Chiral Symmetry Breaking in Liquid Crystals: Appearance of Ferroelectricity and Antiferroelectricity
Abstract
:1. Introduction: Liquid Crystals
2. Introduction of Chiral Symmetry Breaking to Liquid Crystals and the Appearance of Ferroelectricity in Liquid Crystals
3. Discovery of Antiferroelectricity in Liquid Crystals
4. Frustration of Ferroelectric and Antiferroelectric Phases; Successive Phase Transition to Several Subphases between Two Phases
5. Resonant X-ray Scattering and the Determination of Molecular Arrangement of Subphases
6. Brief Summary: My Future Plan and Expectations for Applications
Funding
Acknowledgments
Conflicts of Interest
References
- Känzig, W. Ferroelectrics and antiferroeletrics. Solid State Phys. 1957, 4, 1–197. [Google Scholar]
- Meyer, R.B.; Liebert, L.; Strzelecki, L.; Keller, P. Ferroelectric liquid crystals. J. Phys. 1975, 36, L69–L71. [Google Scholar] [CrossRef]
- Meyer, R.B. Ferroelectric liquid crystals; a review. Mol. Cryst. Liq. Cryst. 1977, 40, 33–48. [Google Scholar] [CrossRef]
- Clark, N.A.; Lagerwall, S.T. Submicrosecond bistable electro-optic switching in liquid crystals. Appl. Phys. Lett. 1980, 36, 899–901. [Google Scholar] [CrossRef]
- FLC Displays with the Size of 15inch were Commercialized by Canon in 1993; Canon: Tokyo, Japan, 1993.
- Chandani, A.D.L.; Gorecka, E.; Ouchi, Y.; Takezoe, H.; Fukuda, A. Antiferroelectric chiral smectic phases responsible for the tristable switching in MHPOBC. Jpn. J. Appl. Phys. 1989, 28, L1265–L1268. [Google Scholar] [CrossRef]
- Hiji, N.; Chandani, A.D.L.; Nishiyama, S.; Ouchi, Y.; Takezoe, H.; Fukuda, A. Layer structure and electro-optic properties in surface stabilized ferroelectric liquid crystal cells. Ferroelectrics 1988, 85, 99. [Google Scholar] [CrossRef]
- Chandani, A.D.L.; Hagiwara, T.; Suzuki, Y.; Ouchi, Y.; Takezoe, H.; Fukuda, A. Tristable switching in surface stabilized ferroelectric liquid crystals with a large spntaneous polarization. Jpn. J. Appl. Phys. 1988, 27, L729. [Google Scholar] [CrossRef]
- Takanishi, Y.; Takezoe, H.; Fukuda, A.; Komura, H.; Watanabe, J. Simple method for confirming the antiferroelectric structure of smectic liquid crystals. J. Mater. Chem. 1992, 2, 71–73. [Google Scholar] [CrossRef]
- Harris, W.F. The dispiration: a distinct new crystal defect of the Weingarten-Volterra type. Philos. Mag. 1970, 22, 949. [Google Scholar] [CrossRef]
- Takanishi, Y.; Takezoe, H.; Fukuda, A.; Watanabe, J. Visual observation of dispirations in liquid crystals. Phys. Rev. B 1992, 45, 7684–7689. [Google Scholar] [CrossRef]
- Fukui, M.; Orihara, H.; Yamada, Y.; Yamamoto, N.; Ishibashi, Y. New phases in the ferroelectric liquid crystal MHPOBC studied by differential scanning calorimetry. Jpn. J. Appl. Phys. 1989, 28, L849. [Google Scholar] [CrossRef]
- Takezoe, H.; Lee, J.; Chandani, A.D.L.; Gorecka, E.; Ouchi, Y.; Fukuda, A.; Terashima, K.; Furukawa, K. Antiferroelectric phase and tristable-switching in MHPOBC. Ferroelectrics 1991, 114, 187–197. [Google Scholar] [CrossRef]
