Planosol CO2 Respiration, Chemical and Physical Properties of Differently Tilled Faba Bean Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Agricultural Practice
2.3. Methods and Analysis
Statistical Analysis
3. Results and Discussion
3.1. Topsoil Coverage by Precrop Residues
3.2. Soil Chemical Composition
3.3. Soil Temperature and Moisture Content
3.4. Soil CO2 e-Flux and Concentration
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jarecki, M.K.; Lal, R. Compost and mulch effects on gaseous flux from an alfisol in Ohio. Soil Sci. 2006, 171, 249–260. [Google Scholar] [CrossRef]
- Oorts, K.; Merckx, R.; Gréhan, E.; Labreuche, J.; Nicolardot, B. Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil Tillage Res. 2007, 95, 133–148. [Google Scholar] [CrossRef]
- Bilandzija, D.; Zgorelec, Z.; Kisic, I. Influence of Tillage Practices and Crop Type on Soil CO2 Emissions. Sustainability 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Aikins, S.; Afuakwa, J. Effect of four different tillage practices on soil physical properties under cowpea. Agric. Biol. J. N. Am. 2012, 3, 17–24. [Google Scholar] [CrossRef]
- Celik, I.; Turgut, M.M.; Acir, N. Crop rotation and tillage effects on selected soil physical properties of a Typic Haploxerert in an irrigated semi-arid Mediterranean region. Int. J. Plant Prod. 2012, 6, 457–480. [Google Scholar]
- Kumar, A.; Chen, Y.; Sadek, A.; Rahman, S. Soil cone index in relation to soil texture, moisture content, and bulk density for no-tillage and conventional tillage. Agric. Eng. Int. CIGR J. 2012, 14, 26–37. [Google Scholar]
- Krol, A.; Lipiec, J.; Turski, M.; Kus, J. Effects of organic and conventional management on physical properties of soil aggregates. Int. Agrophys. 2013, 27, 15–21. [Google Scholar] [CrossRef]
- Lenka, N.K.; Lal, R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res. 2013, 126, 78–89. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- La Scala, N., Jr.; Lopes, Â.; Spokas, K.A.; Bolonhezi, D.; Archer, D.W.; Reicosky, D. Short-term temporal changes of soil carbon losses after tillage described by a first-order decay model. Soil Tillage Res. 2008, 99, 108–118. [Google Scholar] [CrossRef]
- Soares, D.D.S.; Ramos, M.L.G.; Marchao, R.L.; Maciel, G.A.; De Oliveira, A.D.; Malaquias, J.V.; De Carvalho, A.M. How diversity of crop residues in long-term no-tillage systems affect chemical and microbiological soil properties. Soil Tillage Res. 2019, 194, 104316. [Google Scholar] [CrossRef]
- Melman, D.A.; Kelly, C.; Schneekloth, J.; Calderón, F.; Fonte, S.J. Tillage and residue management drive rapid changes in soil macrofauna communities and soil properties in a semiarid cropping system of Eastern Colorado. Appl. Soil Ecol. 2019, 143, 98–106. [Google Scholar] [CrossRef]
- Ussiri, D.A.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Regina, K.; Alakukku, L. Greenhouse gas fluxes in varying soils types under conventional and no-tillage practices. Soil Tillage Res. 2010, 109, 144–152. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Helmy, M.; Prescher, A.; Osborne, B.; Lanigan, G.; Forristal, D.; Killi, D.; Maratha, P.; Williams, M.L.; et al. Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem. Geoderma 2014, 223–225, 9–20. [Google Scholar] [CrossRef]
- Taft, H.E.; Cross, P.A.; Edwards-Jones, G.; Moorhouse, E.R.; Jones, D.L. Greenhouse gas emissions from intensively managed peat soils in an arable production system. Agric. Ecosyst. Environ. 2017, 237, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Maire, V.; Alvarez, G.; Colombet, J.; Comby, A.; Despinasse, R.; Dubreucq, E.; Joly, M.; Lehours, A.; Perrier, V.; Shahzad, T.; et al. An unknown oxidative metabolism substantially contributes to soil CO2 emissions. Biogeosciences 2013, 10, 1155–1167. [Google Scholar] [CrossRef] [Green Version]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M. Hauggaard-Nielsen, H.; Alves, B.; Morrison, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and bioreneries. A review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Ntatsi, G.; Karkanis, A.; Yfantopoulos, D.; Olle, M.; Travlos, I.; Thanopoulos, R.; Bilalis, D.; Bebeli, P.; Savvas, D. Impact of variety and farming practices on growth, yield, weed flora and symbiotic nitrogen fixation in faba bean cultivated for fresh seed production. Acta Agric. Scand. Sect. B-Plant Soil Sci. 2018, 68, 619–630. [Google Scholar] [CrossRef]
- Karkanis, A.; Ntatsi, G.; Lepse, L.; Fernández, J.A.; Vågen, I.M.; Rewald, B.; Alsiņa, I.; Kronberga, A.; Balliu, A.; Olle, M.; et al. Faba bean cultivation—Revealing novel managing practices for a more sustainable and competitiveness European cropping systems. Front. Plant Sci. 2018, 9, 1115. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. World Food and Agriculture. Statistical Pocketbook. 2019. 2020. Available online: http://www.fao.org/3/ca6463en/ca6463en.pdf (accessed on 5 October 2020).
