Disease Prevalence Matters: Challenge for SARS-CoV-2 Testing
Abstract
:1. Introduction
2. Sensitivity, Specificity, PPV, and NPV
The Effect of Disease Prevalence
3. Orthogonal Testing
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Bellato, V.; Konishi, T.; Pellino, G.; An, Y.; Piciocchi, A.; Sensi, B.; Siragusa, L.; Khanna, K.; Pirozzi, B.M.; Franceschilli, M.; et al. Screening policies, preventive measures and in-hospital infection of COVID-19 in global surgical practices. J. Glob. Health 2020, 10, 020507. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.S.; Aw, T.C. Frequent severe acute respiratory syndrome coronavirus 2 antigen testing in a disease-free population. J. Infect. Dis. 2021, 224, 529. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Wang, X.; Zhu, Z.; Yu, Y.; Chang, D.; Zhang, X.; Li, D.; Sun, F.; Zhou, L.; Xu, J.; et al. Quality management for point-of-care testing of pathogen nucleic acids: Chinese expert consensus. Front. Cell. Infect. Microbiol. 2021, 11, 755508. [Google Scholar] [CrossRef] [PubMed]
- Mulchandani, R.; Jones, H.E.; Taylor-Phillips, S.; Shute, J.; Perry, K.; Jamarani, S.; Brooks, T.; Charlett, A.; Hickman, M.; Oliver, I.; et al. Accuracy of UK rapid test consortium (UK-RTC) "AbC-19 Rapid Test" for detection of previous SARS-CoV-2 infection in key workers: Test accuracy study. BMJ 2020, 371, m4262. [Google Scholar]
- Garcia-Finana, M.; Hughes, D.M.; Cheyne, C.P.; Burnside, G.; Stockbridge, M.; Fowler, T.A.; Fowler, V.L.; Wilcox, M.H.; Semple, M.G.; Buchan, I. Performance of the innova SARS-CoV-2 antigen rapid lateral flow test in the Liverpool asymptomatic testing pilot: Population based cohort study. BMJ 2021, 374, n1637. [Google Scholar] [CrossRef]
- Larremore, D.B.; Wilder, B.; Lester, E.; Shehata, S.; Burke, J.M.; Hay, J.A.; Tambe, M.; Mina, M.J.; Parker, R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv. 2021, 7, eabd5393. [Google Scholar] [CrossRef]
- Smith, R.L.; Gibson, L.L.; Martinez, P.P.; Ke, R.; Mirza, A.; Conte, M.; Gallagher, N.; Conte, A.; Wang, L.; Fredrickson, R.; et al. Longitudinal assessment of diagnostic test performance over the course of acute SARS-CoV-2 infection. J. Infect. Dis. 2021, 224, 976–982. [Google Scholar] [CrossRef]
- Mina, M.J.; Parker, R.; Larremore, D.B. Rethinking Covid-19 test sensitivity—A strategy for containment. N. Engl. J. Med. 2020, 383, e120. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Interim Guidance for Antigen Testing for SARS-CoV-2, Updated 9 September 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-tests-guidelines.html#table1 (accessed on 22 October 2021).
- Lau, C.; Hoo, S.; Liang, Y.; Phua, S.; Aw, T.C. Performance of two rapid point of care SARS-CoV-2 antibody assays against laboratory-based automated chemiluminescent immunoassays for SARS-CoV-2 IG-G, IG-M and total antibodies. Pr. Lab. Med. 2021, 24, e00201. [Google Scholar] [CrossRef]
- Harahwa, T.A.; Yau, T.H.L.; Lim-Cooke, M.-S.; Al-Haddi, S.; Zeinah, M.; Harky, A. The optimal diagnostic methods for COVID-19. Diagnosis 2020, 7, 349–356. [Google Scholar] [CrossRef]
- Ghaffari, A.; Meurant, R.; Ardakani, A. COVID-19 serological tests: How well do they actually perform? Diagnostics 2020, 10, 453. [Google Scholar] [CrossRef]
- da Silva, S.J.R.; da Silva, C.T.A.; Guarines, K.M.; Medes, R.P.G.; Pardee, K.; Kohl, A.; Pena, L. Clinical and laboratory diagnosis of SARS-CoV-2, the virus causing COVID-19. ACS Infect. Dis. 2020, 6, 2319–2336. [Google Scholar] [CrossRef]
- Caeseele, P.V.; Bailey, D.; Forgie, S.E.; Dingle, T.C.; Krajden, M. SARS-CoV-2 (COVID-19) serology: Implications for clinical practice, laboratory medicine and public health. CMAJ 2020, 192, E973–E979. [Google Scholar] [CrossRef]
- Premraj, A.; Aleyas, A.G.; Nautiyal, B.; Rasool, T.J. Nucleic acid and immunological diagnostics for SARS-CoV-2: Processes, platforms and pitfalls. Diagnostics 2020, 10, 866. [Google Scholar] [CrossRef]
- Gulholm, T.; Basile, K.; Kok, J.; Chen, S.-A.; Rawlinson, W. Laboratory diagnosis of severe acute respiratory syndrome coronavirus 2. Pathology 2020, 52, 745–753. [Google Scholar] [CrossRef]
- Lagerqvist, N.; Maleki, K.T.; Verner-Carlsson, J.; Olausson, M.; Dillner, J.; Bystrom, J.W.; Monsen, T.; Forsell, M.; Eriksson, J.; Bogdanovic, G.; et al. Evaluation of 11 SARS-CoV-2 antibody tests by using samples from patients with defined IgG antibody titers. Sci. Rep. 2021, 11, 7614. [Google Scholar] [CrossRef]
- Loong, T.-W. Understanding sensitivity and specificity with the right side of the brain. BMJ 2003, 327, 716–719. [Google Scholar] [CrossRef]
- Kankam, H.K.; Hourston, G.J.; Ravindran, P.; Azhar, B.; Pope, C. COVID-19 antibody tests: Statistical implications. Br. J. Hosp. Med. 2020, 81, 1–5. [Google Scholar] [CrossRef]
- Galen, R.S.; Gambino, S.R. Beyond Normality, The Predictive Value and Efficiency of Medical Diagnoses; Wiley-Biomedical, John Wiley & Sons, Inc.: New York, NY, USA, 1975; pp. 9–13. [Google Scholar]
- Dinnes, J.; Deeks, J.J.; Berhane, S.; Taylor, M.; Adriano, A.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2021, 3, CD013705. [Google Scholar]
- Tollanes, M.C.; Jenum, P.A.; Kierkegaard, H.; Abildsnes, E.; Baevre-Jensen, R.M.; Breivik, A.C.; Sandberg, S. Evaluation of 32 rapid tests for detection of antibodies against SARS-CoV-2. Clin. Chim. Acta. 2021, 519, 133–139. [Google Scholar] [CrossRef]
- Food and Drug Administration. Calculator for Positive Predictive Value (PPV) and Negative Predictive Value (NPV) for individual tests and combined. Available online: https://www.fda.gov/media/137612/download (accessed on 22 October 2021).
