The Quantum Cosmological Constant
Abstract
:1. Introduction
2. A Plebanski Formulation for Our Poposal
3. The Underlying Duality
4. Three Cases for the Realization of the Theory
- Case I: is a function of space and time.Varying by we find an equation for :Plugging this back into the action, we findThis gives an interesting set of equations, the question is whether they are consistent. Further study of this case is left to a future publication.
- Case II: is a function of time on some preferred slicing.We fix an explicit slicing such as constant mean curvature slicing. This gives a time coordinate t. We also define Chern–Simons time by an integral over this slicing, leading to . We fix Λ to be a function of the slicing.Varying by we find an equation for :Plugging this back into the action, we findThis is similar to the theory described by the authors of [6], only rather than being conjugate to Newton’s constant, G, it appears the cosmological constant is conjugate to the Chern–Simons time in the preferred slicing.The equation of motion (18) becomes nonlocalThis theory is also under investigation.We can check the homogeneous solutions, with (note that the covariant curl of (18) vanishes because the torsion is (20))It is an important open question whether there are nontrivial solutions where varies, with matter or non-zero Weyl tensor, which are not equivalent to deSitter space-time.
- Case III: Λ is one variable over all of space-time [2].Varying by Λ we find an equation for Λ:Plugging this back into the action, we find
5. The Basis for a Hamiltonian Treatment
6. Towards a Quantum Theory
7. Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smolin, L.; Soo, C. The Chern–Simons Invariant as the Natural Time Variable for Classical and Quantum Cosmology. Nucl. Phys. B 1995, 449, 289–314. [Google Scholar] [CrossRef]
- Kaloper, N.; Padilla, A. Sequestering the Standard Model Vacuum Energy. Phys. Rev. Lett. 2014, 112, 091304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaloper, N.; Padilla, A. Vacuum Energy Sequestering: The Framework and Its Cosmological Consequences. Phys. Rev. D 2014, 90, 084023. [Google Scholar] [CrossRef]
- Buchalter, A. On the time variation of c, G, and h and the dynamics of the cosmic expansion. arXiv 2004, arXiv:astro-ph/0403202. [Google Scholar]
- Sola, J.; Gomez-Valent, A.; de Cruz Perez, J. Hints of dynamical vacuum energy in the expanding Universe. arXiv 2015, arXiv:1506.05793. [Google Scholar] [CrossRef]
- Smolin, L. Dynamics of the cosmological and Newton’s constant. arXiv 2015, arXiv:1507.01229. [Google Scholar] [CrossRef]
- Ashtekar, A. New variables for classical and quantum gravity? Phys. Rev. Lett. 1986, 57, 2244–2247. [Google Scholar] [CrossRef]
- Vidotto, F.; Rovelli, C. Covariant Loop Quantum Gravity; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Terazawa, H. Cosmological origin of mass scales. Phys. Lett. B 1981, 101, 43. [Google Scholar] [CrossRef]
- Henneaux, M.; Teitelboim, C. The Cosmological Constant and General Covariance. Phys. Lett. B 1989, 222, 195–199. [Google Scholar] [CrossRef]
- Sorkin, R.D. On the Role of Time in the Sum Over Histories Framework for Gravity. Int. J. Theor. Phys. 1994, 33, 523. [Google Scholar] [CrossRef]
- Smolin, L. Quantum gravity with a positive cosmological constant. arXiv 2002, arXiv:hep-th/0209079. [Google Scholar]
- Kodama, H. olomorphic Wave Function Of The Universe. Phys. Rev. D 1990, 42, 2548. [Google Scholar] [CrossRef] [PubMed]
- Witten, E. A note on the Chern–Simons and Kodama wavefunctions. arXiv 2003, arXiv:gr-qc/0306083. [Google Scholar]
