Next Article in Journal
A Topology Optimization Method Based on Non-Uniform Rational Basis Spline Hyper-Surfaces for Heat Conduction Problems
Previous Article in Journal
A New Analysis of Fractional-Order Equal-Width Equations via Novel Techniques
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Exact Likelihood Inference for a Competing Risks Model with Generalized Type II Progressive Hybrid Censored Exponential Data

1
Department of Statistics, Daegu University, Gyeongsan 38453, Korea
2
Division of Mathematics and Big Data Science, Daegu University, Gyeongsan 38453, Korea
*
Author to whom correspondence should be addressed.
Symmetry 2021, 13(5), 887; https://doi.org/10.3390/sym13050887
Submission received: 8 April 2021 / Revised: 7 May 2021 / Accepted: 12 May 2021 / Published: 17 May 2021
(This article belongs to the Section Mathematics)

Abstract

:
In many situations of survival and reliability test, the withdrawal of units from the test is pre-planned in order to to free up testing facilities for other tests, or to save cost and time. It is known that several risk factors (RiFs) compete for the immediate failure cause of items. In this paper, we derive an inference for a competing risks model (CompRiM) with a generalized type II progressive hybrid censoring scheme (GeTy2PrHCS). We derive the conditional moment generating functions (CondMgfs), distributions and confidence interval (ConfI) of the scale parameters of exponential distribution (ExDist) under GeTy2PrHCS with CompRiM. A real data set is analysed to illustrate the validity of the method developed here. From the data, it can be seen that the conditional PDFs of MLEs is almost symmetrical.

1. Introduction

In many situations of survival and reliability test, the tester might not obtain complete information on failure times for all items. The withdrawal of units from the test is pre-planned in order to to free up testing facilities for other tests, or to save cost and time. Type I censoring scheme (Ty1CS) and type II censoring scheme (Ty2CS) cannot be used if the teste wants to eliminate the live items at a point other than the end point of the test. Therefore, progressive type II censoring scheme (PrTy2CS) has become popular censoring scheme in a survival and reliability analysis problem (Refs. [1,2,3,4,5]). Though the PrTy2CS assure a number of observed failures, it has the drawback that it might take a long time to terminate the test and to observe a pre-fixed number of failures. In this motivation, Ref. [6] suggest a GeTy2PrHCS in which the test is assured to end at a pre-assigned time. These are designed to fix the drawbacks inherent in the type II progressive hybrid censoring scheme (Ty2PrHCS). The survival and reliability analysis based on the GeTy2PrHCS can save time and costs. GeTy2PrHCS may arise in a situation when the tester has prepaid for the use of the facility.
GeTy2PrHCS can be explained as follows. The m, PrTy2CS ( 1 , 2 , , m ; i = 1 m i + m = n ), and times T 1 and T 2 are pre-assigned integers such that m n and 0 < T 1 < T 2 < . Let D 1 and D 2 denote the number of failures up to time T 1 and T 2 , respectively. Randomly, 1 of the surviving units are removed from the test at the time of 1st failure ( X 1 : m : n ). Randomly, the 2 of the surviving units are removed at the time of 2nd failure ( X 2 : m : n ). If m-th failure ( X m : m : n ) occurs before the T 1 , we continue to observe failures ( m = m + 1 = = d 1 = 0 ; without any further withdrawals) up to time T 1 (Case (a)). If T 1 < X m : m : n < T 2 , end the test at m-th failure (Case (b)). If X m : m : n > T 2 , end the test at time T 2 (Case (c)). This GeTy2PrHCS modifies the Ty2PrHCS by assuring that the test will be finished by T 2 . For the GeTy2PrHCS, there are three possible scenarios (Figure 1).
In Case (c), X d 1 : m : n < T 1 < X d 1 + 1 : m : n , X d 2 : m : n < T 2 < X d 2 + 1 : m : n , and X d 2 + 1 : m : n , , X m : m : n are not observed.
