New Theorems for Oscillations to Differential Equations with Mixed Delays
Abstract
:1. Introduction
- (a)
- , , , , , .
- (b)
- , , , , , .
- (c)
- , ; , , , for all .
- (d)
- with .
- (e)
- where .
- (f)
- and are the quotient of two positive odd integers.
2. Preliminary Results
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berezansky, L.; Domoshnitsky, A.; Koplatadze, R. Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Oscillation and Stability of Delay Models in Biology; Springer International Publishing: New York, NY, USA, 2014. [Google Scholar]
- Ottesen, J.T. Modelling of the Baroreflex-Feedback Mechanism with Time-Delay. J. Math. Biol. 1997, 36, 41–63. [Google Scholar] [CrossRef]
- Bazighifan, O.; Abdeljawad, T.; Al-Mdallal, Q.M. Differential equations of even-order with p-Laplacian like operators: Qualitative properties of the solutions. Adv. Differ. Equ. 2021, 2021, 96. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Oscillation of second-order differential equations with a sublinear neutral term. Carpathian J. Math. 2014, 30, 1–6. [Google Scholar]
- Bhatti, M.M.; Marin, M.; Zeeshan, A.; Ellahi, R.; Abdelsalam, S.I. Swimming of Motile Gyrotactic Microorganisms and Nanoparticles in Blood Flow Through Anisotropically Tapered Arteries. Front. Phys. 2020, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Marin, M.; Vlase, S.; Paun, M. Considerations on double porosity structure for micropolar bodies. Aip Adv. 2015, 5, 037113. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A.; Bukhari, S.R.; Marin, M.; Ellahi, R. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transf. Res. 2019, 50, 1061–1080. [Google Scholar] [CrossRef]
- Baculíková, B.; Li, T.; Džurina, J. Oscillation theorems for second order neutral differential equations. Electron. J. Qual. Theory Differ. Equations 2011, 63, 1–13. [Google Scholar] [CrossRef]
- Arul, R.; Shobha, V.S. Oscillation of second order neutral differential equations with mixed neutral term. Int. J. Pure Appl. Math. 2015, 104, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Pinelas, S.; Santra, S.S. Necessary and sufficient condition for oscillation of nonlinear neutral first-order differential equations with several delays. J. Fixed Point Theory Appl. 2018, 20, 27. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ruggieri, M.; Santra, S.S.; Scapellato, A. Qualitative Properties of Solutions of Second-Order Neutral Differential Equations. Symmetry 2020, 12, 1520. [Google Scholar] [CrossRef]
- Santra, S.S.; Bazighifan, O.; Ahmad, H.; Chu, Y.M. Second-Order Differential Equation: Oscillation Theorems and Applications. Math. Probl. Eng. 2020, 2020, 8820066. [Google Scholar] [CrossRef]
- Santra, S.S.; Bazighifan, O.; Ahmad, H.; Yao, S.W. Second-Order Differential Equation with Multiple Delays: Oscillation Theorems and Applications. Complexity 2020, 2020, 8853745. [Google Scholar] [CrossRef]
- Tripathy, A.K.; Santra, S.S. Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients. Math. Bohem. 2020. [Google Scholar] [CrossRef]
- Santra, S.S. Necessary and sufficient conditions for oscillation to second-order half-linear delay differential equations. J. Fixed Point Theory Appl. 2019, 21, 85. [Google Scholar] [CrossRef]
- Santra, S.S.; Ghosh, T.; Bazighifan, O. Explicit criteria for the oscillation of second-order differential equations with several sub-linear neutral coefficients. Adv. Differ. Equ. 2020, 2020, 643. [Google Scholar] [CrossRef]
- Santra, S.S.; Alotaibi, H.; Bazighifan, O. On the qualitative behavior of the solutions to second-order neutral delay differential equations. J. Inequalities Appl. 2020, 2020, 643. [Google Scholar] [CrossRef]
- Santra, S.S.; Nofal, T.A.; Alotaibi, H.; Bazighifan, O. Oscillation of Emden-Fowler-type neutral delay differential equations. Axioms 2020, 9, 136. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics 2020, 8, 610. [Google Scholar] [CrossRef]
- Karpuz, B.; Santra, S.S. New criteria for the oscillation and asymptotic behavior of second-order neutral differential equations with several delays. Turk. J. Math. 2020, 44, 1990–2003. [Google Scholar] [CrossRef]
- Santra, S.S. Necessary and sufficient conditions for oscillation of second-order delay differential equations. Tatra Mt. Math. Publ. 2020, 75, 135–146. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bazighifan, O.; Ragusa, M.A. Nonlinear Neutral Delay Differential Equations of Fourth-Order: Oscillation of Solutions. Entropy 2021, 23, 129. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Rogovchenko, Y.V. Oscillation theorems for second-order nonlinear neutral delay differential eqquations. Abstr. Appl. Anal. 2014, 2014, 594190. [Google Scholar]
- Li, T.; Rogovchenko, Y.V. Oscillation of second-order neutral differential equations. Math. Nachr. 2015, 288, 1150–1162. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, R.; Chen, F.; Li, T. Oscillation of second-order nonlinear delay differential equations with nonpositive neutral coefficients. Adv. Differ. Equ. 2015, 2015, 35. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatsh. Math. 2017, 184, 489–500. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santra, S.S.; Majumder, D.; Bhattacharjee, R.; Bazighifan, O.; Khedher, K.M.; Marin, M. New Theorems for Oscillations to Differential Equations with Mixed Delays. Symmetry 2021, 13, 367. https://doi.org/10.3390/sym13030367
Santra SS, Majumder D, Bhattacharjee R, Bazighifan O, Khedher KM, Marin M. New Theorems for Oscillations to Differential Equations with Mixed Delays. Symmetry. 2021; 13(3):367. https://doi.org/10.3390/sym13030367
Chicago/Turabian StyleSantra, Shyam Sundar, Debasish Majumder, Rupak Bhattacharjee, Omar Bazighifan, Khaled Mohamed Khedher, and Marin Marin. 2021. "New Theorems for Oscillations to Differential Equations with Mixed Delays" Symmetry 13, no. 3: 367. https://doi.org/10.3390/sym13030367
APA StyleSantra, S. S., Majumder, D., Bhattacharjee, R., Bazighifan, O., Khedher, K. M., & Marin, M. (2021). New Theorems for Oscillations to Differential Equations with Mixed Delays. Symmetry, 13(3), 367. https://doi.org/10.3390/sym13030367