- Ashtekar, A.; Balachandran, A.P.; Jo, S. The Cp Problem in Quantum Gravity. Int. J. Mod. Phys. A 1989, 4, 1493. [Google Scholar] [CrossRef]
- Alexander, S. A Quantum gravitational relaxation of the cosmological constant. Phys. Lett. B 2005, 629, 53–59. [Google Scholar] [CrossRef]
- Alexander, S.H.S.; Calcagni, G. Quantum gravity as a Fermi liquid. Found. Phys. 2008, 38, 1148. [Google Scholar] [CrossRef]
- Alexander, S.H.S.; Calcagni, G. Superconducting loop quantum gravity and the cosmological constant. Phys. Lett. B 2009, 672, 386. [Google Scholar] [CrossRef]
- Samuel, J. A Lagrangian basis for Ashtekar’s reformulation of canonical gravity. Pramana-J. Phys. 1987, 28, L429. [Google Scholar] [CrossRef]
- Jacobson, T.; Smolin, L. The left-handed spin connection as a variable for canonical gravity. Phys. Lett. B 1987, 196, 39. [Google Scholar] [CrossRef]
- Alexander, S.; Marciano, A.; Smolin, L. Gravitational origin of the weak interaction’s chirality. Phys. Rev. D 2014, 89, 065017. [Google Scholar] [CrossRef]
- Plebanski, J.F. On the separation of einsteinian substructures. J. Math. Phys. 1977, 18, 2511. [Google Scholar] [CrossRef]
- Capovilla, R.; Dell, J.; Jacobson, T. General relativity without the metric. Phys. Rev. Lett. 1989, 21, 2325. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.H.S.; Peskin, M.E.; Sheikh-Jabbari, M.M. Leptogenesis from gravity waves in models of inflation. Phys. Rev. Lett. 2006, 96, 081301. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.; Yunes, N. Chern–Simons Modified General Relativity. Phys. Rept. 2009, 480, 1. [Google Scholar] [CrossRef]
- Alexander, S.; Jenks, L. Chiral Gravitational Waves and the Cosmologcal Constant. arXiv 2011, arXiv:1106.4511. [Google Scholar]
- Alexander, S.; Cortês, M.; Liddle, A.R.; Magueijo, J.; Sims, R.; Smolin, L. A Zero-Parameter Extension of General Relativity with Varying Cosmological Constant. arXiv 2019, arXiv:1905.10380. [Google Scholar]
- Alexander, S.; Cortês, M.; Liddle, A.R.; Magueijo, J.; Sims, R.; Smolin, L. The cosmology of minimal varying Lambda theories. arXiv 2019, arXiv:1905.10382. [Google Scholar]
- Magueijo, J.; Zlosnik, T. Parity violating Friedmann Universes. arXiv 2019, arXiv:1908.05184. [Google Scholar]
- Magueijo, J.; Zlosnik, T. Pontryagin Universes. 2019. in preparation. [Google Scholar]
- Smolin, L. Dynamics of the cosmological and Newton’s constant. Class. Quant. Grav. 2016, 33, 025011. [Google Scholar] [CrossRef]
- Barrow, J.D.; Magueijo, J. Do we live in an eigenstate of the fundamental constants operators? Phys. Rev. D 2019, 99, 023509. [Google Scholar] [CrossRef] [Green Version]
- Magueijo, J.; Smolin, L. A universe that doesn’t know the time. arXiv 2018, arXiv:1807.01520. [Google Scholar]
- Arraut, I. The Astrophysical Scales Set by the Cosmological Constant, Black-Hole Thermodynamics and Non-Linear Massive Gravity. Universe 2017, 3, 45. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexander, S.; Magueijo, J.; Smolin, L. The Quantum Cosmological Constant. Symmetry 2019, 11, 1130. https://doi.org/10.3390/sym11091130
Alexander S, Magueijo J, Smolin L. The Quantum Cosmological Constant. Symmetry. 2019; 11(9):1130. https://doi.org/10.3390/sym11091130
Chicago/Turabian StyleAlexander, Stephon, Joao Magueijo, and Lee Smolin. 2019. "The Quantum Cosmological Constant" Symmetry 11, no. 9: 1130. https://doi.org/10.3390/sym11091130
APA StyleAlexander, S., Magueijo, J., & Smolin, L. (2019). The Quantum Cosmological Constant. Symmetry, 11(9), 1130. https://doi.org/10.3390/sym11091130