More Effective Conditions for Oscillatory Properties of Differential Equations
Abstract
:1. Introduction
- -
- Integral averaging technique.
- -
- Riccati transformations technique.
- -
- Method of comparison with first-order differential equations.
2. Lemmas
- (I)
- There exists a such that the functions are of constant sign on
- (II)
- There exists a number when r is even, when r is odd, such that, for ,
3. Main Results
4. Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Bazighifan, O.; Alotaibi, H.; Mousa, A.A.A. Neutral Delay Differential Equations: Oscillation Conditions for the Solutions. Symmetry 2021, 13, 101. [Google Scholar] [CrossRef]
- Santra, S.S.; Nofal, T.A.; Alotaibi, H.; Bazighifan, O. Oscillation of Emden—Fowler-Type Neutral Delay Differential Equations. Axioms 2020, 9, 136. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. Math. Slovaca 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Bazighifan, O. On the oscillation of certain fourth-order differential equations with p-Laplacian like operator. Appl. Math. Comput. 2020, 386, 125475. [Google Scholar] [CrossRef]
- Cesarano, C.; Bazighifan, O. Oscillation of fourth-order functional differential equations with distributed delay. Axioms 2019, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Abdeljawad, T.; Al-Mdallal, Q.M. Differential equations of even-order with p-Laplacian like operators: Qualitative properties of the solutions. Adv. Differ. Equ. 2021, 2021, 96. [Google Scholar] [CrossRef]
- Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic properties of solutions of fourth-order delay differential equations. Symmetry 2019, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Baculikova, B.; Dzurina, J.; Zhang, C. Oscillation of fourth order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 2014, 56, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2019, 2019, 297. [Google Scholar] [CrossRef] [Green Version]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Thandpani, E.; Moaaz, O.; Bazighifan, O. Oscillation of solutions to fourth-order delay differential equations with middle term. Open J. Math. Sci. 2019, 3, 191–197. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ramos, H. On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term. Appl. Math. Lett. 2020, 107, 106431. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Yu, Y. Oscillation of even-order half-linear functional differential equations with damping. Comput. Math. Appl. 2011, 61, 2191–2196. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.; Agarwal, R.P.; Graef, J. Oscillation theorems for fourth order functional differential equations. J. Appl. Math. Comput. 2009, 30, 75–88. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Kiguradze, I.; Chanturia, T. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Kluwer Acad. Publ.: Drodrcht, The Netherlands, 1993. [Google Scholar]
- Agarwal, R.P.; Bazighifan, O.; Ragusa, M.A. Nonlinear Neutral Delay Differential Equations of Fourth-Order: Oscillation of Solutions. Entropy 2021, 23, 129. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nofal, T.A.; Bazighifan, O.; Khedher, K.M.; Postolache, M. More Effective Conditions for Oscillatory Properties of Differential Equations. Symmetry 2021, 13, 278. https://doi.org/10.3390/sym13020278
Nofal TA, Bazighifan O, Khedher KM, Postolache M. More Effective Conditions for Oscillatory Properties of Differential Equations. Symmetry. 2021; 13(2):278. https://doi.org/10.3390/sym13020278
Chicago/Turabian StyleNofal, Taher A., Omar Bazighifan, Khaled Mohamed Khedher, and Mihai Postolache. 2021. "More Effective Conditions for Oscillatory Properties of Differential Equations" Symmetry 13, no. 2: 278. https://doi.org/10.3390/sym13020278
APA StyleNofal, T. A., Bazighifan, O., Khedher, K. M., & Postolache, M. (2021). More Effective Conditions for Oscillatory Properties of Differential Equations. Symmetry, 13(2), 278. https://doi.org/10.3390/sym13020278