A Comparison of Natural and Therapeutic Anti-IgE Antibodies
Abstract
:1. The Induction of IgE Responses
2. Two Major IgE Receptors FcεRI and FcεRII (CD23)
3. Anti-IgE Therapy with Omalizumab: Blocking FcεRI Function
4. Omalizumab: Still without Competition?
5. Natural Anti-IgE Autoantibodies: Friends or Foes?
6. Natural Anti-IgE Autoantibodies: Role of IgE Glycans
7. A Mechanistic Comparison of Natural and Therapeutic Anti-IgE Antibodies
8. Lessons from Anti-IgE on the Role of CD23 in Immunopathology
9. The Functional Effects of IgG-IgE Complexes: The Interesting Case of IgE Clone SPE-7
10. Therapeutic IgE Antibodies against Cancer: Considering Natural Anti-IgE
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colas, L.; Magnan, A.; Brouard, S. Immunoglobulin E response in health and disease beyond allergic disorders. Allergy 2022, 77, 1700–1718. [Google Scholar] [CrossRef] [PubMed]
- Burton, O.T.; Oettgen, H.C. Beyond immediate hypersensitivity: Evolving roles for IgE antibodies in immune homeostasis and allergic diseases. Immunol. Rev. 2012, 242, 128–143. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimmons, C.M.; Falcone, F.H.; Dunne, D.W. Helminth allergens, parasite-specific IgE, and its protective role in human immunity. Front. Immunol. 2014, 5, 61. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.; Starkl, P.; Marichal, T.; Galli, S.J. Testing the ‘toxin hypothesis of allergy’: Mast cells, IgE, and innate and acquired immune responses to venoms. Curr. Opin. Immunol. 2015, 36, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Singer, J.; Achatz-Straussberger, G.; Bentley-Lukschal, A.; Fazekas-Singer, J.; Achatz, G.; Karagiannis, S.N.; Jensen-Jarolim, E. AllergoOncology: High innate IgE levels are decisive for the survival of cancer-bearing mice. World Allergy Organ. J. 2019, 12, 100044. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Pritchard, D.I.; Falcone, F.H.; Mitchell, P.D. The evolution of IgE-mediated type I hypersensitivity and its immunological value. Allergy 2021, 76, 1024–1040. [Google Scholar] [CrossRef] [PubMed]
- Gould, H.J.; Sutton, B.J. IgE in allergy and asthma today. Nat. Rev. Immunol. 2008, 8, 205–217. [Google Scholar]
- Devereux, G. The increase in the prevalence of asthma and allergy: Food for thought. Nat. Rev. Immunol. 2006, 6, 869–874. [Google Scholar] [CrossRef]
- Saunders, S.P.; Ma, E.G.M.; Aranda, C.J.; Curotto de Lafaille, M.A. Non-classical B Cell Memory of Allergic IgE Responses. Front. Immunol. 2019, 10, 715. [Google Scholar] [CrossRef]
- Geha, R.S.; Jabara, H.H.; Brodeur, S.R. The regulation of immunoglobulin E class-switch recombination. Nat. Rev. Immunol. 2003, 3, 721–732. [Google Scholar] [CrossRef]
- Lafaille, J.J.; Curotto de Lafaille, M.A. IgE Antibodies: Generation and Function. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Wu, L.C.; Zarrin, A.A. The production and regulation of IgE by the immune system. Nat. Rev. Immunol. 2014, 14, 247–259. [Google Scholar] [CrossRef]
- Tong, P.; Wesemann, D.R. IgE Antibodies: Generation and Function; Springer: Berlin/Heidelberg, Germany, 2015; Volume 388, pp. 21–37. [Google Scholar]
- Ballesteros-Tato, A.; Randall, T.D.; Lund, F.E.; Spolski, R.; Leonard, W.J.; León, B. T Follicular Helper Cell Plasticity Shapes Pathogenic T Helper 2 Cell-Mediated Immunity to Inhaled House Dust Mite. Immunity 2016, 44, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chen, C.-L.; Yu, D.; Liu, Z. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy. Allergy 2021, 76, 456–470. [Google Scholar] [CrossRef]
- Shamji, M.H.; Valenta, R.; Jardetzky, T.; Verhasselt, V.; Durham, S.R.; Würtzen, P.A.; van Neerven, R.J. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy 2021, 76, 3627–3641. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.F.; Mohsen, M.O.; Kramer, M.F.; Heath, M.D. Vaccination against Allergy: A Paradigm Shift? Trends Mol. Med. 2020, 26, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Storni, F.; Vogel, M.; Bachmann, M.F.; Engeroff, P. IgG in the control of FcεRI activation: A battle on multiple fronts. Front. Immunol. 2024, 14, 1339171. [Google Scholar] [CrossRef]
