Bioenergy Potential and Greenhouse Gas Emissions from Intensifying European Temporary Grasslands
Abstract
:1. Introduction
2. Sustainable Intensification Measures for Grasslands
2.1. Use of Multi-Species Mixtures
2.2. Optimized Grazing and Cutting Management
3. Materials and Methods
3.1. Modeling Framework: Miterra-Europe
3.1.1. General Overview
3.1.2. N2O Emissions
3.1.3. Soil Organic Carbon Stock Changes
3.2. Applied Sustainable Intensification Measures
3.3. Land Use Scenarios
3.4. Grass Options and Conversion Techniques
3.5. GHG Emission Abatement through Biofuels from Surplus Grasslands
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bauer, N.; Rose, S.K.; Fujimori, S.; Van Vuuren, D.P.; Weyant, J.; Wise, M.; Cui, Y.; Daioglou, V.; Gidden, M.; Kato, E.; et al. Global energy sector emission reductions and bioenergy use: Overview of the bioenergy demand phase of the EMF-33 model comparison. Clim. Chang. 2018, 1–16. [Google Scholar] [CrossRef]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land Clearing and the Biofuel Carbon Debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [Green Version]
- Searchinger, T.D.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef]
- Daioglou, V.; Doelman, J.; Wicke, B.; Faaij, A.; Van Vuuren, D.P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Chang. 2019, 54, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Searchinger, T.D.; Estes, L.; Thornton, P.K.; Beringer, T.; Notenbaert, A.; I Rubenstein, D.; Heimlich, R.; Licker, R.; Herrero, M. High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nat. Clim. Chang. 2015, 5, 481–486. [Google Scholar] [CrossRef]
- Humpenöder, F.; Popp, A.; Bodirsky, B.L.; Weindl, I.; Biewald, A.; Lotze-Campen, H.; Dietrich, J.P.; Klein, D.; Kreidenweis, U.; Müller, C.; et al. Large-scale bioenergy production: How to resolve sustainability trade-offs? Environ. Res. Lett. 2018, 13, 024011. [Google Scholar] [CrossRef] [Green Version]
- De Wit, M.; Londo, M.; Faaij, A. Productivity developments in European agriculture: Relations to and opportunities for biomass production. Renew. Sustain. Energy Rev. 2011, 15, 2397–2412. [Google Scholar] [CrossRef]
- Gerssen-Gondelach, S.J.; Wicke, B.; Faaij, A.P.C. GHG emissions and other environmental impacts of indirect land use change mitigation. GCB Bioenerg. 2016, 9, 725–742. [Google Scholar] [CrossRef] [Green Version]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef] [Green Version]
- Donald, P.F.; Green, R.E.; Heath, M.F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. B Boil. Sci. 2001, 268, 25–29. [Google Scholar] [CrossRef]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B Boil. Sci. 2009, 276, 903–909. [Google Scholar] [CrossRef]
- Melillo, J.M.; Reilly, J.M.; Kicklighter, D.W.; Gurgel, A.C.; Cronin, T.W.; Paltsev, S.; Felzer, B.S.; Wang, X.; Sokolov, A.P.; Schlosser, C.A. Indirect Emissions from Biofuels: How Important? Science 2009, 326, 1397–1399. [Google Scholar] [CrossRef] [Green Version]
- Stehfest, E.; Ros, J.; Bouwman, L. Indirect Effects of Biofuels: Intensification of Agricultural Production; Netherlands Environmental Assessment Agency PBL: Bilthoven, The Netherlands, 2010. [Google Scholar]
- Wicke, B.; Van Der Hilst, F.; Daioglou, V.; Banse, M.; Beringer, T.; Gerssen-Gondelach, S.J.; Heijnen, S.; Karssenberg, D.; Laborde, D.; Lippe, M.; et al. Model collaboration for the improved assessment of biomass supply, demand, and impacts. GCB Bioenergy 2014, 7, 422–437. [Google Scholar] [CrossRef] [Green Version]
- Kluts, I.; Wicke, B.; Leemans, R.; Faaij, A.P. Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renew. Sustain. Energy Rev. 2017, 69, 719–734. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. Fodder crops: Number of Farms and Areas by Agricultural Size of Farm (UAA) and Size of Fodder Crops Area (ef_lsfodderaa). Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ef_lsfodderaa&lang=en (accessed on 15 September 2019).