Due to the complication of external environment and internal structure, it is known that the breakdown of a item results by several reasons of failure. These reasons of breakdown are called the competing risks data (CompD) that compete with each other in life cycle and can be encountered in survival and reliability study, and it has been discussed by many authors (Refs. [7,8,9,10,11]). From Ref. [11], it can be seen that the conditional PDFs of MLEs under CompRiM with censored data is almost symmetrical. In CompRiM, it is assumed that the among RiFs are statistically independent. A CompD and indicator denoting the RiF of failure consists of an observed failure time. In Section 2, we will prove the CondMgf, distributions and ConfI of the scale parameters of ExDist under GeTy2PrHCS with CompRiM. We will present a simulation results to investigate the biases, root mean squared error (rMSE), coverage percentages (CovP) and confidence lengths (ConfL) of the MLEs of parameters of ExDist under GeTy2PrHCS with CompRiM in Section 3. An illustrative example is presented. Finally, in Section 4, the conclusion and summary are presented. The meanings of abbreviations and symbols are listed in Abbreviations Section.

2. Model Description and Conditional Inference for MLEs

2.1. Model Description and MLEs

We suppose that n randomly selected items with CompD for an ExDist data were put on a survival and reliability test. We suppose that the X 1 , X 2 , , X n are iid with an ExDist. Here, X i = min { X i 1 , X i 2 , , X i k } , X i k denotes the life-time of the i-th item under the k-th RiF with cumulative distribution function (CDF) such as G k ( x ) = 1 exp ( λ k 1 x ) . Recently, researchers are interested with specific factor in the presence of other RiFs. Therefore, in this paper, we suppose that there are two RiFs for the failures. Then, it is to obtain the CDF of life-time as
F ( x ; λ ) = 1 exp λ 1 λ 2 λ 1 + λ 2 1 x , x > 0 , λ 1 > 0 , λ 2 > 0 ,
where λ = ( λ 1 , λ 2 ) .
Let X = { x 1 , x 2 , , x n } denote the data of n items, and Δ = { δ 1 , δ 2 , , δ n } denote the indicator of RiF. Here δ i = 1 denotes the i-th failure caused by 1st RiF. On the other hands, δ i = 0 denotes that other RiF is responsible for the i-th failure. Each life-time is composed of life-time and the reason for failure under the CompRiM ( X , Δ ) . Therefore, the joint PDF (jPDF) of failure life-time and RiF is
f X , Δ ( x , k ) = λ k 1 exp λ 1 λ 2 λ 1 + λ 2 1 x , k = 1 , 2 .
From GeTy2PrHCS, we have the following data;
Case (a)
{ ( x 1 : m : n , δ 1 : m : n ) , ( x 2 : m : n , δ 2 : m : n ) , , ( x m : m : n , δ m : m : n ) , ( x m + 1 : n , δ m + 1 : n ) , ( x d 1 : n , δ d 1 : n ) } .
Case (b)
{ ( x 1 : m : n , δ 1 : m : n ) , ( x 2 : m : n , δ 2 : m : n ) , , ( x d 1 : m : n , δ d 1 : m : n ) , , ( x m : m : n , δ m : m : n ) } .
Case (c)
{ ( x 1 : m : n , δ 1 : m : n ) , ( x 2 : m : n , δ 2 : m : n ) , , ( x d 1 : m : n , δ d 1 : m : n ) , , ( x d 2 : m : n , δ d 2 : m : n ) } .
Based on the GeTy2PrHCS, the likelihood function (see, Ref. [6]) is
L ( λ | x ) = ς D 1 j = 1 D 1 f X , Δ x j : m : n , 1 δ j f X , Δ x j : m : n , 2 1 δ j 1 F x j : m : n j 1 F T 1 D 1 + 1 , D 1 = m , m + 1 , , n , ς m j = 1 m f X , Δ x j : m : n , 1 δ j f X , Δ x j : m : n , 2 1 δ j 1 F x j : m : n j , D 1 = 0 , 1 , , m 1 , D 2 = m , ς D 2 j = 1 D 2 f X , Δ x j : m : n , 1 δ j f X , Δ x j : m : n , 2 1 δ j 1 F x j : m : n j 1 F T 2 D 2 + 1 , D 2 = 1 , 2 , , m 1 ,
where D 1 + 1 = n i = 1 m 1 i D 1 , D 2 + 1 = n i = 1 D 2 i D 2 and ς D = j = 1 D k = j m k + 1 .
