Second-Order Non-Canonical Neutral Differential Equations with Mixed Type: Oscillatory Behavior
Abstract
:1. Introduction
- (C1)
- and
- (C2)
- , and as
- (C3)
- and is not identically zero for large l.
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Partial neutral functional differential equations. Rev. Roum. Math. Pures Appl. 1994, 39, 339–344. [Google Scholar]
- MacDonald, N. Biological Delay Systems: Linear Stability Theory; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Grammatikopouls, M.K.; Ladas, G.; Meimaridou, A. Oscillation of second order neutral delay differential equations. Rad. Math. 1985, 1, 267–274. [Google Scholar]
- Ruan, S.G. Oscillations of second order neutral differential equations. Can. Math. Bull. 1993, 36, 485–496. [Google Scholar] [CrossRef]
- Arul, R.; Shobha, V.S. Oscillation of second order neutral differential equations with mixed neutral term. Int. J. Pure Appl. Math. 2015, 104, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Dzurina, J.; Busha, J.; Airyan, E.A. Oscillation criteria for second-order differential equations of neutral type with mixed arguments. Differ. Equ. 2002, 38, 137–140. [Google Scholar] [CrossRef]
- Li, T. Comparison theorems for second-order neutral differential equations of mixed type. Electron. J. Differ. Equ. 2020, 2010, 1–7. [Google Scholar]
- Li, T.; Baculíková, B.; Džurina, J. Oscillation results for second-order neutral differential equations of mixed type. Tatra Mt. Math. Publ. 2011, 48, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Thandapani, E.; Selvarangam, S.; Vijaya, M.; Rama, R. Oscillation results for second order nonlinear differential equation with delay and advanced arguments. Kyungpook Math. J. 2016, 56, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.R.; Graef, J.R.; Jadlovská, I. Oscillation criteria for second-order half-linear delay differential equations with mixed neutral terms. Math. Slovaca 2019, 69, 1117–1126. [Google Scholar] [CrossRef]
- Tunc, E.; Ozdemir, O. On the oscillation of second-order half-linear functional differential equations with mixed neutral term. J. Taibah Univ. Sci. 2019, 13, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Li, T.; Zhang, C.; Sun, S. Oscillatory behavior of solutions of certain third-order mixed neutral functional differential equations. Bull. Malays. Math. Sci. Soc. 2012, 35, 611–620. [Google Scholar]
- Moaaz, O.; Chalishajar, D.; Bazighifan, O. Asymptotic behavior of solutions of the third order nonlinear mixed type neutral differential equations. Mathematics 2020, 8, 485. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second order retard differential equations. Math. Comput. Model. 1997, 26, 1–11. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar]
- Bohner, M.; Grace, S.R.; Jadlovska, I. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Dzurina, J.; Jadlovska, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized Emden—Fowler neutral differential equation. J. Inequal. Appl. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Moaaz, O.; Muhib, A. New oscillation criteria for nonlinear delay differential equations of fourth-order. Appl. Math. Comput. 2020, 377, 125192. [Google Scholar] [CrossRef]
- Sun, Y.G.; Meng, F.W. Note on the paper of Dzurina and Stavroulakis: “Oscillation criteria for second-order delay differential equations” [Appl. Math. Comput. 2003, 140, 445–453]. Appl. Math. Comput. 2006, 174, 1634–1641. [Google Scholar]
- Xu, R.; Meng, F. Some new oscillation criteria for second order quasi-linear neutral delay differential equations. Appl. Math. Comput. 2006, 182, 797–803. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moaaz, O.; Nabih, A.; Alotaibi, H.; Hamed, Y.S. Second-Order Non-Canonical Neutral Differential Equations with Mixed Type: Oscillatory Behavior. Symmetry 2021, 13, 318. https://doi.org/10.3390/sym13020318
Moaaz O, Nabih A, Alotaibi H, Hamed YS. Second-Order Non-Canonical Neutral Differential Equations with Mixed Type: Oscillatory Behavior. Symmetry. 2021; 13(2):318. https://doi.org/10.3390/sym13020318
Chicago/Turabian StyleMoaaz, Osama, Amany Nabih, Hammad Alotaibi, and Y. S. Hamed. 2021. "Second-Order Non-Canonical Neutral Differential Equations with Mixed Type: Oscillatory Behavior" Symmetry 13, no. 2: 318. https://doi.org/10.3390/sym13020318
APA StyleMoaaz, O., Nabih, A., Alotaibi, H., & Hamed, Y. S. (2021). Second-Order Non-Canonical Neutral Differential Equations with Mixed Type: Oscillatory Behavior. Symmetry, 13(2), 318. https://doi.org/10.3390/sym13020318