- Ketzer, D.; Rösch, C.; Haase, M. Assessment of sustainable Grassland biomass potentials for energy supply in Northwest Europe. Biomass Bioenergy 2017, 100, 39–51. [Google Scholar] [CrossRef]
- Qi, A.; Holland, R.A.; Taylor, G.; Richter, G.M. Grassland futures in Great Britain—Productivity assessment and scenarios for land use change opportunities. Sci. Total. Environ. 2018, 634, 1108–1118. [Google Scholar] [CrossRef]
- Hansson, J.; Berndes, G.; Stupak, I.; Freitas, F.L.M.; Sparovek, G.; De Freitas, F.L.M. How is biodiversity protection influencing the potential for bioenergy feedstock production on grasslands? GCB Bioenergy 2018, 11, 517–538. [Google Scholar] [CrossRef]
- Velthof, G.L.; Oudendag, D.; Witzke, H.; Asman, W.; Klimont, Z.; Oenema, O. Integrated Assessment of Nitrogen Losses from Agriculture in EU-27 using MITERRA-EUROPE. J. Environ. Qual. 2009, 38, 402–417. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) 1059/2003 of the European Parliament and of the Council of 26 May 2003 on the Establishment of a Common Classification of Territorial Units for Statistics (NUTS); Office for Official Publications of the European Communities: Luxembourg, 2018. [Google Scholar]
- Lesschen, J.P.; Elbersen, B.; Hazeu, G.; van Doorn, A.; Mucher, S.; Velthof, G. Defining and Classifying Grasslands in Europe; Wageningen University and Research: Wageningen, The Netherlands, 2014. [Google Scholar]
- Hector, A. Plant Diversity and Productivity Experiments in European Grasslands. Science 1999, 286, 1123–1127. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.U.; Dukes, J.S. Overyielding among plant functional groups in a long-term experiment. Ecol. Lett. 2003, 7, 95–105. [Google Scholar] [CrossRef]
- Tilman, D.; Knops, J.; Wedin, D.; Reich, P.; Ritchie, M.; Siemann, E. The Influence of Functional Diversity and Composition on Ecosystem Processes. Science 1997, 277, 1300–1302. [Google Scholar] [CrossRef] [Green Version]
- Kirwan, L.; Lüscher, A.; Sebastià, M.T.; Finn, J.A.; Collins, R.P.; Porqueddu, C.; Helgadottir, A.; Baadshaug, O.H.; Brophy, C.; Coran, C.; et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J. Ecol. 2007, 95, 530–539. [Google Scholar] [CrossRef]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastià, M.T.; Helgadóttir, Á.; Baadshaug, O.H.; Bélanger, G.; Black, A.; Brophy, C.; Collins, R.P.; et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Loreau, M. Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos 2000, 91, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D. The Ecological Consequences of Changes in Biodiversity: A Search for General Principles. Ecology 1999, 80, 1455. [Google Scholar] [CrossRef]
- Tilman, D. Diversity and Productivity in a Long-Term Grassland Experiment. Science 2001, 294, 843–845. [Google Scholar] [CrossRef] [Green Version]
- Spehn, E.M.; Hector, A.; Joshi, J.; Scherer-Lorenzen, M.; Schmid, B.; Bazeley-White, E.; Beierkuhnlein, C.; Caldeira, M.C.; Diemer, M.; Dimitrakopoulos, P.G.; et al. Ecosystem effects of biodiversity manipulatons in European grasslands. Ecol. Monogr. 2005, 75, 37–63. [Google Scholar] [CrossRef] [Green Version]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Connolly, J.; Lüscher, A. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 2009, 46, 683–691. [Google Scholar] [CrossRef]