Using (1), then, we can obtain the MLEs of λ k ( k = 1 , 2 ) as
λ ^ k = 1 n k j = 1 D 1 1 + j x j : m : n + T 1 D 1 + 1 , D 1 = m , m + 1 , , n , 1 n k j = 1 m 1 + j x j : m : n , D 1 = 0 , 1 , , m 1 , D 2 = m , 1 n k j = 1 D 2 1 + j x j : m : n + T 2 D 2 + 1 , D 2 = 1 , , m 1 .
Here, we denote the total failure number of units due to the RiF k by n k , k = 1 , 2 , then it is easy to obtain n 1 = i = 1 u δ i and n 2 = i = 1 u ( 1 δ i ) = u n 1 , where u = d 1 for Case (a), u = m for Case (b) and u = d 2 for Case (c).
From (2), the λ ^ 1 and λ ^ 2 do not exist when n 1 = 0 and n 2 = 0 , respectively. In order to estimate λ 1 and λ 2 , we have to observe at least one failure caused by each RiF. That is,
ζ ( u ) = n 1 1 , n 2 1 , n 1 + n 2 = u .

2.2. Conditional Inference for MLEs

To find the exact conditional inference for λ ^ 1 and λ ^ 2 , we first derive the CondMgf of λ ^ 1 and λ ^ 2 , respectively. In order to obtain CondMgf of λ ^ 1 and λ ^ 2 , we need the following Lemma in Ref. [12].
Lemma 1.
Let η j > 0 ( j = 1 , 2 , , m ), and let X denote the absolutely continuous RV with f ( x ) (PDF) and F ( x ) (CDF). For m 1 , then, we have
T x m + 1 T x 3 T x 2 j = 1 m f x j 1 F x j η j 1 d x 1 d x 2 d x m = i = 0 m ς i , m η m 1 F x m + 1 κ i , m η m 1 F T j = 1 m i η j ,
where η m = η 1 , η 2 , , η m ; ς i , m η m = 1 i j = 1 i k = m i + 1 m i + j η k j = 1 m i k = j m i η k , κ i , m η m = j = m i + 1 m η j with the usual conventions that j = 1 0 a j 1 and j = i 0 a j 0 .
Using Lemma 1, we have the CondMgf of λ ^ 1 , given ζ ( u ) , as follow Theorem.
Theorem 1.
The CondMgf of λ ^ 1 , given ζ ( u ) , is
M λ ^ 1 t = E e t λ ^ 1 | ζ ( u ) = d 1 = m n ( 1 + + m 1 ) i = 1 d 1 1 ς d 1 P ( ζ ( d 1 ) | D 1 = d 1 ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 1 t i λ 1 λ 2 λ 1 + λ 2 d 1 × j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) q 1 1 t i λ 1 λ 2 λ 1 + λ 2 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) + d 1 = 0 m 1 i = 1 m 1 ς m P ( ζ ( m ) | D 1 = d 1 , D 2 = m ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m 1 t i λ 1 λ 2 λ 1 + λ 2 m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 , , m + 1 ) q 1 1 t i λ 1 λ 2 λ 1 + λ 2 j = d 1 i 1 + 1 d 1 ( j + 1 ) × q 2 1 t i λ 1 λ 2 λ 1 + λ 2 j = m i 2 + 1 m ( j + 1 ) + d 2 = 1 m 1 i = 1 d 2 1 ς d 2 P ( ζ ( d 2 ) | D 2 = d 2 ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) d 2 1 t i λ 1 λ 2 λ 1 + λ 2 d 2 × j = 0 d 2 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 1 t i λ 1 λ 2 λ 1 + λ 2 d 2 i + 1 ,
where j = i = j m ( i + 1 ) , q 1 = exp 1 λ 1 + 1 λ 2 T 1 and q 2 = exp 1 λ 1 + 1 λ 2 T 2 .
Theorem 2.