- United Nations. World Statistics Pocketbook 2017 Edition. 2017. Available online: https://unstats.un.org/unsd/publications/pocketbook/files/world-stats-pocketbook-2017.pdf (accessed on 5 October 2020).
- Rawal, V.; Navarro, D.K. (Eds.) The Global Economy of Pulses; FAO: Rome, Italy, 2019; Available online: http://www.fao.org/3/i7108en/I7108EN.pdf (accessed on 5 October 2020).
- Etemadi, F.; Hashemi, M.; Barker, A.V.; Zandvakili, O.R.; Liu, X. Agronomy, nutritional value, and medicinal application of Faba Bean (Vicia faba L.). Hortic. Plant J. 2019, 5, 170–182. [Google Scholar] [CrossRef]
- Statistics Lithuania. Official Statistics Portal: Agriculture. 2020. Available online: https://osp.stat.gov.lt/en_GB/zemes-ukis1 (accessed on 5 October 2020).
- Katerji, N.; Mastrorilli, M.; Lahmer, F.; Maalouf, F.; Oweis, T. Faba bean productivity in saline–drought conditions. Eur. J. Agron. 2011, 35, 2–12. [Google Scholar] [CrossRef]
- Buragienė, S.; Šarauskis, E.; Romaneckas, K.; Adamavičienė, A.; Kriaučiūnienė, Z.; Avižienytė, D.; Marozas, V.; Naujokienė, V. Relationship between CO2 emissions and soil properties of differently tilled soils. Sci. Total Environ. 2019, 662, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Romaneckas, K.; Adamavičienė, A.; Sinkevičienė, A.; Kimbirauskienė, R.; Bogužas, V.; Šarauskis, E.; Butkus, V.; Jasinskas, A.; Buragienė, S.; Čekanauskas, S. Influence of five tillage patterns on faba bean productivity parameters. In Proceedings of 45 International Symposium on Agricultural Engineering. Actual Tasks on Agricultural Engineering.; University of Zagreb: Opatija, Croatia, 2017; pp. 183–190. [Google Scholar]
- Romaneckas, K.; Kimbirauskienė, R.; Adamavičienė, A.; Buragiene, S.; SINKEVIČIENĖ, A.; Sarauskis, E.; Jasinskas, A.; Minajeva, A. Impact of sustainable tillage on biophysical properties of Planosol and on faba bean yield. Agric. Food Sci. 2019, 28, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Lenka, S.; Trivedi, P.; Singh, B.; Singh, B.P.; Pendall, E.; Bass, A.; Lenka, N.K. Effect of crop residue addition on soil organic carbon priming as influenced by temperature and soil properties. Geoderma 2019, 347, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Aschi, A.; Aubert, M.; Riah-Anglet, W.; Nélieu, S.; Dubois, C.; Akpa-Vinceslas, M.; Trinsoutrot-Gattin, I. Introduction of Faba bean in crop rotation: Impacts on soil chemical and biological characteristics. Appl. Soil Ecol. 2017, 120, 219–228. [Google Scholar] [CrossRef]
- Abdalla, M.; Kumar, S.; Jones, M.; Burke, J.; Williams, M. Testing DNDC model for simulating soil respiration and assessing the effects of climate change on the CO2 gas flux from Irish agriculture. Glob. Planet. Chang. 2011, 78, 106–115. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Cantero-Martínez, C.; López, M.V.; Arrúe, J. Soil carbon dioxide fluxes following tillage in semiarid Mediterranean agroecosystems. Soil Tillage Res. 2007, 96, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Zhao, Y.; Liu, K.; Ji, B.; Guo, H.; Xue, Z.; Li, C. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat–maize cropping system on the North China Plain. Eur. J. Agron. 2016, 78, 32–43. [Google Scholar] [CrossRef]