- Collins, R.P.; Delagarde, R.; Husse, S. Biomass production in multispecies and grass monoculture swards under cutting and rotational grazing. In Proceedings of the European Grassland Federation EGF at 50: The Future of European Grasslands, Aberystwyyth, Wales, UK, 7–11 September 2014; pp. 719–721. [Google Scholar]
- Kirwan, L.; Connolly, J.; Brophy, C.; Baadshaug, O.; Bélanger, G.; Black, A.; Carnus, T.; Collins, R.; Čop, J.; Delgado, I.; et al. The Agrodiversity Experiment: Three years of data from a multisite study in intensively managed grasslands. Ecology 2014, 95, 2680. [Google Scholar] [CrossRef] [Green Version]
- Spehn, E.M.; Hector, A.; Joshi, J.; Scherer-Lorenzen, M.; Schmid, B.; Bazeley-White, E.; Beierkuhnlein, C.; Caldeira, M.C.; Diemer, M.; Dimitrakopoulos, P.G.; et al. Data from the BIODEPTH project (15 ecosystem-process variables measured at eight different European grassland field sites over three years) together with metadata and a table with site information. Ecol. Arch. 2005, 75, M075-001-S. [Google Scholar]
- Sánchez, B.; Medina, F.; Iglesias, A. Typical Farming Systems and Trends in Crop and Soil Management in Europe. SmartSOIL Project Deliverable 2.2; Universidad Politécnica de Madrid: Madrid, Spain, 2013; Available online: https://smartsoil.eu/fileadmin/www.smartsoil.eu/WP2/D2_2_Final.pdf (accessed on 3 November 2020).
- Metzger, M.J.; Shkaruba, A.D.; Jongman, R.; Bunce, R. Descriptions of the European Environmental Zones and Strata Wageningen University and Research: Wageningen, The Netherlands. 2012. Available online: https://edepot.wur.nl/197197 (accessed on 3 November 2020).
- Trenbath, B. Biomass Productivity of Mixtures. Adv. Agron. 1974, 26, 177–210. [Google Scholar] [CrossRef]
- Suter, M.; Connolly, J.; Finn, J.A.; Loges, R.; Kirwan, L.; Sebastià, M.-T.; Lüscher, A. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Glob. Chang. Biol. 2015, 21, 2424–2438. [Google Scholar] [CrossRef] [Green Version]
- Huyghe, C. Country Pasture/Forage Resource Profile for France; FAO: Rome, Italy, 2012. [Google Scholar]
- Brum, O.B.; López, S.; Garcia, R.; Andrés, S.; Calleja, A. Influence of harvest season, cutting frequency and nitrogen fertilization of mountain meadows on yield, floristic composition and protein content of herbage. Rev. Bras. Zootec. 2009, 38, 596–604. [Google Scholar] [CrossRef] [Green Version]
- Weigelt, A.; Weisser, W.W.; Buchmann, N.; Scherer-Lorenzen, M. Biodiversity for multifunctional grasslands: Equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosci. Discuss. 2009, 6, 3187–3214. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, M.; O’Donovan, M.; Kennedy, E.; Murphy, J.P.; Delaby, L.T.M. Boland Effect of pregrazing herbage mass and pasture allowance on the lactation performance of Holstein-Friesian dairy cows. J. Dairy Sci. 2009, 92, 414–422. [Google Scholar] [CrossRef]
- Wims, C.M.; Delaby, L.; Boland, T.M.; O’Donovan, M. Effect of pre-grazing herbage mass on dairy cow performance, grass dry matter production and output from perennial ryegrass (Lolium perenne L.) pastures. Animal 2014, 8, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Tuñon, G.E. Improving the Use of Perennial Ryegrass Swards for Dairying in Ireland. Ph.D. thesis, Massey University, Palmerston North, New Zealand, 2013. [Google Scholar]
