Farmers’ Perspective on Agriculture and Environmental Change in the Circumpolar North of Europe and America
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey and Dataset
2.2. Data Analysis
3. Results and Discussion
3.1. General Characterisation of Agriculture North of the 60° N Latitude
3.2. Infrastructure and Farm Product Distribution
3.3. Farmers’ Backgrounds, Origins, and Motivations
3.4. Agricultural Development
3.5. Perception of Climate change and Other Environmental Constraints
3.6. Northern Agriculture and Greenhouse Gas Emissions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statement
References
- Kummu, M.; Varis, O. The world by latitudes: A global analysis of human population, development level and environment across the north–south axis over the past half century. Appl. Geogr. 2011, 31, 495–507. [Google Scholar] [CrossRef]
- Ping, C.L. Cold-region soils. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 268–276. [Google Scholar]
- USDA. USDA’s National Agricultural Statistics Service—Alaska Field Office (Part of the Northwest Regional Field Office). 2019. Available online: https://www.nass.usda.gov/Statistics_by_State/Alaska/index.php (accessed on 2 December 2019).
- EEA. Landscapes in Transition-An Account of 25 Years of Land Cover Change in Europe; EEA: Luxembourg, 2017. [Google Scholar]
- Dale, V.H. The relationship between land-use change and climate change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Iglesias, A.; Yang, X.-B.; Epstein, P.R.; Chivian, E. Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Chang. Hum. Health 2001, 2, 90–104. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Hovelsrud, G.K.; Poppel, B.; van Oort, B.; Reist, J.D. Arctic Societies, Cultures, and Peoples in a Changing Cryosphere. Ambio 2011, 40, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Nobel, J. Farming in the Arctic: It Can Be Done. In Modern Farmer. 2013. Available online: https://modernfarmer.com/2013/2010/arctic-farming/ (accessed on 28 August 2019).
- Di Salvo, M. Greenland reaps benefits of global warming. Independent. 2013. Available online: https://www.independent.co.uk/environment/climate-change/greenland-reaps-benefits-of-global-warming-8555241.html (accessed on 28 August 2019).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchebakova, N.; Parfenova, E.; Lysanova, G.; Soja, A. Agroclimatic potential across central Siberia in an altered twenty-first century. Environ. Res. Lett. 2011, 6, 045207. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Parry, M.L. Potential impact of climate change on world food supply. Nature 1994, 367, 133–138. [Google Scholar] [CrossRef]
- Katsov, V.; Semenov, S.; Alekseev, G.; Ananicheva, M. Second Roshydromet Assessment Report on Climate Change and its Consequences in the Russian Federation. Mosc. Roshydromet 2014. [Google Scholar]
- Schaefer, K.; Zhang, T.; Bruhwiler, L.; Barrett, A.P. Amount and timing of permafrost carbon release in response to climate warming. Tellus B 2011, 63, 165–180. [Google Scholar] [CrossRef]
- Grünzweig, J.M.; Valentine, D.W.; Chapin, F.S. Successional Changes in Carbon Stocks After Logging and Deforestation for Agriculture in Interior Alaska: Implications for Boreal Climate Feedbacks. Ecosystems 2015, 18, 132–145. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Kuhnlein, H.V.; Receveur, O.; Soueida, R.; Egeland, G.M. Arctic indigenous peoples experience the nutrition transition with changing dietary patterns and obesity. J. Nutr. 2004, 134, 1447–1453. [Google Scholar] [CrossRef] [PubMed]
- Kuhnlein, H.V. Benefits and risks of traditional food for Indigenous Peoples: Focus on dietary intakes of Arctic men. Can. J. Phys. Pharmacol. 1995, 73, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Natcher, D. Greening Canada’s Arctic food system: Local food procurement strategies for combating food insecurity. Can. Food Stud. 2019, 6, 140–154. [Google Scholar] [CrossRef] [Green Version]
- Egeland, G.M.; Pacey, A.; Cao, Z.; Sobol, I. Food insecurity among Inuit preschoolers: Nunavut Inuit Child Health Survey, 2007–2008. Can. Med. Assoc. J. 2010, 182, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumpula, T.; Pajunen, A.; Kaarlejärvi, E.; Forbes, B.C.; Stammler, F. Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development. Glob. Environ. Chang. 2011, 21, 550–562. [Google Scholar] [CrossRef]
- Leiner, D.J. SoSCi Survey (Version 3.1.06). Available online: https://www.soscisurvey.de/ (accessed on 10 January 2019).