- Mikša, O.; Baležentienė, L.; Marozas, V.; Sasnauskienė, J. CO2 emission and climatic conditions rate during maize (Zea mays) and rapeseed (Brassica napus) in agro-ecosystems. In Proceedings of the 21th International Scientific-Practice Conference/Vytautas Magnus University, Kaunas, Lithuania, 22 May 2015; pp. 39–42. [Google Scholar]
Year/Month | April | May | June | July | August | September |
---|---|---|---|---|---|---|
Average air temperature (°C) | ||||||
2016 | 7.4 | 15.7 | 17.2 | 17.9 | 16.9 | - |
2017 | 5.6 | 12.9 | 15.4 | 16.8 | 17.5 | 13.4 |
2018 | 10.2 | 17.2 | 17.5 | 20.1 | 19.2 | - |
44 years average | 6.9 | 13.2 | 16.1 | 18.7 | 17.3 | 12.6 |
Precipitation rate (mm) | ||||||
2016 | 41.2 | 36.4 | 83.9 | 162.9 | 114.9 | - |
2017 | 73.7 | 10.5 | 80.2 | 79.6 | 55.0 | 87.1 |
2018 | 64.8 | 17.6 | 57.6 | 137.5 | 66.2 | - |
44 years average | 41.3 | 61.7 | 76.9 | 99.6 | 88.9 | 60.0 |
Tillage System | 2016 | 2017 | 2018 | 2016–2018 Average | ||||
---|---|---|---|---|---|---|---|---|
Before Sowing | After Sowing | Before Sowing | After Sowing | Before Sowing | After Sowing | Before Sowing | After Sowing | |
Deep ploughing | 2.8 | 0.5 | 4.5 | 1.3 | 2.1 | 0.8 | 3.1 | 0.9 |
Shallow ploughing | 2.8 | 0.3 | 4.3 | 1.3 | 4.4 | 4.2 | 3.8 | 1.9 |
Deep cultivation-chiselling | 42.5 ** | 8.5 * | 25.3 ** | 7.3 * | 51.0 ** | 36.8 ** | 39.6 * | 17.5 |
Shallow cultivation-disking | 43.5 ** | 10.5 ** | 24.8 ** | 11.8 ** | 50.0 ** | 25.8 ** | 39.4 * | 16.0 |
No-tillage | 87.0 ** | 82.8 ** | 21.5 ** | 22.0 ** | 47.2 ** | 54.2 ** | 51.9 ** | 53.0 ** |
Tillage System | Timing | Soil Chemical Composition | ||||
---|---|---|---|---|---|---|
pHHCl, mol l-1 | P2O5, mg kg-1 | K2O, mg kg-1 | Mg, mg kg-1 | Ntotal, % | ||
2016 | ||||||
Deep ploughing | BS | 7.1 | 231 | 85 | 360 | 0.131 |
AH | 7.4 | 237 | 104 | 437 | 0.129 | |
Shallow ploughing | BS | 7 | 248 | 108 * | 347 | 0.143 |
AH | 7.4 | 257 | 122 | 434 | 0.139 | |
Deep cultivation-chiselling | BS | 7.4 | 250 | 120 ** | 446 | 0.142 |
AH | 7.3 | 194 | 101 | 346 | 0.13 | |
Shallow cultivation-disking | BS | 7.1 | 284 | 149 ** | 408 | 0.144 |
AH | 7.1 | 284 | 138 * | 324 | 0.144 | |
No-tillage | BS | 6.7 | 233 | 116 ** | 274 | 0.168 ** |
AH | 7 | 250 | 119 | 312 | 0.157 * | |
2017 | ||||||
Deep ploughing | BS | 7.1 | 246 | 136 | 426 | 0.12 |
AH | 7 | 255 | 144 | 455 | 0.128 | |
Shallow ploughing | BS | 7.1 | 245 | 146 | 489 | 0.148 ** |
AH | 7 | 233 | 158 | 463 | 0.141 | |
Deep cultivation-chiselling | BS | 7.4 | 242 | 148 | 481 | 0.131 ** |
AH | 6.8 | 243 | 165 | 485 | 0.134 | |
Shallow cultivation-disking | BS | 7.2 | 270 | 168 | 634 | 0.149 ** |
AH | 7 | 257 | 180 | 610 | 0.145 | |
No-tillage | BS | 7.1 | 276 | 166 | 608 | 0.143 ** |
AH | 7.1 | 268 | 206 | 544 | 0.146 | |
2018 | ||||||