- Chandani, A.D.L.; Ouchi, Y.; Takezoe, H.; Fukuda, A.; Terashima, K.; Furukawa, K.; Kishi, A. Novel phases exhibiting tristable switching. Jpn. J. Appl. Phys. 1989, 28, L1261–L1264. [Google Scholar] [CrossRef]
- Lee, J.; Chandani, A.D.L.; Itoh, K.; Takezoe, Y.O.H.; Fukuda, A. Frequency-dependent switching behavior under triangular waves in antiferroelectric and ferroelectric chiral smectic phases. Jpn. J. Appl. Phys. 1990, 29, 1122. [Google Scholar] [CrossRef]
- Gorecka, E.; Chandani, A.D.L.; Ouchi, Y.; Takezoe, H.; Fukuda, A. Molecular orientational structures in ferroelectric, ferrielectric and antiferroelectric smectic liquid crystal phases as studied by conoscope observation. Jpn. J. Appl. Phys. 1990, 29, 131. [Google Scholar] [CrossRef]
- Miyachi, K.; Kabe, M.; Ishikawa, K.; Takezoe, H.; Eukuda, A. Fluctuations in the ferrielectric smectic-Cγ* phase as observed by laser beam diffraction and photon correlation spectroscopy. Ferroelectrics 1993, 147, 147. [Google Scholar] [CrossRef]
- Isozaki, T.; Fujikawa, T.; Takezoe, H.; Fukuda, A.; Hagiwara, T.; Suzuki, Y.; Kawamura, I. Competition between ferroelectric and antiferroelectric interactions stabilizing varieties of phases in binary mixtures of smectic liquid crystals. Japanese journal of applied physics. Jpn. J. Appl. Phys. 1992, 31, L1435. [Google Scholar] [CrossRef]
- Isozaki, T.; Fujikawa, T.; Takezoe, H.; Fukuda, A.; Hagiwara, T.; Suzuki, Y.; Kawamura, I. Devil’s staircase formed by competing interactions stabilizing the ferroelectric smectic-C* phase and the antiferroelectric smectic-C A* phase in liquid crystalline binary mixtures. Phys. Rev. B 1993, 48, 13439. [Google Scholar] [CrossRef]
- Isozaki, T.; Takezoe, H.; Fukuda, A.; Suzuki, Y.; Kawamura, I.J. Devil’s staircase and racemization in antiferroelectric liquid crystals. Muter. Chem. 1994, 4, 237–343. [Google Scholar] [CrossRef]
- Hiraoka, K.; Taguchi, A.; Ouchi, Y.; Takezoe, H.; Fukuda, A. Observation of three subphases in smectic C* of MHPOBC by dielectric measurements. Jpn. J. Appl. Phys. 1990, 29, L103. [Google Scholar] [CrossRef]
- Isozaki, T.; Suzuki, Y.; Kawamura, I.; Mori, K.; Yamamoto, N.; Yamada, Y.; Orihara, H.; Ishibashi, Y. Successive phase transitions in antiferroelectric liquid crystal 4-(1-methylheptyloxycarbonyl) phenyl 4’-octylcarbonyloxybiphenyl-4-carboxylate (MHPOCBC). Jpn. J. Appl. Phys. 1991, 30, L1573. [Google Scholar] [CrossRef]
- Ema, K.; Yao, H.; Kawamura, I.; Chan, T.; Garland, C.W. High-resolution calorimetric study of the antiferroelectric liquid crystals methylheptyloxycarbonylphenyl octyloxybiphenyl carboxylate and its octylcarbonylbiphenyl analog. Phys. Rev. E 1993, 47, 1203. [Google Scholar] [CrossRef] [PubMed]
- Asahina, S.; Sorai, M.; Fukuda, A.; Takezoe, H.; Furukawa, K.; Terashima, K.; Suzuki, Y.; Kawamura, I. Heat capacities and phase transitions of the antiferroelectric liquid crystals MHPOBC and MHPOCBC. Liq. Cryst. 1997, 23, 339–348. [Google Scholar] [CrossRef]
- Fukuda, A.; Takanishi, Y.; Isozaki, T.; Ishikawa, K.; Takezoe, H. Antiferroelectric chiral smectic liquid crystals. J. Mater. Chem. 1994, 4, 997–1016. [Google Scholar] [CrossRef]