- Lanta, V.; Dolezal, J.; Lantová, P.; Kelíšek, J.; Mudrák, O. Effects of pasture management and fertilizer regimes on botanical changes in species-rich mountain calcareous grassland in Central Europe. Grass Forage Sci. 2009, 64, 443–453. [Google Scholar] [CrossRef]
- Fernández-Núñez, E.; Pires, J.M.; Fernandes, A.; Pires, J.; Aguiar, C.; Galvão, L.; Moreira, N. Grazing regimes and fertilisation rates: Effects on dry matter yields, crude protein content and digestibility of meadows in the Northeast of Portugal. In Proceedings of the 24th General Meeting of the European Grassland Federation, Lublin, Poland, 3–7 June 2012; Volume 17, pp. 311–313. [Google Scholar]
- Henderson, B.B.; Gerber, P.J.; Hilinski, T.E.; Falcucci, A.; Ojima, D.S.; Salvatore, M.; Conant, R.T. Greenhouse gas mitigation potential of the world’s grazing lands: Modeling soil carbon and nitrogen fluxes of mitigation practices. Agric. Ecosyst. Environ. 2015, 207, 91–100. [Google Scholar] [CrossRef]
- Conant, R.T. Challenges and opportunities for carbon sequestration in grassland systems. A technical report on grassland management and climate change mitigation. Integr. Crop Manag. 2010, 9, 55. [Google Scholar]
- Peeters, A. Country Pasture/Forage Resource Profile for Belgium; FAO: Rome, Italy, 2010. [Google Scholar]
- Selge, A. Country Pasture/Forage Resource Profile for Estonia; FAO: Rome, Italy, 2006. [Google Scholar]
- O’Mara, F. Country Pasture/Forage Resource Profile for Ireland; FAO: Rome, Italy, 2008. [Google Scholar]
- Adamovich, A. Country Pasture/Forage Resource Profile for Latvia; FAO: Rome, Italy, 2005. [Google Scholar]
- Hamnett, R.G. Country Pasture/Forage Resource Profile for Lithuania; FAO: Rome, Italy, 2006. [Google Scholar]
- Hamnett, R.G. Country Pasture/Forage Resource Profile for Slovak Republic; FAO: Rome, Italy, 2006. [Google Scholar]
- Hopkins, A. Country Pasture/Forage Resource Profile for United Kingdom; FAO: Rome, Italy, 2008. [Google Scholar]
- Britz, W.; Witzke, P. CAPRI Model Documentation 2014; Bonn University: Bonn, Germany, 2014; Available online: https://www.capri-model.org/docs/capri_documentation.pdf (accessed on 16 November 2020).
- Klimont, Z.; Brink, C. Modelling of Emissions of Air Pollutants and Greenhouse Gases from Agricultural Sources in Europe; IIASA IR 04-048 2004; International Institute of Applied Systems Analysis: Laxenburg, Austria, 2004. [Google Scholar]
- Lesschen, J.P.; Berg, M.V.D.; Westhoek, H.; Witzke, H.; Oenema, O. Greenhouse gas emission profiles of European livestock sectors. Anim. Feed. Sci. Technol. 2011, 16–28. [Google Scholar] [CrossRef]
- De Vries, W.; Leip, A.; Reinds, G.; Kros, J.; Lesschen, J.; Bouwman, L. Comparison of land nitrogen budgets for European agriculture by various modeling approaches. Environ. Pollut. 2011, 159, 3254–3268. [Google Scholar] [CrossRef] [PubMed]
- IPCC 2006. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Velthof, G.L.; Oudendag, D.A.; Oenema, O. Development and Application of the Integrated Nitrogen Model MITERRA-EUROPE; Wageningen University and Research: Wageningen, The Netherlands, 2007. [Google Scholar]
- Smit, H.; Metzger, M.; Ewert, F. Spatial distribution of grassland productivity and land use in Europe. Agric. Syst. 2008, 98, 208–219. [Google Scholar] [CrossRef]
- EUROSTAT. Permanent Grassland by NUTS 2 Regions. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ef_lus_pegrass&lang=en (accessed on 19 June 2020).