- Shin, J.S.; Greer, A.M. The role of FcεRI expressed in dendritic cells and monocytes. Cell. Mol. Life Sci. 2015, 72, 2349–2360. [Google Scholar] [CrossRef]
- Bruhns, P.; Frémont, S.; Daëron, M. Regulation of allergy by Fc receptors. Curr. Opin. Immunol. 2005, 17, 662–669. [Google Scholar] [CrossRef]
- Kraft, S.; Kinet, J.P. New developments in FcεRI regulation, function and inhibition. Nat. Rev. Immunol. 2007, 7, 365–378. [Google Scholar] [CrossRef]
- MacGlashan, D. IgE receptor and signal transduction in mast cells and basophils. Curr. Opin. Immunol. 2008, 20, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Plattner, K.; Bachmann, M.F.; Vogel, M. On the complexity of IgE: The role of structural flexibility and glycosylation for binding its receptors. Front. Allergy 2023, 4, 1117611. [Google Scholar] [CrossRef] [PubMed]
- Shade, K.-T.; Conroy, M.E.; Anthony, R.M. IgE Glycosylation in Health and Disease. Curr. Top. Microbiol. Immunol. 2019, 423, 77–93. [Google Scholar] [PubMed]
- Arnold, J.N.; Radcliffe, C.M.; Wormald, M.R.; Royle, L.; Harvey, D.J.; Crispin, M.; Dwek, R.A.; Sim, R.B.; Rudd, P.M. The Glycosylation of Human Serum IgD and IgE and the Accessibility of Identified Oligomannose Structures for Interaction with Mannan-Binding Lectin. J. Immunol. 2004, 173, 6831–6840. [Google Scholar] [CrossRef] [PubMed]
- Shade, K.-T.C.; Platzer, B.; Washburn, N.; Mani, V.; Bartsch, Y.C.; Conroy, M.; Pagan, J.D.; Bosques, C.; Mempel, T.R.; Fiebiger, E.; et al. A single glycan on IgE is indispensable for initiation of anaphylaxis. J. Exp. Med. 2015, 212, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Shade, K.-T.C.; Conroy, M.E.; Washburn, N.; Kitaoka, M.; Huynh, D.J.; Laprise, E.; Patil, S.U.; Shreffler, W.G.; Anthony, R.M. Sialylation of immunoglobulin E is a determinant of allergic pathogenicity. Nature 2020, 582, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Keeble, A.H.; Hibbert, R.G.; Fabiane, S.; Gould, H.J.; McDonnell, J.M.; Beavil, A.J.; Sutton, B.J.; Dhaliwal, B. Ca2+-dependent structural changes in the B-cell receptor CD23 increase its affinity for human immunoglobulin E. J. Biol. Chem. 2013, 288, 21667–21677. [Google Scholar] [CrossRef]
- Sun, P.D. Human CD23: Is It a Lectin in Disguise? Structure 2006, 14, 950–951. [Google Scholar] [CrossRef] [PubMed]
- Jégouzo, S.A.F.; Feinberg, H.; Morrison, A.G.; Holder, A.; May, A.; Huang, Z.; Jiang, L.; Lasanajak, Y.; Smith, D.F.; Werling, D.; et al. CD23 is a glycan-binding receptor in some mammalian species. J. Biol. Chem. 2019, 294, 14845–14859. [Google Scholar] [CrossRef]
- Engeroff, P.; Vogel, M. The role of CD23 in the regulation of allergic responses. Allergy 2021, 76, 1981–1989. [Google Scholar] [CrossRef]
- Acharya, M.; Borland, G.; Edkins, A.L.; Maclellan, L.M.; Matheson, J.; Ozanne, B.W.; Cushley, W. CD23/FcεRII: Molecular multi-tasking. Clin. Exp. Immunol. 2010, 162, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Conrad, D.H.; Ford, J.W.; Sturgill, J.L.; Gibb, D.R. CD23: An overlooked regulator of allergic disease. Curr. Allergy Asthma Rep. 2007, 7, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Heyman, B. Antibodies as Natural Adjuvants BT. In Fc Receptors; Daeron, M., Nimmerjahn, F., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 201–219. [Google Scholar] [CrossRef]
- Eckl-Dorna, J.; Villazala-Merino, S.; Linhart, B.; Karaulov, A.V.; Zhernov, Y.; Khaitov, M.; Niederberger-Leppin, V.; Valenta, R. Allergen-specific antibodies regulate secondary allergen-specific immune responses. Front. Immunol. 2019, 9, 3131. [Google Scholar] [CrossRef] [PubMed]
- Holm, J.; Willumsen, N.; Würtzen, P.A.; Christensen, L.H.; Lund, K. Facilitated antigen presentation and its inhibition by blocking IgG antibodies depends on IgE repertoire complexity. J. Allergy Clin. Immunol. 2011, 127, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Villazala-Merino, S.; Rodriguez-Dominguez, A.; Stanek, V.; Campion, N.J.; Gattinger, P.; Hofer, G.; Froeschl, R.; Fae, I.; Lupinek, C.; Vrtala, S.; et al. Allergen-specific IgE levels and ability of IgE-allergen complexes to cross-link determine extent of CD23-mediated T cell activation. J. Allergy Clin. Immunol. 2019, 145, 958–967.e5. [Google Scholar] [CrossRef] [PubMed]