- Okabe, N.; Suzuki, Y.; Kawamura, I.; Isozaki, T.; Takezoe, H.; Fukuda, A. Reentrant antiferroelectric phase in 4-(1-methylheptyloxycarbnyl) phenyl 4’-octylbiphenyl-4-carboxylate. Jpn. J. Appl. Phys. 1992, 31, L793–L796. [Google Scholar] [CrossRef]
- Mach, P.; Pindak, R.; Levelut, A.-M.; Barois, P.; Nguyen, H.T.; Huang, C.C.; Furenlid, L. Structural characterization of various chiral smectic-C phases by resonant X-ray scattering. Phys. Rev. Lett. 1998, 81, 1015–1018. [Google Scholar] [CrossRef]
- Hirst, L.S.; Watson, S.T.; Gleeson, H.F.; Cluzeau, P.; Barois, P.; Pindak, R.; Pitney, J.; Cady, A.; Johnson, P.M.; Huang, C.C. Interlayer structure of the chiral smectic liquid crystal phases revealed by resonant x-ray scattering. Phys. Rev. E 2002, 65, 041705. [Google Scholar] [CrossRef]
- Matkin, L.S.; Watson, S.T.; Gleeson, H.F.; Pindak, R.; Pitney, J.; Johnson, P.M.; Huang, C.C.; Barois, P.; Levelut, A.M.; Srajer, G. Resonant X-ray scattering study of the antiferroelectric and ferroelectric phases in liquid crystal devices. Phys. Rev. E 2001, 64, 021705. [Google Scholar] [CrossRef]
- Brimicombe, P.D.; Roberts, N.W.; Jaradat, S.; Southern, C.; Wang, S.-T.; Huang, C.-C.; DiMasi, E.; Pindak, R.; Gleeson, H.F. Deduction of the temperature-dependent structure of the four-layer intermediate smectic phase using resonant X-ray scattering. Eur. Phys. J. E 2007, 23, 281. [Google Scholar] [CrossRef]
- Roberts, N.W.; Jaradat, S.; Hirst, L.S.; Thurlow, M.S.; Wang, Y.; Wang, S.T.; Liu, Z.Q.; Huang, C.C.; Bai, J.; Pindak, R. Biaxiality and temperature dependence of 3- and 4-layer intermediate smectic–phase structures as revealed by resonant X-ray scattering. Europhys. Lett. 2005, 76, 976. [Google Scholar] [CrossRef]
- Levelut, A.M.; Pansu, B. Tensorial X-ray structure factor in smectic liquid crystals. Phys. Rev. E 1999, 60, 6803–6815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takanishi, Y.; Nishiyama, I.; Yamamoto, J.; Ohtsuka, Y.; Iida, A. Remarkable effect of a lateral substituent on the molecular ordering of chiral liquid crystal phases: A novel bromo-containing dichiral compound showing SmC* variants. J. Mater. Chem. 2011, 21, 4465–4469. [Google Scholar] [CrossRef]
- Takanishi, Y.; Nishiyama, I.; Yamamoto, J.; Ohtsuka, Y.; Iida, A. Smectic-C* liquid crystals with six-layer periodicity appearing between the ferroelectric and antiferroelectric chiral smectic phases. Phys. Rev. E 2013, 87, 050503. [Google Scholar] [CrossRef] [PubMed]
- Osipov, M.A.; Gorkunov, M.V. Model-independent structure and resonant X-ray spectra of intermediate smectic phases. Liq. Cryst. 2006, 33, 1133–1141. [Google Scholar] [CrossRef]
- Emelyanenko, A.V.; Ishikawa, K. Smooth transitions between biaxial intermediate smectic phases. Soft Matter 2013, 9, 3497–3508. [Google Scholar] [CrossRef]
- Wang, S.; Pan, L.D.; Pindak, R.; Liu, Z.Q.; Nguyen, H.T.; Huang, C.C. Discovery of a novel smectic-C* liquid-crystal phase with six-layer periodicity. Phys. Rev. Lett. 2010, 104, 027801. [Google Scholar] [CrossRef]