The CondMgf of λ ^ 2 , given ζ ( u ) , is
M λ ^ 1 t = E e t λ ^ 1 | ζ ( u ) = d 1 = 1 n ( 1 + + m 1 ) i = 1 d 1 1 ς d 1 P ( ζ ( d 1 ) | D 1 = d 1 ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 1 t d 1 i λ 1 λ 2 λ 1 + λ 2 d 1 × j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) q 2 1 t d 1 i λ 1 λ 2 λ 1 + λ 2 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) + d 1 = 0 m 1 i = 1 m 1 ς m P ( ζ ( m ) | D 1 = d 1 , D 2 = m ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m 1 t m i λ 1 λ 2 λ 1 + λ 2 m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 , , m + 1 ) q 1 1 t m i λ 1 λ 2 λ 1 + λ 2 j = d 1 i 1 + 1 d 1 ( j + 1 ) × q 2 1 t m i λ 1 λ 2 λ 1 + λ 2 j = m i 2 + 1 m ( j + 1 ) + d 2 = 1 m 1 i = 1 d 2 1 ς d 2 P ( ζ ( d 2 ) | D 2 = d 2 ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) d 2 1 t d 2 i λ 1 λ 2 λ 1 + λ 2 d 2 × j = 0 d 1 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 1 t d 2 i λ 1 λ 2 λ 1 + λ 2 d 2 i + 1 .
Using Theorems 1 and 2, then, we readily obtain the first and second moments of λ ^ 1 and λ ^ 2 , respectively.
Corollary 1.
The E λ 1 λ ^ 1 and E λ 1 λ ^ 1 2 are given by
E λ 1 λ ^ 1 = M λ ^ 1 ( 0 ) = d 1 = m n ( 1 + + m 1 ) i = 1 d 1 1 ς d 1 P ( ζ ( d 1 ) | D 1 = d 1 ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) × q 1 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) d 1 i λ 1 λ 2 λ 1 + λ 2 + T 1 i D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) + d 1 = 0 m 1 i = 1 m 1 ς m P ( ζ ( m ) | D 1 = d 1 , D 2 = m ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 , , m + 1 ) q 1 j = d 1 i 1 + 1 d 1 ( j + 1 ) × q 2 j = m i 2 + 1 m ( j + 1 ) m i λ 1 λ 2 λ 1 + λ 2 + T 1 i j = d 1 i 1 + 1 d 1 ( j + 1 ) + T 2 i j = m i 2 + 1 m ( j + 1 ) + d 2 = 1 m 1 i = 1 d 2 1 ς d 2 P ( ζ ( d 2 ) | D 2 = d 2 ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) d 2 × j = 0 d 2 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 d 2 i + 1 d 2 i λ 1 λ 2 λ 1 + λ 2 + T 2 i d 2 i + 1 ,
and
E λ 1 λ ^ 1 2 = M λ ^ 1 ( 0 ) = d 1 = m n ( 1 + + m 1 ) i = 1 d 1 1 ς d 1 P ( ζ ( d 1 ) | D 1 = d 1 ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) × q 1 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) d 1 i λ 1 λ 2 λ 1 + λ 2 2 + d 1 i λ 1 λ 2 λ 1 + λ 2 + T 1 i D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) 2 + d 1 = 0 m 1 i = 1 m 1 ς m P ( ζ ( m ) | D 1 = d 1 , D 2 = m ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 , , m + 1 ) q 1 j = d 1 i 1 + 1 d 1 ( j + 1 ) × q 2 j = m i 2 + 1 m ( j + 1 ) m i λ 1 λ 2 λ 1 + λ 2 2 + m i λ 1 λ 2 λ 1 + λ 2 + T 1 i j = d 1 i 1 + 1 d 1 ( j + 1 ) + T 2 i j = m i 2 + 1 m ( j + 1 ) 2 + d 2 = 1 m 1 i = 1 d 2 1 ς d 2 P ( ζ ( d 2 ) | D 2 = d 2 ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) d 2 j = 0 d 2 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 d 2 i + 1 × d 2 i λ 1 λ 2 λ 1 + λ 2 2 + d 2 i λ 1 λ 2 λ 1 + λ 2 + T 2 i d 2 i + 1 2 .
Corollary 2.