- Selb, R.; Eckl-Dorna, J.; Neunkirchner, A.; Schmetterer, K.; Marth, K.; Gamper, J.; Jahn-Schmid, B.; Pickl, W.F.; Valenta, R.; Niederberger, V. CD23 surface density on B cells is associated with IgE levels and determines IgE-facilitated allergen uptake, as well as activation of allergen-specific T cells. J. Allergy Clin. Immunol. 2015, 139, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Dahlin, J.S.; Xu, H.; Heyman, B. IgE-mediated enhancement of CD4+ T cell responses requires antigen presentation by CD8α− conventional dendritic cells. Sci. Rep. 2016, 6, 28290. [Google Scholar] [CrossRef] [PubMed]
- Engeroff, P.; Fellmann, M.; Yerly, D.; Bachmann, M.F.; Vogel, M. A novel recycling mechanism of native IgE-antigen complexes in human B cells facilitates transfer of antigen to dendritic cells for antigen presentation. J. Allergy Clin. Immunol. 2018, 142, 557–568. [Google Scholar] [CrossRef]
- Hjelm, F.; Karlsson, M.C.I.; Heyman, B. A novel B cell-mediated transport of IgE-immune complexes to the follicle of the spleen. J. Immunol. 2008, 180, 6604–6610. [Google Scholar] [CrossRef]
- Platzer, B.; Ruiter, F.; van der Mee, J.; Fiebiger, E. Soluble IgE receptors—Elements of the IgE network. Immunol. Lett. 2012, 141, 36–44. [Google Scholar] [CrossRef]
- Lemieux, G.A.; Blumenkron, F.; Yeung, N.; Zhou, P.; Williams, J.; Grammer, A.C.; Petrovich, R.; Lipsky, P.E.; Moss, M.L.; Werb, Z. The low affinity IgE receptor (CD23) is cleaved by the metalloproteinase ADAM10. J. Biol. Chem. 2007, 282, 14836–14844. [Google Scholar] [CrossRef]
- Moñino-Romero, S.; Lexmond, W.S.; Singer, J.; Bannert, C.; Amoah, A.S.; Yazdanbakhsh, M.; Boakye, D.A.; Jensen-Jarolim, E.; Fiebiger, E.; Szépfalusi, Z. Soluble FcɛRI: A biomarker for IgE-mediated diseases. Allergy 2019, 74, 1381–1384. [Google Scholar] [CrossRef] [PubMed]
- Bambouskova, M.; Polakovicova, I.; Halova, I.; Goel, G.; Draberova, L.; Bugajev, V.; Doan, A.; Utekal, P.; Gardet, A.; Xavier, R.J.; et al. New Regulatory Roles of Galectin-3 in High-Affinity IgE Receptor Signaling. Mol. Cell. Biol. 2016, 36, 1366–1382. [Google Scholar] [CrossRef] [PubMed]
- Niki, T.; Tsutsui, S.; Hirose, S.; Aradono, S.; Sugimoto, Y.; Takeshita, K.; Nishi, N.; Hirashima, M. Galectin-9 is a high affinity IgE-binding lectin with anti-allergic effect by blocking IgE-antigen complex formation. J. Biol. Chem. 2009, 284, 32344–32352. [Google Scholar] [CrossRef]
- Strunk, R.C.; Bloomberg, G.R. Omalizumab for Asthma. N. Engl. J. Med. 2006, 354, 2689–2695. [Google Scholar] [CrossRef]
- Lin, H.; Boesel, K.M.; Griffith, D.T.; Prussin, C.; Foster, B.; Romero, F.; Townley, R.; Casale, T.B. Omalizumab rapidly decreases nasal allergic response and FcεRI on basophils. J. Allergy Clin. Immunol. 2004, 113, 297–302. [Google Scholar] [CrossRef]
- Incorvaia, C.; Mauro, M.; Makri, E.; Leo, G.; Ridolo, E. Two decades with omalizumab: What we still have to learn. Biologics 2018, 12, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Pennington, L.F.; Tarchevskaya, S.; Brigger, D.; Sathiyamoorthy, K.; Graham, M.T.; Nadeau, K.C.; Eggel, A.; Jardetzky, T.S. Structural basis of omalizumab therapy and omalizumab-mediated IgE exchange. Nat. Commun. 2016, 7, 11610. [Google Scholar] [CrossRef] [PubMed]
- Eggel, A.; Baravalle, G.; Hobi, G.; Kim, B.; Buschor, P.; Forrer, P.; Shin, J.-S.; Vogel, M.; Stadler, B.M.; Dahinden, C.A.; et al. Accelerated dissociation of IgE-FcεRI complexes by disruptive inhibitors actively desensitizes allergic effector cells. J. Allergy Clin. Immunol. 2014, 133, 19–21. [Google Scholar] [CrossRef]
- Wu, Q.; Yuan, L.; Qiu, H.; Wang, X.; Huang, X.; Zheng, R.; Yang, Q. Efficacy and safety of omalizumab in chronic rhinosinusitis with nasal polyps: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2021, 11, e047344. [Google Scholar] [CrossRef]
