Oscillation Results of Emden–Fowler-Type Differential Equations
Abstract
:1. Introduction
- -
- -
2. Oscillation Criteria
3. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diekmann, O.; van Gils, S.A.; Lunel, S.M.V. Hans-Otto Walther: Delay Equations, Functional, Complex and Nonlinear Analysis; Springer-Verlag: New York, NY, USA, 1995. [Google Scholar]
- Moaaz, O.; El-Nabulsi, R.A.; Muhsin, W.; Bazighifan, O. Improved Oscillation Criteria for 2nd-Order Neutral Differential Equations with Distributed Deviating Arguments. Mathematics 2020, 8, 849. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ruggieri, M.; Santra, S.S.; Scapellato, A. Qualitative Properties of Solutions of Second-Order Neutral Differential Equations. Symmetry 2020, 12, 1520. [Google Scholar] [CrossRef]
- Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Arul, R.; Shobha, V.S. Oscillation of second order quasilinear differential equations with several neutral terms. J. Progress. Res. Math. (JPRM) 2016, 7, 975–981. [Google Scholar]
- Bazighifan, O.; Alotaibi, H.; Mousa, A.A.A. Neutral Delay Differential Equations: Oscillation Conditions for the Solutions. Symmetry 2021, 13, 101. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Hassan, T.S.; Moaaz, O. Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments. Opusc. Math. 2012, 32, 719–730. [Google Scholar] [CrossRef]
- Erbe, L.H.; Kong, Q.; Zhang, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Luo, J. Oscillation criteria for second-order quasi-linear neutral difference equations. Comput. Math. Appl. 2002, 43, 1549–1557. [Google Scholar] [CrossRef] [Green Version]
- Cesarano, C.; Bazighifan, O. Qualitative behavior of solutions of second order differential equations. Symmetry 2019, 11, 777. [Google Scholar] [CrossRef] [Green Version]
- Santra, S.S.; Nofal, T.A.; Alotaibi, H.; Bazighifan, O. Oscillation of Emden–Fowler-Type Neutral Delay Differential Equations. Axioms 2020, 9, 136. [Google Scholar] [CrossRef]
- Saker, S. Oscillation Theory of Delay Differential and Difference Equations; VDM Verlag Dr. Muller: Saarbrucken, Germany, 2010. [Google Scholar]
- Sun, S.; Li, T.; Han, Z.; Zhang, C. On oscillation of second-order nonlinear neutral functional differential equations. Bull. Malays. Math. Sci. Soc. 2013, 36, 541–554. [Google Scholar]
- Wang, X.; Meng, F. Oscillation criteria of second-order quasi-linear neutral delay differential equations. Math. Comput. Model. 2007, 46, 415–421. [Google Scholar] [CrossRef]
- Althobati, S.; Bazighifan, O.; Yavuz, M. Some Important Criteria for Oscillation of Non-Linear Differential Equations with Middle Term. Mathematics 2021, 9, 346. [Google Scholar] [CrossRef]
- Liu, H.; Meng, F.; Liu, P. Oscillation and asymptotic analysis on a new generalized Emden–Fowler equation. Appl. Math. Comput. 2012, 219, 2739–2748. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, Y.; Zhang, J.; Xiao, J. Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type. J. Inequal. Appl. 2016, 2016, 328. [Google Scholar] [CrossRef] [Green Version]
- Stavroulakis, I.P. Nonlinear delay differential inequalities. Nonlinear Anal. 1982, 6, 389–396. [Google Scholar] [CrossRef]
- Tang, X.H. Oscillation for first order superlinear delay differential equations. J. Lond. Math. Soc. 2002, 65, 115–122. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bazighifan, O.; Ragusa, M.A. Nonlinear Neutral Delay Differential Equations of Fourth-Order: Oscillation of Solutions. Entropy 2021, 23, 129. [Google Scholar] [CrossRef] [PubMed]
- Yaldız, H.; Agarwal, P. S-convex functions on discrete time domains. Analysis 2017, 37, 179–184. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazighifan, O.; Nofal, T.A.; Yavuz, M. Oscillation Results of Emden–Fowler-Type Differential Equations. Symmetry 2021, 13, 410. https://doi.org/10.3390/sym13030410
Bazighifan O, Nofal TA, Yavuz M. Oscillation Results of Emden–Fowler-Type Differential Equations. Symmetry. 2021; 13(3):410. https://doi.org/10.3390/sym13030410
Chicago/Turabian StyleBazighifan, Omar, Taher A. Nofal, and Mehmet Yavuz. 2021. "Oscillation Results of Emden–Fowler-Type Differential Equations" Symmetry 13, no. 3: 410. https://doi.org/10.3390/sym13030410
APA StyleBazighifan, O., Nofal, T. A., & Yavuz, M. (2021). Oscillation Results of Emden–Fowler-Type Differential Equations. Symmetry, 13(3), 410. https://doi.org/10.3390/sym13030410