- Coleman, K.; Jenkinson, D.; Crocker, G.; Grace, P.; Klír, J.; Körschens, M.; Poulton, P.; Richter, D. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 1997, 81, 29–44. [Google Scholar] [CrossRef]
- Tong, Z.; Pullammanappallil, P.; Teixeira, A.A. How Ethanol Is Made from Cellulosic Biomass. AE493, University of Florida (IFAS Extension). 2012. Available online: http://edis.ifas.ufl.edu/pdffiles/AE/AE49300.pdf (accessed on 19 June 2020).
- Sharma, H.S.; Lyons, G.; McRoberts, C. Biorefining of perennial grasses: A potential sustainable option for Northern Ireland grassland production. Chem. Eng. Res. Des. 2011, 89, 2309–2321. [Google Scholar] [CrossRef]
- Vienna University of Technology. BIOBIB—A Database for Biofuels. Available online: http://www.vt.tuwien.ac.at/biobib/EN/ (accessed on 19 June 2020).
- Phyllis2. Database for the Physico-Chemical Composition of (Treated) Lignocellulosic Biomass, Micro- and Macroalgae, Various Feedstocks for Biogas Production and Biochar. Available online: https://phyllis.nl/ (accessed on 8 December 2019).
- Djomo, S.N.; Knudsen, M.T.; Martinsen, L.; Andersen, M.S.; Ambye-Jensen, M.; Møller, H.B.; Hermansen, J.E. Green proteins: An energy-efficient solution for increased self-sufficiency in protein in Europe. Biofuels Bioprod. Biorefining 2020, 14, 605–619. [Google Scholar] [CrossRef]
- Sharma, H.; Mandl, M. Green Biorefinery. Sustain. Bioenerg. Prod. 2014, 535–564. [Google Scholar] [CrossRef]
- Kumar, D.; Murthy, G.S. Life cycle assessment of energy and GHG emissions during ethanol production from grass straws using various pretreatment processes. Int. J. Life Cycle Assess. 2012, 17, 388–401. [Google Scholar] [CrossRef]
- Charlton, A.; Elias, R.; Fish, S.A.; Fowler, P.; Gallagher, J. The biorefining opportunities in Wales: Understanding the scope for building a sustainable, biorenewable economy using plant biomass. Chem. Eng. Res. Des. 2009, 87, 1147–1161. [Google Scholar] [CrossRef]
- Sanders, J.P.M.; van Liere, J.; de Wilt, J.G. Geraffineerd Voeren: Naar een Sluitende Mineralenkringloop Door Raffinage van Lokaal Geteeld Veevoor; Wageningen University and Research: Wageningen, The Netherlands, 2016. [Google Scholar]
- Klop, A.; Durksz, D.; Zonderland, J.; Koopmans, B. Grasraffinage en Gebruik van Grasvezel in de Rundveevoeding; Wageningen University and Research: Wageningen, The Netherlands, 2015. [Google Scholar]
- Kamm, B.; Schönicke, P.; Hille, C. Green biorefinery—Industrial implementation. Food Chem. 2016, 197, 1341–1345. [Google Scholar] [CrossRef]
- Grassa, B.V. Bioraffinage. Available online: http://grassa.nl/ (accessed on 31 October 2016).
- HarvestaGG. Het HarvestaGG Green Goods Concept. Available online: http://www.harvestagg.nl/green-goods-concept1.html (accessed on 31 October 2016).