- Rostami, A.; Sepidarkish, M.; Leeflang, M.M.G.; Riahi, S.M.; Shiadeh, M.N.; Esfandyari, S.; Mokdad, A.H.; Hotez, P.J.; Gasser, R.B. SARS-CoV-2 seroprevalence worldwide: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 331–340. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Drew, D.A.; Graham, M.S.; Joshi, A.D.; Guo, C.-G.; Ma, W.; Mehta, R.S.; Warner, E.T.; Sikavi, D.R.; Lo, C.-H.; et al. Risk of COVID-19 among front-line health-care workers and the general community: A prospective cohort study. Lancet Public Health 2020, 5, e475–e483. [Google Scholar] [CrossRef]
- Bellato, V.; Konishi, T.; Pellino, G.; An, Y.; Piciocchi, A.; Sensi, B.; Siragusa, L.; Khanna, K.; Pirozzi, B.M.; Franceschilli, M.; et al. Impact of asymptomatic COVID-19 patients in global surgical practice during the COVID-19 pandemic. Br. J. Surg. 2020, 107, e364–e365. [Google Scholar] [CrossRef]
- Xu, G.; Emanuel, A.J.; Nadig, S.; Mehrotra, S.; Caddell, B.A.; Curry, S.R.; Nolte, F.S.; Babic, N. Evaluation of orthogonal testing algorithm for detection of SARS-CoV-2 IgG antibodies. Clin. Chem. 2020, 66, 1531–1537. [Google Scholar] [CrossRef]
- Nakamura, A.; Sato, R.; Ando, S.; Oana, N.; Nozaki, E.; Endo, H.; Miyate, Y.; Soma, J.; Miyata, G. Orthogonal antibody testing for COVID-19 among healthcare workers in a non-epidemic place and time:Japan’s Iwate Prefecture, May 18-31, 2020. Fukushima J. Med. Sci. 2020, 67, 27–32. [Google Scholar] [CrossRef]
Assay | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|
Antigen (SD Biosensor) | 69.2% | 99.1% | 93.7% | 93.3% |
Molecular (Cepheid) | 88.1% | 97.2% | 97.9% | 98.4% |
Antibody * | 87.7% | 98.0% | - | - |
Parameter | Prevalence 0.1% | Prevalence 0.5% | Prevalence 1.0% | |||
---|---|---|---|---|---|---|
PPV | NPV | PPV | NPV | PPV | NPV | |
Single test | ||||||
Antigen | 7.1 | 100 | 27.9 | 99.8 | 43.7 | 99.7 |
Molecular | 3.1 | 100 | 13.7 | 99.9 | 24.1 | 99.9 |
Antibody | 4.2 | 100 | 18.1 | 99.9 | 30.7 | 99.9 |
Orthogonal Testing | ||||||
Antigen → molecular | 70.8 | 99.1 | 92.4 | 95.5 | 96.1 | 91.3 |
Antigen → Antibody | 77.1 | 99.0 | 94.4 | 95.4 | 97.1 | 91.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, C.-S.; Aw, T.-C. Disease Prevalence Matters: Challenge for SARS-CoV-2 Testing. Antibodies 2021, 10, 50. https://doi.org/10.3390/antib10040050
Lau C-S, Aw T-C. Disease Prevalence Matters: Challenge for SARS-CoV-2 Testing. Antibodies. 2021; 10(4):50. https://doi.org/10.3390/antib10040050
Chicago/Turabian StyleLau, Chin-Shern, and Tar-Choon Aw. 2021. "Disease Prevalence Matters: Challenge for SARS-CoV-2 Testing" Antibodies 10, no. 4: 50. https://doi.org/10.3390/antib10040050
APA StyleLau, C. -S., & Aw, T. -C. (2021). Disease Prevalence Matters: Challenge for SARS-CoV-2 Testing. Antibodies, 10(4), 50. https://doi.org/10.3390/antib10040050