Nieminen, T.M.; Helmisaari, H.S. Sprinkling infiltration as an artificial groundwater recharge method—Long-term effects on boreal forest soil, tree growth and understory vegetation. For. Ecol. Manag. 2019, 448, 240–248. [Google Scholar] [CrossRef]
- Hardie, M.A.; Cotching, W.E.; Doyle, R.B.; Holz, G.; Lisson, S.; Mattern, K. Effect of antecedent soil moisture on preferential flow in a texture-contrast soil. J. Hydrol. 2011, 398, 191–201. [Google Scholar] [CrossRef]
- Perillo, C.A.; Gupta, S.C.; Nater, E. Prevalence and initiation of preferential flow paths in a sandy loam with argillic horizon. Geoderma 1999, 89, 307–331. [Google Scholar] [CrossRef]
- Cui, Z.; Wu, G.L.; Huang, Z.; Liu, Y. Fine roots determine soil infiltration potential than soil water content in semi-arid grassland soils. J. Hydrol. 2019, 578, 124023. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, J.; Yu, X.; Zhu, W.; Du, X. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems. For. Syst. 2015, 24, 12. [Google Scholar] [CrossRef] [Green Version]
- Bodner, G.; Loiskandl, W.; Buchan, G.; Kaul, H.P. Natural and management-induced dynamics of hydraulic conductivity along a cover-cropped field slope. Geoderma 2008, 146, 317–325. [Google Scholar] [CrossRef]
- Hamilton, G.J.; Bakker, D.; Akbar, G.; Hassan, I.; Hussain, Z.; McHugh, A.; Raine, S. Deep blade loosening increases root growth, organic carbon, aeration, drainage, lateral infiltration and productivity. Geoderma 2019, 345, 72–92. [Google Scholar] [CrossRef]
- Sheng, F.; Wang, K.; Zhang, R.D. Study on heterogeneous characteristics of soil water flow in field by dye tracing method. J. Hydraul. Eng. 2009, 40, 101–108. [Google Scholar]
- Klos, P.Z.; Chain-Guadarrama, A.; Link, T.E.; Finegan, B.; Vierling, L.A.; Chazdon, R. Throughfall heterogeneity in tropical forested landscapes as a focal mechanism for deep percolation. J. Hydrol. 2014, 519, 2180–2188. [Google Scholar] [CrossRef]
- Malvar, M.C.; Prats, S.A.; Nunes, J.P.; Keizer, J.J. Soil water repellency severity and its spatio-temporal variation in burnt eucalypt plantations in North-Central Portugal. Land Degrad. Dev. 2016, 27, 1463–1478. [Google Scholar] [CrossRef]
- Hanson, D.L.; Steenhuis, T.S.; Walter, M.F.; Boll, J. Effects of soil degradation and management practices on the surface water dynamics in the Talgua River watershed in Honduras. Land Degrad. Dev. 2004, 15, 367–381. [Google Scholar] [CrossRef]
- Sohrt, J.; Ries, F.; Sauter, M. Significance of preferential flow at the rock soil interface in a semi-arid karst environment. Catena 2014, 123, 1–10. [Google Scholar] [CrossRef]
- Shinohara, Y.; Otsuki, K. Comparisons of soil-water content between a Moso bamboo (Phyllostachys pubescens) forest and an evergreen broadleaved forest in western Japan. Plant Species Biol. 2015, 30, 96–103. [Google Scholar] [CrossRef]
Site | Altitude (m) | Slope Aspect (°) | Slope Gradient (°) | Slope Length(m) | Vegetation Coverage (%) | Dominant Communities |