The E λ 2 λ ^ 2 and E λ 2 λ ^ 2 2 are given by
E λ 2 λ ^ 2 = M λ ^ 2 ( 0 ) = d 1 = m n ( 1 + + m 1 ) i = 1 d 1 1 ς d 1 P ( ζ ( d 1 ) | D 1 = d 1 ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) × q 1 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) d 1 d 1 i λ 1 λ 2 λ 1 + λ 2 + T 1 d 1 i D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) + d 1 = 0 m 1 i = 1 m 1 ς m P ( ζ ( m ) | D 1 = d 1 , D 2 = m ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 , , m + 1 ) q 1 j = d 1 i 1 + 1 d 1 ( j + 1 ) × q 2 j = m i 2 + 1 m ( j + 1 ) m m i λ 1 λ 2 λ 1 + λ 2 + T 1 m i j = d 1 i 1 + 1 d 1 ( j + 1 ) + T 2 m i j = m i 2 + 1 m ( j + 1 ) + d 2 = 1 m 1 i = 1 d 2 1 ς d 2 P ( ζ ( d 2 ) | D 2 = d 2 ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) d 2 × j = 0 d 2 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 d 2 i + 1 d 2 d 2 i λ 1 λ 2 λ 1 + λ 2 + T 2 d 2 i d 2 i + 1 ,
and
E λ 2 λ ^ 2 2 = M λ ^ 2 ( 0 ) = d 1 = m n ( 1 + + m 1 ) i = 1 d 1 1 ς d 1 P ( ζ ( d 1 ) | D 1 = d 1 ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) × q 1 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) × d 1 d 1 i λ 1 λ 2 λ 1 + λ 2 2 + d 1 d 1 i λ 1 λ 2 λ 1 + λ 2 + T 1 d 1 i D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) 2 + d 1 = 0 m 1 i = 1 m 1 ς m P ( ζ ( m ) | D 1 = d 1 , D 2 = m ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 , , m + 1 ) q 1 j = d 1 i 1 + 1 d 1 ( j + 1 ) q 2 j = m i 2 + 1 m ( j + 1 ) × m m i λ 1 λ 2 λ 1 + λ 2 2 + m m i λ 1 λ 2 λ 1 + λ 2 + T 1 m i j = d 1 i 1 + 1 d 1 ( j + 1 ) + T 2 m i j = m i 2 + 1 m ( j + 1 ) 2 + d 2 = 1 m 1 i = 1 d 2 1 ς d 2 P ( ζ ( d 2 ) | D 2 = d 2 ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) d 2 j = 0 d 2 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 d 2 i + 1 × d 2 d 2 i λ 1 λ 2 λ 1 + λ 2 2 + d 2 d 2 i λ 1 λ 2 λ 1 + λ 2 + T 2 i d 2 i + 1 2 .
In order to obtain CondPDF of λ ^ 1 and λ ^ 2 , respectively, we need the following Lemma in Ref. [13].
Lemma 2.
If RV Y γ ( a , b ) , let X = Y + δ , then the Mgf or RV X is
M X ( t ) = e t δ ( 1 b t ) a , t < 1 / b ,
where γ ( x δ ; a , b ) is a gamma distribution with shift (δ), shape ( a > 0 ) and rate ( b > 0 ) parameters.
Using Lemma 2, we have the CondPDF of λ ^ 1 , given as ζ ( u ) , as in the following theorem.
Theorem 3.
The CondPDF of λ ^ 1 , given ζ ( u ) , is
f λ ^ 1 x = d 1 = m n ( 1 + + m 1 ) i = 1 d 1 1 ς d 1 P ( ζ ( d 1 ) | D 1 = d 1 ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) × q 1 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) γ x T 1 i D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) ; d 1 , 1 i λ 1 λ 2 λ 1 + λ 2 + d 1 = 0 m 1 i = 1 m 1 ς m P ( ζ ( m ) | D 1 = d 1 , D 2 = m ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 , , m + 1 ) q 1 j = d 1 i 1 + 1 d 1 ( j + 1 ) × q 2 j = m i 2 + 1 m ( j + 1 ) γ x T 1 i j = d 1 i 1 + 1 d 1 ( j + 1 ) T 2 i j = m i 2 + 1 m ( j + 1 ) ; m , 1 i λ 1 λ 2 λ 1 + λ 2 + d 2 = 1 m 1 i = 1 d 2 1 ς d 2 P ( ζ ( d 2 ) | D 2 = d 2 ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) d 2 j = 0 d 2 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 d 2 i + 1 × γ x T 2 i d 2 i + 1 ; d 2 , 1 i λ 1 λ 2 λ 1 + λ 2 ,
Theorem 4.