- Gevaert, P.; Saenz, R.; Corren, J.; Han, J.K.; Mullol, J.; Lee, S.E.; Ow, R.A.; Zhao, R.; Howard, M.; Wong, K.; et al. Long-term efficacy and safety of omalizumab for nasal polyposis in an open-label extension study. J. Allergy Clin. Immunol. 2022, 149, 957–965.e3. [Google Scholar] [CrossRef]
- Ertas, R.; Ozyurt, K.; Atasoy, M.; Hawro, T.; Maurer, M. The clinical response to omalizumab in chronic spontaneous urticaria patients is linked to and predicted by IgE levels and their change. Allergy 2018, 73, 705–712. [Google Scholar] [CrossRef]
- Weller, K.; Ohanyan, T.; Hawro, T.; Ellrich, A.; Sussman, G.; Koplowitz, J.; Gimenez-Arnau, A.M.; Peveling-Oberhag, A.; Staubach, P.; Metz, M.; et al. Total IgE levels are linked to the response of chronic spontaneous urticaria patients to omalizumab. Allergy Eur. J. Allergy Clin. Immunol. 2018, 73, 2406–2408. [Google Scholar] [CrossRef]
- Mosnaim, G.; Casale, T.B.; Holden, M.; Trzaskoma, B.; Bernstein, J.A. Characteristics of patients with chronic spontaneous urticaria who are late-responders to omalizumab. J. Allergy Clin. Immunol. Pract. 2024; in press. [Google Scholar] [CrossRef]
- Wood, R.A.; Togias, A.; Sicherer, S.H.; Shreffler, W.G.; Kim, E.H.; Jones, S.M.; Leung, D.Y.; Vickery, B.P.; Bird, J.A.; Spergel, J.M.; et al. Omalizumab for the Treatment of Multiple Food Allergies. N. Engl. J. Med. 2024, 390, 889–899. [Google Scholar] [CrossRef]
- Casale, T.B.; Fiocchi, A.; Greenhawt, M. A practical guide for implementing omalizumab therapy for food allergy. J. Allergy Clin. Immunol. 2024, 153, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.; Togias, A.; Sicherer, S.; Shreffler, W.; Kim, E.; Jones, S.; Leung, D.; Vickery, B.; Bird, J.A.; Spergel, J.; et al. Omalizumab for the Treatment of Multiple Food Allergy (OUtMATCH). J. Allergy Clin. Immunol. 2024, 153, AB378. [Google Scholar] [CrossRef]
- Yu, K.K.; Crew, A.B.; Messingham, K.A.N.; Fairley, J.A.; Woodley, D.T. Omalizumab therapy for bullous pemphigoid. J. Am. Acad. Dermatol. 2014, 71, 468–474. [Google Scholar] [CrossRef]
- Sanjuan, M.A.; Sagar, D.; Kolbeck, R. Role of IgE in autoimmunity. J. Allergy Clin. Immunol. 2016, 137, 1651–1661. [Google Scholar] [CrossRef]
- Hasni, S.; Gupta, S.; Davis, M.; Poncio, E.; Temesgen-Oyelakin, Y.; Joyal, E.; Fike, A.; Manna, Z.; Auh, S.; Shi, Y.; et al. Safety and Tolerability of Omalizumab: A Randomized Clinical Trial of Humanized Anti-IgE Monoclonal Antibody in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, J.A.; Wood, R.A. Omalizumab as an adjuvant in food allergen immunotherapy. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 278–285. [Google Scholar] [CrossRef]
- Lin, C.; Lee, I.T.; Sampath, V.; Dinakar, C.; DeKruyff, R.H.; Schneider, L.C.; Nadeau, K.C. Combining anti-IgE with oral immunotherapy. Pediatr. Allergy Immunol. Off. Publ. Eur. Soc. Pediatr. Allergy Immunol. 2017, 28, 619–627. [Google Scholar] [CrossRef]
- Guilleminault, L.; Michelet, M.; Reber, L.L. Combining Anti-IgE Monoclonal Antibodies and Oral Immunotherapy for the Treatment of Food Allergy. Clin. Rev. Allergy Immunol. 2022, 62, 216–231. [Google Scholar] [CrossRef] [PubMed]
- Gasser, P.; Eggel, A. Targeting IgE in allergic disease. Curr. Opin. Immunol. 2018, 54, 86–92. [Google Scholar] [CrossRef]
- Guntern, P.; Eggel, A. Past, present, and future of anti-IgE biologics. Allergy 2020, 75, 2491–2502. [Google Scholar] [CrossRef] [PubMed]
- Landolina, N.; Levi-Schaffer, F. Monoclonal antibodies: The new magic bullets for allergy: IUPHAR Review 17. Br. J. Pharmacol. 2016, 173, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, W.; Yuan, H.; Li, Y.; Lv, Z.; Cui, Y.; Liu, J.; Ying, S. Current State of Monoclonal Antibody Therapy for Allergic Diseases. Engineering 2021, 7, 1552–1556. [Google Scholar] [CrossRef]