- Grass, S. Utilization of Grass for Production of Fibres, Protein and Energy. In Biomass and Agriculture: Sustainability, Markets and Policies; OECD, Ed.; OECD Publishing: Paris, France, 2004. [Google Scholar]
- European Commission. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; Office for Official Publications of the European Communities: Luxembourg, 2009. [Google Scholar]
- Elbersen, B.; Staritsky, I.; Hengeveld, G.; Jeurissen, L.; Lesschen, J.-P. Outlook of Spatial Biomass Value Chains in EU 28—Deliverable 2.3 of the Biomass Policies Project; Wageningen University and Research: Wageningen, The Netherlands, 2016. [Google Scholar]
- European Parliament and Council. Directive (Eu) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast); Office for Official Publications of the European Communities: Luxembourg, 2018. [Google Scholar]
- Cardinale, B.J.; Wright, J.P.; Cadotte, M.W.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M.; Weis, J.J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef] [Green Version]
- Van den Pol-van Dasselaar, A.; Pinxterhuis, A.; de Vliegher, D.; Hennessy, J.B.; Peyraud, J.L. Research Methodology of Grazing Report 405; Wageningen University and Research: Wageningen, The Netherlands, 2011; p. 19. [Google Scholar]
- Van den Pol-van Dasselaar, A.; Golinski, P.; Hennessy, D.; Huyghe, C.; Parente, G.; Peyraud, J.L. Appreciation of the functions of grasslands by European stakeholders. In Proceedings of the 25th General Meeting of the European Grassland Federation, Aberystwyth, Wales, UK, 7–11 September 2014; Volume 19, pp. 766–770. [Google Scholar]
- Van den Pol-van Dasselaar, A.; Goliński, P.; Hennessy, D.; Huyghe, C.; Parente, G.; Peyraud, J.L.; Pinxterhuis, J.B. Stakeholders’ requirements and expectations with respect to multi-functionality of grasslands in Europe. In Proceedings of the 25th General Meeting of the European Grassland Federation, Aberystwyth, Wales, UK, 7–11 September 2014; Volume 17, pp. 762–764. [Google Scholar]
- Hermansen, J.E.; Jørgensen, U.; Lærke, P.E.; Manevski, K.; Jensen, S.K.; Weisbjerg, M.R.; Dalsgaard, T.K.; Asp, T.; Amby-Jensen, M.; Aage, C.; et al. Green Biomass—Protein Production through Bio-Refining; Aarhus University/Danish Center for Food and Agriculture: Aarhus, Danmark, 2017; Available online: https://orgprints.org/31701/1/DCArapport093.pdf (accessed on 3 November 2020).
- Barona, E.; Ramankutty, N.; Hyman, G.; Coomes, O.T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 2010, 5, 024002. [Google Scholar] [CrossRef]
Climate Zone 1 | Intensively Managed Grasslands 2 | Extensively Managed Grasslands 3 | ||||
---|---|---|---|---|---|---|
Grass–Legume Mixture | Grass–Legume Mixture | Grass–Legume–Forbs Mixture | ||||
Overyielding 4 | Transgressive overyielding 4 | Overyielding 4 | Transgressive overyielding 4 | Overyielding 4 | Transgressive overyielding 4 | |
Alpine | 1.48 | 1.12 | n.a.5 | n.a. 5 | n.a. 5 | n.a. 5 |
Atlantic | 1.45 | 1.30 | 1.11 | 0.78 | 1.51 | 1.04 |
Boreal | 1.18 | 1.06 | 2.95 | 1.28 | 2.04 | 0.88 |
Continental | 1.54 | 1.31 | 1.98 | 1.38 | 2.25 | 1.57 |
Mediterranean | 1.36 | 1.00 | 1.02 | 0.5 | 1.17 | 0.58 |
Country 1 | Use of Mixtures | Source |
---|---|---|
Belgium | Mainly one or two species, except in the Ardennes (NUTS-2 region Luxembourg) where multi-species mixtures, usually up to five species, are common | [50] |
Estonia | Tendency towards the use of mixtures with few species, but traditionally multi-species mixtures with 5–6 species were used | [51] |
France | Thirty percent of temporary grassland is sown with pure grass in 2001–2003, 70% with multi-species mixtures | [40] |
Ireland | Very few pastures that derive significant nitrogen from clover | [52] |