- Fischer, G.; Nachtergaele, F.O.; Prieler, S.; Teixeira, E.; Tóth, G.; Van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones (GAEZ v3. 0)-Model Documentation; IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2012. [Google Scholar]
- McHugh, M.L. The chi-square test of independence. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Dalgaard, P. R Development Core Team R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2010. [Google Scholar]
- Francis, K.E. Outpost Agriculture: The Case of Alaska. Geogr. Rev. 1967, 57, 496–505. [Google Scholar] [CrossRef]
- Auer, J.D.; Holloway, P.S. An Introduction to Harvesting and Selling Alaska Cut Flower Peonies; Agricultural and Forestry Experiment Station: Fairbanks, AK, USA, 2008. [Google Scholar]
- Government of Yukon. Yukon Agriculture State of the Industry Report; Government of Yukon, Department of Energy, Mines and Resources, Agricultural Branch: Whitehorse, YT, Canada, 2018.
- Hermanns-Audardóttir, M. The Early Settlement of Iceland. Results based on excavations of a Merovingian and Viking farm site at herjólfsdalur in the westman islands, Iceland. Nor. Archaeol. Rev. 1991, 24, 1–9. [Google Scholar] [CrossRef]
- Statistics Norway. 2019. Available online: https://www.ssb.no/en/jord-skog-jakt-og-fiskeri (accessed on 2 September 2019).
- Statistics Finland. 2019. Available online: https://www.stat.fi/til/maa_en.html (accessed on 2 September 2019).
- Statistics Sweden. 2019. Available online: http://www.statistikdatabasen.scb.se/pxweb/en/ssd/ (accessed on 2 September 2019).
- Rosstat. Regions of Russia, Socio-economic Indicators. Available online: www.gks.ru (accessed on 25 September 2019).
- Butrico, G.M.; Kaplan, D.H. Greenhouse Agriculture in the Icelandic Food System. Eur. Countrys. 2018, 10, 711–724. [Google Scholar] [CrossRef] [Green Version]
- State of Alaska. Department of Labor and Workforce Development. Research and Analysis, 2019. Available online: http://live.laborstats.alaska.gov/pop/ (accessed on 2 October 2019).
- World Population Review. 2019. Available online: http://worldpopulationreview.com/canadian-provinces/yukon-population/ (accessed on 2 October 2019).
- World Population Review. 2019. Available online: http://worldpopulationreview.com/countries/finland-population/ (accessed on 2 October 2019).
- Stevenson, K.T.; Rader, H.B.; Alessa, L.; Kliskey, A.D.; Pantoja, A.; Clark, M.; Smeenk, J.; Giguère, N. Sustainable agriculture for Alaska and the circumpolar North: Part II. Environmental, geophysical, biological and socioeconomic challenges. Arctic 2014, 67, 296–319. [Google Scholar] [CrossRef] [Green Version]
- Mote, P.W. Climate-Driven Variability and Trends in Mountain Snowpack in Western North America. J. Clim. 2006, 19, 6209–6220. [Google Scholar] [CrossRef]
- Marshall, A.M.; Abatzoglou, J.T.; Link, T.E.; Tennant, C.J. Projected Changes in Interannual Variability of Peak Snowpack Amount and Timing in the Western United States. Geophys. Res. Lett. 2019, 46. [Google Scholar] [CrossRef] [Green Version]
- Hogda, K.A.; Karlsen, S.R.; Solheim, I. Climatic change impact on growing season in Fennoscandia studied by a time series of NOAA AVHRR NDVI data. Scanning the Present and Resolving the Future. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), Sydney, Australia, 9–13 July 2001; pp. 1338–1340. [Google Scholar]
- Ricart, S.; Olcina, J.; Rico, A.M. Evaluating public attitudes and farmers’ beliefs towards climate change adaptation: Awareness, perception, and populism at European level. Land 2019, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Burn, C.R.; Smith, M. Development of thermokarst lakes during the Holocene at sites near Mayo, Yukon Territory. Permafr. Periglac. Process. 1990, 1, 161–175. [Google Scholar] [CrossRef]
- Eugster, W.; Rouse, W.R.; Pielke Sr, R.A.; McFadden, J.P.; Baldocchi, D.D.; Kittel, T.G.F.; Chapin, F.S.; Liston, G.E.; Vidale, P.L.; Vaganov, E.; et al. Land–atmosphere energy exchange in Arctic tundra and boreal forest: Available data and feedbacks to climate. Glob. Chang. Biol. 2000, 6, 84–115. [Google Scholar] [CrossRef]