- Gauvreau, G.M.; Arm, J.P.; Boulet, L.P.; Leigh, R.; Cockcroft, D.W.; Davis, B.E.; Mayers, I.; FitzGerald, J.M.; Dahlen, B.; Killian, K.J.; et al. Efficacy and safety of multiple doses of QGE031 (ligelizumab) versus omalizumab and placebo in inhibiting allergen-induced early asthmatic responses. J. Allergy Clin. Immunol. 2016, 138, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Kuo, B.-S.; Li, C.-H.; Chen, J.-B.; Shiung, Y.-Y.; Chu, C.-Y.; Lee, C.-H.; Liu, Y.-J.; Kuo, J.-H.; Hsu, C.; Su, H.-W.; et al. IgE-neutralizing UB-221 mAb, distinct from omalizumab and ligelizumab, exhibits CD23-mediated IgE downregulation and relieves urticaria symptoms. J. Clin. Investig. 2023, 132, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Staubach, P.; Alvaro-Lozano, M.; Sekerel, B.E.; Maurer, M.; Ben-Shoshan, M.; Porter, M.; Hua, E.; Ji, Y.; Burciu, A.; Savelieva, M.; et al. Ligelizumab in adolescents with chronic spontaneous urticaria: Results of a dedicated phase 2b randomized clinical trial supported with pharmacometric analysis. Pediatr. Allergy Immunol. Off. Publ. Eur. Soc. Pediatr. Allergy Immunol. 2023, 34, e13982. [Google Scholar] [CrossRef]
- Maurer, M.; Giménez-Arnau, A.M.; Sussman, G.; Metz, M.; Baker, D.R.; Bauer, A.; Bernstein, J.A.; Brehler, R.; Chu, C.-Y.; Chung, W.-H.; et al. Ligelizumab for Chronic Spontaneous Urticaria. N. Engl. J. Med. 2019, 381, 1321–1332. [Google Scholar] [CrossRef]
- Maurer, M.; Ensina, L.F.; Gimenez-Arnau, A.M.; Sussman, G.; Hide, M.; Saini, S.; Grattan, C.; Fomina, D.; Rigopoulos, D.; Berard, F.; et al. Efficacy and safety of ligelizumab in adults and adolescents with chronic spontaneous urticaria: Results of two phase 3 randomised controlled trials. Lancet 2024, 403, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Gasser, P.; Tarchevskaya, S.S.; Guntern, P.; Brigger, D.; Ruppli, R.; Zbären, N.; Kleinboelting, S.; Heusser, C.; Jardetzky, T.S.; Eggel, A. The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat. Commun. 2020, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-B.; Ramadani, F.; Pang, M.O.Y.; Beavil, R.L.; Holdom, M.D.; Mitropoulou, A.N.; Beavil, A.J.; Gould, H.J.; Chang, T.W.; Sutton, B.J.; et al. Structural basis for selective inhibition of immunoglobulin E-receptor interactions by an anti-IgE antibody. Sci. Rep. 2018, 8, 11548. [Google Scholar] [CrossRef]
- Jensen-Jarolim, E.; Vogel, M.; de Weck, A.L.; Stadler, B.M. Anti-IgE autoantibodies mistaken for specific IgG. J. Allergy Clin. Immunol. 1992, 89, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; de Weck, A.L.; Stadler, B.M.; Müller, U. Anti-IgE autoantibodies and bee-sting allergy. Allergy 1995, 50, 119–125. [Google Scholar] [CrossRef]
- Millauer, N.; Zuercher, A.W.; Miescher, S.M.; Gerber, H.A.; Seitz, M.; Stadler, B.M. High IgE in rheumatoid arthritis (RA) patients is complexed with anti-IgE autoantibodies. Clin. Exp. Immunol. 1999, 115, 183–188. [Google Scholar] [CrossRef]
- Haba, S.; Nisonoff, A. Inhibition of IgE synthesis by anti-IgE: Role in long-term inhibition of IgE synthesis by neonatally administered soluble IgE. Proc. Natl. Acad. Sci. USA 1990, 87, 3363–3367. [Google Scholar] [CrossRef]
- Magnusson, C.G.M.; Johansson, S.G.O. Clinical Significance of Anti-IgE Autoantibodies and Immune Complexes Containing IgE. Clin. Rev. Allergy 1989, 7, 73–103. [Google Scholar] [CrossRef]
- Poto, R.; Quinti, I.; Marone, G.; Taglialatela, M.; de Paulis, A.; Casolaro, V.; Varricchi, G. IgG Autoantibodies Against IgE from Atopic Dermatitis Can Induce the Release of Cytokines and Proinflammatory Mediators from Basophils and Mast Cells. Front. Immunol. 2022, 13, 880412. [Google Scholar] [CrossRef]
- Sabroe, R.A.; Fiebiger, E.; Francis, D.M.; Maurer, D.; Seed, P.T.; Grattan, C.E.; Black, A.K.; Stingl, G.; Greaves, M.W.; Barr, R.M. Classification of anti-FcϵRI and anti-IgE autoantibodies in chronic idiopathic urticaria and correlation with disease severity. J. Allergy Clin. Immunol. 2002, 110, 492–499. [Google Scholar] [CrossRef]
- MacGlashan, D. Autoantibodies to IgE and FcεRI and the natural variability of spleen tyrosine kinase expression in basophils. J. Allergy Clin. Immunol. 2019, 143, 1100–1107.e11. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, C.; Karnam, A.; Dimitrov, J.D.; Chevailler, A.; Kaveri, S.V.; Bayry, J. Anti-IgE IgG autoantibodies isolated from therapeutic normal IgG intravenous immunoglobulin induce basophil activation. Cell. Mol. Immunol. 2020, 17, 426–429. [Google Scholar] [CrossRef]