- Feng, Z.; Perera, A.D.L.C.; Fukuda, A.; Vij, J.K.; Iida, K.I.A.; Takanishi, Y. Definite existence of suphases with eight- and ten-layer unit cells as studied by complementary methods, electric-field-induced birefringence and microbeam resonant X-ray scattering. Phys. Rev. E 2017, 96, 012701. [Google Scholar] [CrossRef] [Green Version]
- Emelyanenko, A.V.; Osipov, M.A. Theoretical model for the discrete flexoelectric effect and a description for the sequence of intermediate smectic phases with increasing periodicity. Phys. Rev. E 2003, 68, 051703. [Google Scholar] [CrossRef]
- Takanishi, Y.; Iida, A.; Yadav, N.; Perera, A.D.L.C.; Fukuda, A.; Osipov, M.A.; Vij, J.K. Unexpected electric-field-induced antiferroelectric liquid crystal phase in the SmCα* temperature range and the discrete flexoelectric effect. Phys. Rev. E 2019, 100, 010701. [Google Scholar] [CrossRef] [Green Version]
- Virgili, J.M.; Tao, Y.; Kortright, J.B.; Balsara, N.P.; Segalman, R.A. Analysis of order formation in block copolymer thin films using resonant soft X-ray scattering. Macromolecules 2007, 40, 2092–2099. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Wang, C.; Young, A.; Liu, F.; Gunkel, I.; Chen, D.; Walba, D.; Maclennan, J.; Clark, N.; Hexemer, A. Probing and controlling liquid crystal helical nanofilaments. Nano Lett. 2015, 15, 3420–3424. [Google Scholar] [CrossRef] [PubMed]
- Salamonczyk, M.; Vaupotič, N.; Pociecha, D.; Wang, C.; Zhu, C.; Gorecka, E. Structure of nanoscale-pitch helical phases: blue phase and twist-bend nematic phase resolved by resonant soft X-ray scattering. Soft Matter 2017, 13, 6694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iio, K.; Kondoh, S. Bistable FLC panels with film substrates using a novel adhesive patterned spacer technology. Ferroelectrics 2006, 344, 197. [Google Scholar] [CrossRef]
- Martinez, A.; Beaudoin, N.; Moreno, I.; Lopez, M.S.; Velasquez, P. Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator. J. Opt. A 2006, 8, 1013. [Google Scholar] [CrossRef]
- Moritake, H.; Morita, S.; Ozaki, R.; Kamei, T.; Utsumi, Y. Fast-switching microwave phase shifter of coplanar waveguide using ferroelectric liquid crystal. Jpn. J. Appl. Phys. 2007, 46, L519. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takanishi, Y. Chiral Symmetry Breaking in Liquid Crystals: Appearance of Ferroelectricity and Antiferroelectricity. Symmetry 2020, 12, 1900. https://doi.org/10.3390/sym12111900
Takanishi Y. Chiral Symmetry Breaking in Liquid Crystals: Appearance of Ferroelectricity and Antiferroelectricity. Symmetry. 2020; 12(11):1900. https://doi.org/10.3390/sym12111900
Chicago/Turabian StyleTakanishi, Yoichi. 2020. "Chiral Symmetry Breaking in Liquid Crystals: Appearance of Ferroelectricity and Antiferroelectricity" Symmetry 12, no. 11: 1900. https://doi.org/10.3390/sym12111900
APA StyleTakanishi, Y. (2020). Chiral Symmetry Breaking in Liquid Crystals: Appearance of Ferroelectricity and Antiferroelectricity. Symmetry, 12(11), 1900. https://doi.org/10.3390/sym12111900