---|---|---|---|---|---|---|
AF3 | 1157 | NE80 | 11 | 43 | 35 | Artemisia scoparia-Green bristle grass |
AF12 | 1233 | NE55 | 18 | 55 | 44 | Artemisia sacrorum-Artemisia argyi |
AF18 | 1254 | NE65 | 20 | 66 | 37 | Bothriochloa ischaemum-Artemisia sacrorum |
AF25 | 1287 | NE30 | 16 | 58 | 47 | Periploca sepium Bunge-Artemisia sacrorum |
Site | BD (g/cm3) | SWC (%) | SOM (g/kg) | WR0.25 (%) | Soil Particle Size Distribution | ||
---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | |||||
AF3 | 1.31 ± 0.03 a | 10.07 ± 0.05 b | 4.67 ± 0.03 b | 29.45 ± 1.46 c | 10.73 ± 0.01 a | 23.15 ± 0.23 a | 66.12 ± 0.73 a |
AF12 | 1.27 ± 0.01 b | 11.02 ± 0.08 a | 4.60 ± 0.05 b | 39.44 ± 1.93 b | 10.80 ± 0.01 a | 23.55 ± 0.09 a | 65.66 ± 0.16 a |
AF18 | 1.22 ± 0.01 c | 9.34 ± 0.06 c | 4.87 ± 0.05 b | 46.64 ± 1.62 a | 11.25 ± 0.01 a | 24.62 ± 0.54 a | 65.13 ± 0.51 a |
AF25 | 1.14 ± 0.01 d | 10.68 ± 0.01 a | 5.28 ± 0.08 a | 48.26 ± 2.16 a | 11.54 ± 0.12 a | 25.23 ± 1.09 a | 64.23 ± 1.58 a |
Site | IT | MID | Unifr | DC | FFP | LI | PIV | Con |
---|---|---|---|---|---|---|---|---|
(min) | (cm) | (cm) | (%) | (%) | (mm) | (%) | ||
AF3 | ||||||||
Plot 1 | 29.60 | 23.2 | 18.9 | 50.44 | 6.32 | 273.75 | 5.03 | 13.85 |
Plot 2 | 32.50 | 24.6 | 20.8 | 55.28 | 5.93 | 327.50 | 3.92 | 11.46 |
Plot 3 | 29.50 | 19.9 | 14 | 35.12 | 0.34 | 280.00 | 6.82 | 26.34 |
Mean | 30.31 ± 0.98 a | 22.57 ± 1.19 a | 17.9 ± 3.50 a | 46.95 ± 10.52 a | 4.2 ± 3.35 b | 293.75 ± 16.97 a | 5.26 ± 1.46 b | 17.22 ± 7.99 b |
AF12 | ||||||||
Plot 1 | 20.60 | 29.5 | 15 | 43.86 | 14.5 | 436.75 | 16.19 | 41.58 |
Plot 2 | 29.60 | 24 | 8.1 | 37.21 | 45.58 | 242.00 | 17.06 | 53.2 |
Plot 3 | 23.70 | 20.4 | 11.4 | 37.15 | 23.28 | 226.75 | 9.79 | 35.59 |
Mean | 24.63 ± 2.64 b | 24.63 ± 4.58 a | 11.5 ± 3.54 a | 39.41 ± 3.86 a | 27.79 ± 16.02 a | 301.83 ± 69.14 a | 14.35 ± 3.97 a | 43.45 ± 8.95 a |
AF18 | ||||||||
Plot 1 | 43.20 | 25.9 | 13 | 44.26 | 26.57 | 402.00 | 13.38 | 40.71 |
Plot 2 | 35.50 | 32.8 | 21.2 | 55.44 | 4.4 | 361.50 | 12.79 | 31.2 |
Plot 3 | 36.60 | 22 | 4.5 | 23.88 | 52.89 | 185.25 | 20.27 | 72.21 |
Mean | 38.01 ± 2.40 a | 26.9 ± 5.46 a | 12.9 ± 8.35 a | 41.19 ± 16.00 a | 27.95 ± 24.27 a | 316.25 ± 79.41 a | 15.48 ± 4.16 a | 48.04 ± 21.46 a |
AF25 | ||||||||
Plot 1 | 25.70 | 18 | 9 | 28.12 | 19.99 | 386.00 | 9.2 | 41.99 |
Plot 2 | 27.60 | 25.3 | 5.9 | 35.51 | 41.54 | 331.25 | 30.16 | 72.37 |
Plot 3 | 17.90 | 22 | 2.8 | 22.65 | 30.91 | 291.75 | 25.07 | 79.33 |
Mean | 23.65 ± 2.96 b | 21.77 ± 3.66 a | 5.9 ± 3.10 c | 28.76 ± 6.45 a | 30.81 ± 10.78 a | 336.33 ± 27.32 a | 21.48 ± 10.93 a | 64.56 ± 19.85 a |
Site | Model | Nugget (C0) | Sill (C0 + C) | A(cm) | C0/(C + C0) (%) | R2 | RSS |
---|---|---|---|---|---|---|---|
AF3 | |||||||
Plot 1 | Sp | 0.0404 | 2.60 | 27.22 | 1.55 | 0.894 | 0.0019 |
Plot 2 | Ga | 0.4526 | 3.56 | 28.83 | 12.71 | 0.999 | 0.0011 |
Plot 3 | Sp | 0.0305 | 0.57 | 20.85 | 5.36 | 0.934 | 0.0017 |
Mean | 0.1745 ± 0.1460 a | 2.24 ± 1.23 b | 25.63 ± 4.22 b | 6.54 ± 2.39 a | 0.943 | 0.0016 | |