- Chan, Y.-C.; Ramadani, F.; Santos, A.F.; Pillai, P.; Ohm-Laursen, L.; Harper, C.E.; Fang, C.; Dodev, T.S.; Wu, S.-Y.; Ying, S.; et al. “Auto-anti-IgE”: Naturally occurring IgG anti-IgE antibodies may inhibit allergen-induced basophil activation. J. Allergy Clin. Immunol. 2014, 134, 1394–1401.e4. [Google Scholar] [CrossRef] [PubMed]
- Izaki, S.; Toyoshima, S.; Endo, T.; Kanegae, K.; Nunomura, S.; Kashiwakura, J.-I.; Sasaki-Sakamoto, T.; Nakamura, R.; Akiyama, H.; Ra, C.; et al. Differentiation between control subjects and patients with chronic spontaneous urticaria based on the ability of anti-IgE autoantibodies (AAbs) to induce FcεRI crosslinking, as compared to anti-FcεRIα AAbs. Allergol. Int. Off. J. Jpn. Soc. Allergol. 2019, 68, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Poto, R.; Patella, V.; Criscuolo, G.; Marone, G.; Coscioni, E.; Varricchi, G. Autoantibodies to IgE can induce the release of proinflammatory and vasoactive mediators from human cardiac mast cells. Clin. Exp. Med. 2023, 23, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Haba, S.; Nisonoff, A. Effects of syngeneic anti-IgE antibodies on the development of IgE memory and on the secondary IgE response. J. Immunol. 1994, 152, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Bracken, S.J.; Adami, A.J.; Rafti, E.; Schramm, C.M.; Matson, A.P. Regulation of IgE activity in inhalational tolerance via formation of IgG anti-IgE/IgE immune complexes. Clin. Mol. Allergy 2018, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Engeroff, P.; Plattner, K.; Storni, F.; Thoms, F.; Boligan, K.F.; Muerner, L.; Eggel, A.; von Gunten, S.; Bachmann, M.F.; Vogel, M. Glycan-specific IgG anti-IgE autoantibodies are protective against allergic anaphylaxis in a murine model. J. Allergy Clin. Immunol. 2021, 147, 1430–1441. [Google Scholar] [CrossRef]
- Shakib, F.; Powell-Richards, A. Elucidation of the Epitope Locations of Human Autoanti-IgE: Recognition of Two Epitopes Located within the Cε2 and the Cε4 Domains. Int. Arch. Allergy Appl. Immunol. 2009, 95, 102–108. [Google Scholar] [CrossRef]
- Stadler, B.M.; Stämpfli, M.R.; Miescher, S.; Furukawa, K.; Vogel, M. Biological activities of anti-IgE antibodies. Int. Arch. Allergy Immunol. 1993, 102, 121–126. [Google Scholar] [CrossRef]
- Plattner, K.; Gharailoo, Z.; Zinkhan, S.; Engeroff, P.; Bachmann, M.F.; Vogel, M. IgE glycans promote anti-IgE IgG autoantibodies that facilitate IgE serum clearance via Fc Receptors. Front. Immunol. 2022, 13, 1069100. [Google Scholar] [CrossRef]
- Gharailoo, Z.; Plattner, K.; Augusto, G.; Engeroff, P.; Vogel, M.; Bachmann, M.F. Generation of a virus-like particles based vaccine against IgE. Allergy 2024. early view. [Google Scholar] [CrossRef]
- Jabs, F.; Plum, M.; Laursen, N.S.; Jensen, R.K.; Mølgaard, B.; Miehe, M.; Mandolesi, M.; Rauber, M.M.; Pfützner, W.; Jakob, T.; et al. Trapping IgE in a closed conformation by mimicking CD23 binding prevents and disrupts FcϵRI interaction. Nat. Commun. 2018, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Wurzburg, B.A.; Garman, S.C.; Jardetzky, T.S. Structure of the human IgE-Fc C epsilon 3-C epsilon 4 reveals conformational flexibility in the antibody effector domains. Immunity 2000, 13, 375–385. [Google Scholar] [CrossRef]
- Sondermann, P.; Pincetic, A.; Maamary, J.; Lammens, K.; Ravetch, J.V. General mechanism for modulating immunoglobulin effector function. Proc. Natl. Acad. Sci. USA 2013, 110, 9868–9872. [Google Scholar] [CrossRef] [PubMed]
- Plattner, K.; Augusto, G.; Muerner, L.; von Gunten, S.; Jörg, L.; Engeroff, P.; Bachmann, M.F.; Vogel, M. IgE glycosylation is essential for the function of omalizumab. Allergy 2023, 78, 2546–2549. [Google Scholar] [CrossRef]
- Balbino, B.; Herviou, P.; Godon, O.; Stackowicz, J.; Goff, O.R.-L.; Iannascoli, B.; Sterlin, D.; Brûlé, S.; Millot, G.A.; Harris, F.M.; et al. The anti-IgE mAb omalizumab induces adverse reactions by engaging Fcγ receptors. J. Clin. Investig. 2020, 130, 1330–1335. [Google Scholar] [CrossRef]