Deep ploughing | BS | 7.3 | 309 | 123 | 282 | 0.116 |
AH | 7.3 | 322 | 132 | 298 | 0.115 | |
Shallow ploughing | BS | 6.9 | 347 | 150 | 358 | 0.144 * |
AH | 6.9 | 347 | 156 | 269 | 0.164 * | |
Deep cultivation-chiselling | BS | 6.6 | 318 | 132 | 242 | 0.136 * |
AH | 6.9 | 300 | 152 | 286 | 0.148 * | |
Shallow cultivation-disking | BS | 6.8 | 336 | 147 | 256 | 0.138 * |
AH | 6.7 | 376 | 188 | 268 | 0.161 * | |
No-tillage | BS | 6.4 * | 384 | 181 * | 208 | 0.158 ** |
AH | 6.4 * | 355 | 201 * | 198 | 0.173 ** |
Tillage System | Timing | Soil Chemical Composition | ||||
---|---|---|---|---|---|---|
pHHCl, mol l-1 | P2O5, mg kg-1 | K2O, mg kg-1 | Mg, mg kg-1 | Ntotal, % | ||
2016 | ||||||
Deep ploughing | BS | 7.4 | 266 | 104 | 419 | 0.135 |
AH | 7.5 | 246 | 98 | 415 | 0.137 | |
Shallow ploughing | BS | 7.4 | 251 | 107 | 428 | 0.14 |
AH | 7.5 | 232 | 97 | 455 | 0.141 | |
Deep cultivation-chiselling | BS | 7.5 | 154 | 67 * | 307 | 0.12 |
AH | 7.4 | 135 | 67 * | 305 | 0.11 | |
Shallow cultivation-disking | BS | 7.3 | 162 | 65 * | 306 | 0.013 |
AH | 7.4 | 160 | 66 * | 306 | 0.122 | |
No-tillage | BS | 7.4 | 166 | 60 * | 289 | 0.128 |
AH | 7.4 | 150 | 58 * | 291 | 0.135 | |
2017 | ||||||
Deep ploughing | BS | 7.4 | 228 | 144 | 489 | 0.132 |
AH | 7 | 198 | 120 | 424 | 0.142 | |
Shallow ploughing | BS | 7.4 | 231 | 131 | 477 | 0.164 |
AH | 7 | 190 | 114 | 427 | 0.15 | |
Deep cultivation-chiselling | BS | 7.4 | 129 ** | 76 ** | 501 | 0.123 |
AH | 7.2 | 156 | 114 | 391 | 0.134 | |
Shallow cultivation-disking | BS | 7.4 | 129 ** | 71 ** | 449 | 0.147 |
AH | 7.2 | 148 | 92 | 371 | 0.133 | |
No-tillage | BS | 7.5 | 171 ** | 95 ** | 609 | 0.156 |
AH | 7.2 | 164 | 104 | 547 | 0.132 | |
2018 | ||||||
Deep ploughing | BS | 7.3 | 310 | 130 | 296 | 0.115 |
AH | 7.3 | 301 | 130 | 256 | 0.137 | |
Shallow ploughing | BS | 6.9 | 338 | 132 | 290 | 0.152 |
AH | 7.1 | 325 | 138 | 368 | 0.144 | |
Deep cultivation-chiselling | BS | 6.6 | 204 | 78 * | 236 | 0.115 |
AH | 6.8 | 173 | 72 * | 214 | 0.112 | |
Shallow cultivation-disking | BS | 6.7 | 210 | 78 * | 218 | 0.116 |
AH | 7.1 | 217 | 80 | 214 | 0.126 | |
No-tillage | BS | 6.8 | 254 | 100 | 234 | 0.125 |
AH | 7 | 236 | 96 | 212 | 0.123 |
Tillage System | Temperature °C | Contenttric Moisture Content % | ||||
---|---|---|---|---|---|---|
Beginning of Vegetation | Middle of Vegetation | End of Vegetation | Beginning of Vegetation | Middle of Vegetation | End of Vegetation | |
2016 | ||||||
Deep ploughing | 20.8 | 16.4 | 19.2 | 15.2 | 15.5 | 23.1 |
Shallow ploughing | 20.6 | 16.2 | 18.5 | 15.1 | 15.3 | 22.2 |
Deep cultivation-chiselling | 20.5 | 16.4 | 18.9 | 15.3 | 15.0 | 22.7 |
Shallow cultivation-disking | 20.6 | 16.3 | 18.5 | 15.2 | 15.5 | 22.0 |
No-tillage | 18.8 ** | 16.1 | 18.5 | 16.2 | 15.1 | 22.4 |
2017 | ||||||
Deep ploughing | 20.5 | 14.8 | 13.3 | 11.8 | 18.6 | 12.7 |
Shallow ploughing | 19.3 | 15.3 | 13.3 | 11.4 | 17.4 | 12.6 |
Deep cultivation-chiselling | 19.8 | 14.7 | 13.2 | 11.6 | 17.7 | 12.7 |