Latvia | Sown grasslands for grazing are usually sown with a mixture of 4–6 species, while grasslands for cutting are sown with two species mixtures | [53] |
Lithuania | Seed mixtures tend to contain several species | [54] |
Slovakia | Seed mixtures are based on complex combinations and consists more species than typical for Western European mixtures. However, grasslands for grazing could be improved by using limited species than the current seed mix | [55] |
United Kingdom | Temporary grassland usually consists of perennial ryegrass only | [56] |
Land Use Scenario | Description |
---|---|
Reference excl. intensification measures |
|
Scenario 1: intensification and conventional grass (mixture) |
|
Scenario 2: intensification and herbaceous energy crop |
|
Parameter | Unit | Value | Source |
---|---|---|---|
Miscanthus—energy content | MJ kg−1 DM (HHV) | 19.1 | [67] |
Switchgrass—energy content | MJ kg−1 DM (HHV) | 18.4 | [67] |
Reed canary grass—energy content | MJ kg−1 DM (HHV) | 18.1 | [67] |
Grass mixture—energy content | MJ kg−1 DM (HHV) | 18.0 1 | [68,69] |
Conversion efficiency of bioethanol (biochemical conversion) | MJ ethanol MJ−1 raw biomass (HHV) | 0.34 2 (0.34–0.39) | [8] |
Parameter | Unit | Value |
---|---|---|
Emission factor ethanol (without emissions from fertilizer use; sum of cultivation, processing, conversion and transport) | g CO2-eq MJ−1 | −2.1 |
- Cultivation (without emissions from fertilizer use) 1 | g CO2-eq MJ−1 | 5.8 |
- Processing 2 | g CO2-eq MJ−1 | 1.0 |
- Conversion 3 | g CO2-eq MJ−1 | −9.1 |
- Transport 2 | g CO2-eq MJ−1 | 0.2 |
Fossil fuel comparator (average diesel and gasoline, including supply chain and combustion) 4 | g CO2-eq MJ−1 | 83.8 |
Parameter | Unit | Scenario 1: Intensification and Use Surplus Grass for Energy | Scenario 2: Intensification and Use of Land for Grassy Energy Crops |
---|---|---|---|
Area addressed by measures | Mha | 0.85 | 0.85 |
Biomass production and conversion to ethanol | |||
Biomass production (mass) | Mt DM yr−1 | 3.7 | 11 |
Biomass production | PJ yr−1 | 67 | 213 |
Bioethanol production | PJ ethanol yr−1 | 23 | 72 |
GHG emissions from intensification, bioethanol production and replacement of fossil fuels | |||
A: Change in N2O emissions compared to reference 1 | Mt CO2-eq yr−1 | −2.8 | 3.5 |
B: Change in SOC compared to reference 1 | Mt CO2-eq yr−1 | −1 | −1.3 |
C: Supply chain emissions bioethanol (without fertilizer & SOC) 1 | Mt CO2-eq yr−1 | 0.0 | −0.2 |
D: Avoided emissions from replacing fossil fuels | Mt CO2-eq yr−1 | 1.9 | 6.1 |
Net emission balance (= A + B + C − D) 1 | Mt CO2-eq yr−1 | −5.8 | −4.0 |
Average supply chain emissions from bioethanol (= (A + B + C)/total bioethanol production) 1 | g CO2-eq MJ−1 | −168.9 | 28.3 |
Emission reduction compared to fossil fuel comparator | % | 302 | 66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wicke, B.; Kluts, I.; Lesschen, J.P. Bioenergy Potential and Greenhouse Gas Emissions from Intensifying European Temporary Grasslands. Land 2020, 9, 457. https://doi.org/10.3390/land9110457
Wicke B, Kluts I, Lesschen JP. Bioenergy Potential and Greenhouse Gas Emissions from Intensifying European Temporary Grasslands. Land. 2020; 9(11):457. https://doi.org/10.3390/land9110457
Chicago/Turabian StyleWicke, Birka, Ingeborg Kluts, and Jan Peter Lesschen. 2020. "Bioenergy Potential and Greenhouse Gas Emissions from Intensifying European Temporary Grasslands" Land 9, no. 11: 457. https://doi.org/10.3390/land9110457
APA StyleWicke, B., Kluts, I., & Lesschen, J. P. (2020). Bioenergy Potential and Greenhouse Gas Emissions from Intensifying European Temporary Grasslands. Land, 9(11), 457. https://doi.org/10.3390/land9110457