- Palaniyandi, S.; Liu, X.; Periasamy, S.; Ma, A.; Tang, J.; Jenkins, M.; Tuo, W.; Song, W.; Keegan, A.D.; Conrad, D.H.; et al. Inhibition of CD23-mediated IgE transcytosis suppresses the initiation and development of allergic airway inflammation. Mucosal Immunol. 2015, 8, 1262–1274. [Google Scholar] [CrossRef] [PubMed]
- Coyle, A.J.; Wagner, K.; Bertrand, C.; Tsuyuki, S.; Bews, J.; Heusser, C. Central role of immunoglobulin (Ig) E in the induction of lung eosinophil infiltration and T helper 2 cell cytokine production: Inhibition by a non-anaphylactogenic anti-IgE antibody. J. Exp. Med. 1996, 183, 1303–1310. [Google Scholar] [CrossRef]
- Haczku, A.; Takeda, K.; Hamelmann, E.; Oshiba, A.; Loader, J.; Joetham, A.; Irvin, C.; Kikutani, H.; Gelfand, E.W. CD23 Deficient Mice Develop Allergic Airway Hyperresponsiveness Following Sensitization with Ovalbumin. Am. J. Respir. Crit. Care Med. 1997, 156, 1945–1955. [Google Scholar] [CrossRef]
- Cernadas, M.; De Sanctis, G.T.; Krinzman, S.J.; Mark, D.A.; Donovan, C.E.; Listman, J.A.; Kobzik, L.; Kikutani, H.; Christiani, D.C.; Perkins, D.L.; et al. CD23 and Allergic Pulmonary Inflammation: Potential Role as an Inhibitor. Am. J. Respir. Cell Mol. Biol. 1999, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.A.; Gigliotti, N.M.; Matangkasombut, P.; Gauld, S.B.; Cambier, J.C.; Rosenwasser, L.J. CD23-mediated cell signaling in human B cells differs from signaling in cells of the monocytic lineage. Clin. Immunol. 2010, 137, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Salim, S.; Bourgeois, J.; Di Leo, V.; Irvine, E.J.; Marshall, J.K.; Perdue, M.H. CD23-Mediated IgE Transport Across Human Intestinal Epithelium: Inhibition by Blocking Sites of Translation or Binding. Gastroenterology 2005, 129, 928–940. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chehade, M.; Liu, W.; Xiong, H.; Mayer, L.; Berin, M.C. Allergen-IgE Complexes Trigger CD23-Dependent CCL20 Release from Human Intestinal Epithelial Cells. Gastroenterology 2007, 133, 1905–1915. [Google Scholar] [CrossRef] [PubMed]
- Palaniyandi, S.; Tomei, E.; Li, Z.; Conrad, D.H.; Zhu, X. CD23-dependent transcytosis of IgE and immune complex across the polarized human respiratory epithelial cells. J. Immunol. 2011, 186, 3484–3496. [Google Scholar] [CrossRef] [PubMed]
- Hakonarson, H.; Carter, C.; Kim, C.; Grunstein, M.M. Altered expression and action of the low-affinity IgE receptor FcϵRII (CD23) in asthmatic airway smooth muscle. J. Allergy Clin. Immunol. 1999, 104, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Goller, M.; Kneitz, C.; Mehringer, C.; Müller, K.; Jelley-Gibbs, D.M.; Gosselin, E.J.; Wilhelm, M.; Tony, H.-P. Regulation of CD23 isoforms on B-chronic lymphocytic leukemia. Leuk. Res. 2002, 26, 795–802. [Google Scholar] [CrossRef]
- Yokota, A.; Yukawa, K.; Yamamoto, A.; Sugiyama, K.; Suemura, M.; Tashiro, Y.; Kishimoto, T.; Kikutani, H. Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: Identification of the critical cytoplasmic domains. Proc. Natl. Acad. Sci. USA 1992, 89, 5030–5034. [Google Scholar] [CrossRef]
- Onguru, D.; Liang, Y.; Elliot, J.; Mwinzi, P.; Ganley-Leal, L. CD23b isoform expression in human schistosomiasis identifies a novel subset of activated B cells. Infect. Immun. 2011, 79, 3770–3777. [Google Scholar] [CrossRef]
- Gosset, P.; Tillie-Leblond, I.; Oudin, S.; Parmentier, O.; Wallaert, B.; Joseph, M.; Tonnel, A.B. Production of chemokines and proinflammatory and antiinflammatory cytokines by human alveolar macrophages activated by IgE receptors. J. Allergy Clin. Immunol. 1999, 103, 289–297. [Google Scholar] [CrossRef]
- Plater-Zyberk, C.; Bonnefoy, J.Y. Marked amelioration of established collagen-induced arthritis by treatment with antibodies to CD23 in vivo. Nat. Med. 1995, 1, 781–785. [Google Scholar] [CrossRef]
- Yokota, A.; Kikutani, H.; Tanaka, T.; Sato, R.; Barsumian, E.L.; Suemura, M.; Kishimoto, T. Two species of human Fc epsilon receptor II (Fc epsilon RII/CD23): Tissue-specific and IL-4-specific regulation of gene expression. Cell 1988, 55, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Sypka, M.; Zwicker, M.; Lagache, S.B.; Uldry, A.; Vogel, M.; Engeroff, P. Mouse IgE clone SPE-7 can contain functional mouse IgG. Allergy 2024. early view. [Google Scholar] [CrossRef]