AF12 | |||||||
Test 1 | Ex | 0.1545 | 3.64 | 42.21 | 4.25 | 0.934 | 0.0010 |
Test 2 | Ex | 0.1577 | 1.52 | 19.81 | 10.36 | 0.865 | 0.0021 |
Test 3 | Ex | 0.0651 | 2.27 | 54.57 | 2.87 | 0.891 | 0.0016 |
Mean | 0.1258 ± 0.0303 a | 2.48 ± 1.07 b | 38.86 ± 9.70 a | 5.82 ± 2.30 a | 0.897 | 0.0016 | |
AF18 | |||||||
Test 1 | Ex | 0.0585 | 3.65 | 49.57 | 1.60 | 0.914 | 0.0013 |
Test 2 | Ex | 0.0463 | 4.76 | 46.37 | 0.97 | 0.924 | 0.0011 |
Test 3 | Ex | 0.0646 | 1.24 | 26.62 | 5.23 | 0.854 | 0.0023 |
Mean | 0.0565 ± 0.0054 b | 3.22 ± 1.04 a | 40.85 ± 7.98 a | 2.60 ± 1.32 b | 0.897 | 0.0016 | |
AF25 | |||||||
Test1 | Ex | 0.0064 | 5.42 | 56.57 | 0.12 | 0.903 | 0.0016 |
Test 2 | Sp | 0.0074 | 1.93 | 36.93 | 0.38 | 0.910 | 0.0016 |
Test 3 | Ga | 0.1260 | 3.13 | 32.13 | 4.03 | 0.864 | 0.0056 |
Mean | 0.0466 ± 0.0039 b | 3.49 ± 1.02 a | 41.88 ± 11.65 a | 1.51 ± 1.26 b | 0.892 | 0.0029 |
Items | Soil | Root | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BD | SWC | SOM | WR0.25 | Clay | Silt | Sand | RMD | RVD | RD | RLD | |
IT | 0.357 | 0.527 | −0.401 | −0.085 | −0.308 | −0.212 | 0.112 | −0.358 | −0.597 * | −0.493 | −0.416 |
MID | 0.199 | −0.176 | −0.332 | −0.565 * | 0.268 | 0.253 | −0.237 | 0.542 * | 0.804 ** | 0.613 * | −0.503 * |
Unifr | 0.707 ** | −0.059 | −0.638 * | −0.721 | 0.267 | 0.396 | −0.306 | −0.738 ** | −0.780 ** | −0.290 | −0.674 ** |
DC | 0.306 | −0.108 | −0.342 | −0.424 | −0.377 | 0.298 | 0.239 | −0.342 | −0.155 | −0.485 | −0.341 |
FFP | −0.715 ** | 0.082 | 0.652 ** | 0.686 ** | 0.151 | 0.236 | −0.178 | 0.873 ** | 0.805 ** | 0.537 * | 0.612 * |
LI | −0.601 * | −0.083 | 0.562 * | 0.726 ** | 0.213 | 0.144 | −0.258 | 0.783 ** | 0.648 * | 0.572 * | 0.589 * |
PIV | −0.713 ** | −0.076 | 0.573 * | 0.621 * | 0.152 | 0.294 | −0.214 | 0.818 ** | 0.733 ** | 0.659 ** | 0.711 ** |
Con | −0.675 ** | −0.078 | 0.537 | 0.656 * | 0.155 | 0.286 | −0.192 | 0.778 ** | 0.735 ** | 0.607 * | 0.728 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Dong, Z.; Zhou, Z.; Wang, P. Temporal Variation in Preferential Water Flow during Natural Vegetation Restoration on Abandoned Farmland in the Loess Plateau of China. Land 2019, 8, 186. https://doi.org/10.3390/land8120186
Wang R, Dong Z, Zhou Z, Wang P. Temporal Variation in Preferential Water Flow during Natural Vegetation Restoration on Abandoned Farmland in the Loess Plateau of China. Land. 2019; 8(12):186. https://doi.org/10.3390/land8120186
Chicago/Turabian StyleWang, Rui, Zhibao Dong, Zhengchao Zhou, and Peipei Wang. 2019. "Temporal Variation in Preferential Water Flow during Natural Vegetation Restoration on Abandoned Farmland in the Loess Plateau of China" Land 8, no. 12: 186. https://doi.org/10.3390/land8120186
APA StyleWang, R., Dong, Z., Zhou, Z., & Wang, P. (2019). Temporal Variation in Preferential Water Flow during Natural Vegetation Restoration on Abandoned Farmland in the Loess Plateau of China. Land, 8(12), 186. https://doi.org/10.3390/land8120186