Shallow cultivation-disking | 19.5 | 14.9 | 13.2 | 11.5 | 18.3 | 12.5 |
No-tillage | 19.7 | 16.2 | 13.4 | 11.3 | 18.4 | 12.6 |
2018 | ||||||
Deep ploughing | 21.5 | 18.9 | 21.5 | 12.3 | 18.0 | 27.0 |
Shallow ploughing | 21.4 | 18.5 | 21.8 | 12.7 | 18.3 | 26.2 |
Deep cultivation-chiselling | 20.7 | 18.7 | 21.9 | 12.6 | 18.1 | 27.8 |
Shallow cultivation-disking | 20.6 * | 18.8 | 21.5 | 12.7 | 18.5 | 26.3 |
No-tillage | 20.3 ** | 18.5 | 21.1 | 12.6 | 18.6 | 27.8 |
Tillage System | CO2 e-Flux Rate, μmol m−2 s−1 | CO2 Concentration Above the Ground, ppm | ||||
---|---|---|---|---|---|---|
Beginning of Vegetation | Middle of Vegetation | End of Vegetation | Beginning of Vegetation | Middle of Vegetation | End of Vegetation | |
2016 | ||||||
Deep ploughing | 2.21 | 4.47 | 3.88 | 389.7 | 383.7 | 394.2 |
Shallow ploughing | 2.90 | 3.81 | 3.27 | 387.2 | 409.5 | 392.4 |
Deep cultivation-chiselling | 3.22 | 2.93 | 5.75 | 387.1 | 386.3 | 393.7 |
Shallow cultivation-disking | 2.74 | 5.06 | 3.29 | 391.0 | 382.9 | 390.9 |
No-tillage | 2.97 | 3.97 | 4.49 | 386.9 | 383.1 | 394.6 |
2017 | ||||||
Deep ploughing | 3.19 | 3.43 | 2.00 | 387.8 | 391.8 | 389.8 |
Shallow ploughing | 2.65 | 7.66 ** | 2.93 | 389.0 | 406.1 | 388.7 |
Deep cultivation-chiselling | 3.68 | 4.28 | 1.80 | 388.0 | 399.7 | 388.0 |
Shallow cultivation-disking | 2.72 | 3.47 | 1.65 | 387.2 | 410.1 * | 387.5 * |
No-tillage | 4.55 | 4.20 | 2.38 | 390.8 ** | 393.7 | 387.4 * |
2018 | ||||||
Deep ploughing | 3.57 | 5.02 | 2.32 | 390.5 | 395.2 | 376.6 |
Shallow ploughing | 2.58 | 3.07 | 6.84 ** | 387.4 * | 388.9 | 391.1 |
Deep cultivation-chiselling | 2.82 | 3.12 | 9.75 ** | 388.1 | 388.1 | 393.9 |
Shallow cultivation-disking | 4.33 | 3.51 | 5.68 * | 389.5 | 388.9 | 381.4 |
No-tillage | 2.46 | 3.15 | 5.54 * | 388.2 | 397.0 | 383.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimbirauskienė, R.; Romaneckas, K.; Naujokienė, V.; Sinkevičienė, A.; Šarauskis, E.; Buragienė, S.; Bielski, S. Planosol CO2 Respiration, Chemical and Physical Properties of Differently Tilled Faba Bean Cultivation. Land 2020, 9, 456. https://doi.org/10.3390/land9110456
Kimbirauskienė R, Romaneckas K, Naujokienė V, Sinkevičienė A, Šarauskis E, Buragienė S, Bielski S. Planosol CO2 Respiration, Chemical and Physical Properties of Differently Tilled Faba Bean Cultivation. Land. 2020; 9(11):456. https://doi.org/10.3390/land9110456
Chicago/Turabian StyleKimbirauskienė, Rasa, Kęstutis Romaneckas, Vilma Naujokienė, Aušra Sinkevičienė, Egidijus Šarauskis, Sidona Buragienė, and Stanisław Bielski. 2020. "Planosol CO2 Respiration, Chemical and Physical Properties of Differently Tilled Faba Bean Cultivation" Land 9, no. 11: 456. https://doi.org/10.3390/land9110456
APA StyleKimbirauskienė, R., Romaneckas, K., Naujokienė, V., Sinkevičienė, A., Šarauskis, E., Buragienė, S., & Bielski, S. (2020). Planosol CO2 Respiration, Chemical and Physical Properties of Differently Tilled Faba Bean Cultivation. Land, 9(11), 456. https://doi.org/10.3390/land9110456