- Kitaura, J.; Song, J.; Tsai, M.; Asai, K.; Maeda-Yamamoto, M.; Mocsai, A.; Kawakami, Y.; Liu, F.-T.; Lowell, C.A.; Barisas, B.G.; et al. Evidence that IgE molecules mediate a spectrum of effects on mast cell survival and activation via aggregation of the FcεRI. Proc. Natl. Acad. Sci. USA 2003, 100, 12911–12916. [Google Scholar] [CrossRef]
- Kawakami, T.; Galli, S.J. Regulation of mast-cell and basophil function and survival by IgE. Nat. Rev. Immunol. 2002, 2, 773–786. [Google Scholar] [CrossRef]
- Bax, H.J.; Keeble, A.H.; Gould, H.J. Cytokinergic IgE action in mast cell activation. Front. Immunol. 2012, 3, 229. [Google Scholar] [CrossRef]
- Kawakami, T.; Kitaura, J. Mast cell survival and activation by IgE in the absence of antigen: A consideration of the biologic mechanisms and relevance. J. Immunol. 2005, 175, 4167–4173. [Google Scholar] [CrossRef] [PubMed]
- Mancardi, D.A.; Iannascoli, B.; Hoos, S.; England, P.; Daëron, M.; Bruhns, P. FcgammaRIV is a mouse IgE receptor that resembles macrophage FcepsilonRI in humans and promotes IgE-induced lung inflammation. J. Clin. Investig. 2008, 118, 3738–3750. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Davis, R.S.; Fine, W.D.; Nakamura, S.; Shimizu, K.; Yagi, H.; Kato, K.; Stephan, R.P.; Cooper, M.D. IgEb immune complexes activate macrophages through FcγRIV binding. Nat. Immunol. 2007, 8, 762–771. [Google Scholar] [CrossRef]
- Karagiannis, S.N.; Josephs, D.H.; Karagiannis, P.; Gilbert, A.E.; Saul, L.; Rudman, S.M.; Dodev, T.; Koers, A.; Blower, P.J.; Corrigan, C.; et al. Recombinant IgE antibodies for passive immunotherapy of solid tumours: From concept towards clinical application. Cancer Immunol. Immunother. 2012, 61, 1547–1564. [Google Scholar] [CrossRef]
- Karagiannis, S.N.; Josephs, D.H.; Bax, H.J.; Spicer, J.F. Therapeutic IgE Antibodies: Harnessing a Macrophage-Mediated Immune Surveillance Mechanism against Cancer. Cancer Res. 2017, 77, 2779–2783. [Google Scholar] [CrossRef] [PubMed]
- Pellizzari, G.; Martinez, O.; Crescioli, S.; Page, R.; Di Meo, A.; Mele, S.; Chiaruttini, G.; Hoinka, J.; Batruch, I.; Prassas, I.; et al. Immunotherapy using IgE or CAR T cells for cancers expressing the tumor antigen SLC3A2. J. Immunother. Cancer 2021, 9, e002140. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.; Grandits, M.; Palhares, L.C.G.F.; Mele, S.; Nakamura, M.; López-Abente, J.; Crescioli, S.; Laddach, R.; Romero-Clavijo, P.; Cheung, A.; et al. Anti-cancer pro-inflammatory effects of an IgE antibody targeting the melanoma-associated antigen chondroitin sulfate proteoglycan 4. Nat. Commun. 2023, 14, 2192. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.; McCraw, A.J.; Nakamura, M.; Osborn, G.; Sow, H.S.; Cox, V.F.; Stavraka, C.; Josephs, D.H.; Spicer, J.F.; Karagiannis, S.N.; et al. IgE Antibodies against Cancer: Efficacy and Safety. Antibodies 2020, 9, 55. [Google Scholar] [CrossRef] [PubMed]
Omalizumab | Ligelizumab | UB-221 | Natural Anti-IgE | |
---|---|---|---|---|
Clonality | Monoclonal | Monoclonal | Monoclonal | Polyclonal |
In vivo FcεRI interaction | Inhibition | Inhibition | Inhibition | Inhibition |
In vitro FcεRI interaction | Inhibition | Inhibition | Inhibition | Inhibition/activation |
CD23 interaction | Inhibition | Partial Inhibition | Promotes binding | Promote binding |
IgE-glycan-dependent | Yes | ? | ? | Mostly yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogel, M.; Engeroff, P. A Comparison of Natural and Therapeutic Anti-IgE Antibodies. Antibodies 2024, 13, 58. https://doi.org/10.3390/antib13030058
Vogel M, Engeroff P. A Comparison of Natural and Therapeutic Anti-IgE Antibodies. Antibodies. 2024; 13(3):58. https://doi.org/10.3390/antib13030058
Chicago/Turabian StyleVogel, Monique, and Paul Engeroff. 2024. "A Comparison of Natural and Therapeutic Anti-IgE Antibodies" Antibodies 13, no. 3: 58. https://doi.org/10.3390/antib13030058
APA StyleVogel, M., & Engeroff, P. (2024). A Comparison of Natural and Therapeutic Anti-IgE Antibodies. Antibodies, 13(3), 58. https://doi.org/10.3390/antib13030058