- Euskirchen, E.; Bennett, A.; Breen, A.; Genet, H.; Lindgren, M.; Kurkowski, T.; McGuire, A.; Rupp, T. Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada. Environ. Res. Lett. 2016, 11, 105003. [Google Scholar] [CrossRef]
- Schuur, E.A.; Vogel, J.G.; Crummer, K.G.; Lee, H.; Sickman, J.O.; Osterkamp, T. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 2009, 459, 556. [Google Scholar] [CrossRef]
- Koven, C.D.; Ringeval, B.; Friedlingstein, P.; Ciais, P.; Cadule, P.; Khvorostyanov, D.; Krinner, G.; Tarnocai, C. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl. Acad. Sci. USA 2011, 108, 14769–14774. [Google Scholar] [CrossRef] [Green Version]
- Gorham, E. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef]
- Mattson, D.J. Human Impacts on Bear Habitat Use. Bears: Their Biology and Management. Bears Their Biol. Manag. 1990, 8, 33–56. [Google Scholar] [CrossRef]
- Fazzino, D.V.; Loring, P.A. From crisis to cumulative effects: Food security challenges in Alaska. Napa Bull. 2009, 32, 152–177. [Google Scholar] [CrossRef]
- Coley, D.; Howard, M.; Winter, M. Local food, food miles and carbon emissions: A comparison of farm shop and mass distribution approaches. Food Policy 2009, 34, 150–155. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van Wesemael, B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Grünzweig, J.M.; Sparrow, S.D.; Chapin, F.S. Impact of forest conversion to agriculture on carbon and nitrogen mineralization in subarctic Alaska. Biogeochemistry 2003, 64, 271–296. [Google Scholar] [CrossRef]
- Tiemeyer, B.; Albiac Borraz, E.; Augustin, J.; Bechtold, M.; Beetz, S.; Beyer, C.; Drösler, M.; Ebli, M.; Eickenscheidt, T.; Fiedler, S. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Chang. Biol. 2016, 22, 4134–4149. [Google Scholar] [CrossRef]
Region | Subregion | n | MAT | MAP | LGP | Sandy | Loamy | Clayey | Peat |
---|---|---|---|---|---|---|---|---|---|
Alaska | Alaska | 23 | 2.2 ± 2.2 | 762 ± 691 | 90–149 | 9 | 9 | 4 | 8 |
Canada | Yukon Territory | 15 | –1.7 ± 1.6 | 286 ± 23 | 60–119 | 5 | 4 | 6 | 5 |
Northwest Territories | 3 | –4.8 ± 1.6 | 303 ± 40 | 90–119 | 1 | - | - | 1 | |
Atlantic Islands | Iceland | 4 | 4.8 ± 0.3 | 1060 ± 249 | 90–149 | 2 | 2 | - | 2 |
Greenland | 1 | 0.2 | 888 | 90–149 | 1 | - | - | 1 | |
Faroe Islands | 1 | 5.4 | 1478 | 180–209 | - | 1 | - | 1 | |
Fennoscandia | Finland | 15 | 3.8 ± 1.0 | 607 ± 49 | 120–179 | 2 | 6 | 4 | 5 |
Sweden | 2 | 3.6 ± 1.7 | 685 ± 355 | 120–179 | - | 2 | - | 1 | |
Norway | 3 | 3.5 ± 4.4 | 1163 ± 877 | 120–179 | 1 | 2 | - | 1 | |
Total | 67 | 1.6 ± 3.1 | 642 ± 510 | 60–209 | 21 | 26 | 14 | 25 |
Topic | Answer | Total | % |
---|---|---|---|
Land-use effect on permafrost | Deeper permafrost in cultivated land | 7 | 50 |
Equal permafrost in cultivated and native land | 7 | 50 | |
Observed change in permafrost depth | Yes, due to land-use change | 6 | 43 |
Yes, due to climate change | 2 | 14 | |
No | 6 | 43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poeplau, C.; Schroeder, J.; Gregorich, E.; Kurganova, I. Farmers’ Perspective on Agriculture and Environmental Change in the Circumpolar North of Europe and America. Land 2019, 8, 190. https://doi.org/10.3390/land8120190
Poeplau C, Schroeder J, Gregorich E, Kurganova I. Farmers’ Perspective on Agriculture and Environmental Change in the Circumpolar North of Europe and America. Land. 2019; 8(12):190. https://doi.org/10.3390/land8120190
Chicago/Turabian StylePoeplau, Christopher, Julia Schroeder, Ed Gregorich, and Irina Kurganova. 2019. "Farmers’ Perspective on Agriculture and Environmental Change in the Circumpolar North of Europe and America" Land 8, no. 12: 190. https://doi.org/10.3390/land8120190
APA StylePoeplau, C., Schroeder, J., Gregorich, E., & Kurganova, I. (2019). Farmers’ Perspective on Agriculture and Environmental Change in the Circumpolar North of Europe and America. Land, 8(12), 190. https://doi.org/10.3390/land8120190