The CondPDF of λ ^ 2 , given ζ ( u ) , is
f λ ^ 2 x = d 1 = m n ( 1 + + m 1 ) i = 1 d 1 1 ς d 1 P ( ζ ( d 1 ) | D 1 = d 1 ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) × q 1 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) γ x T 1 d 1 i D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) ; d 1 , 1 d 1 i λ 1 λ 2 λ 1 + λ 2 + d 1 = 0 m 1 i = 1 m 1 ς m P ( ζ ( m ) | D 1 = d 1 , D 2 = m ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 , , m + 1 ) q 1 j = d 1 i 1 + 1 d 1 ( j + 1 ) × q 2 j = m i 2 + 1 m ( j + 1 ) γ x T 1 m i j = d 1 i 1 + 1 d 1 ( j + 1 ) T 2 m i j = m i 2 + 1 m ( j + 1 ) ; m , 1 m i λ 1 λ 2 λ 1 + λ 2 + d 2 = 1 m 1 i = 1 d 2 1 ς d 2 P ( ζ ( d 2 ) | D 2 = d 2 ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) d 2 j = 0 d 2 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 d 2 i + 1 × γ x T 2 d 2 i d 2 i + 1 ; d 2 , 1 d 2 i λ 1 λ 2 λ 1 + λ 2 .
Corollary 3.
The tail probabilities of λ ^ 1 and λ ^ 2 , given ζ ( u ) , are
P λ 1 λ ^ 1 > w = d 1 = m n ( 1 + + m 1 ) i = 1 d 1 1 ς d 1 P ( ζ ( d 1 ) | D 1 = d 1 ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) × q 1 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) Γ d 1 , 1 i λ 1 λ 2 λ 1 + λ 2 d 1 T 1 i D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) + d 1 = 0 m 1 i = 1 m 1 ς m P ( ζ ( m ) | D 1 = d 1 , D 2 = m ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 , , m + 1 ) q 1 j = d 1 i 1 + 1 d 1 ( j + 1 ) × q 2 j = m i 2 + 1 m ( j + 1 ) Γ m , 1 i λ 1 λ 2 λ 1 + λ 2 m T 1 i j = d 1 i 1 + 1 d 1 ( j + 1 ) T 2 i j = m i 2 + 1 m ( j + 1 ) + d 2 = 1 m 1 i = 1 d 2 1 ς d 2 P ( ζ ( d 2 ) | D 2 = d 2 ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) d 2 j = 0 d 2 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 d 2 i + 1 × Γ d 2 , 1 i λ 1 λ 2 λ 1 + λ 2 d 2 T 2 i d 2 i + 1 ,
and
P λ 2 λ ^ 2 > w = d 1 = m n ( 1 + + m 1 ) i = 1 d 1 1 ς d 1 P ( ζ ( d 1 ) | D 1 = d 1 ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) × q 1 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) Γ d 1 , 1 d 1 i λ 1 λ 2 λ 1 + λ 2 d 1 T 1 d 1 i D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) + d 1 = 0 m 1 i = 1 m 1 ς m P ( ζ ( m ) | D 1 = d 1 , D 2 = m ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 , , m + 1 ) q 1 j = d 1 i 1 + 1 d 1 ( j + 1 ) × q 2 j = m i 2 + 1 m ( j + 1 ) Γ m , 1 m i λ 1 λ 2 λ 1 + λ 2 m T 1 m i j = d 1 i 1 + 1 d 1 ( j + 1 ) T 2 m i j = m i 2 + 1 m ( j + 1 ) + d 2 = 1 m 1 i = 1 d 2 1 ς d 2 P ( ζ ( d 2 ) | D 2 = d 2 ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) d 2 j = 0 d 2 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 d 2 i + 1 × Γ d 2 , 1 d 2 i λ 1 λ 2 λ 1 + λ 2 d 2 T 2 d 2 i d 2 i + 1 ,
respectively, where w is the arbitrary constant, < x > = max { x , 0 } and Γ ( a , b ) = b ( 1 / ( a 1 ) ! ) x a 1 e x d x .
The proofs of Theorems are given in Appendix A and Appendix B. Based on Corollary 3, we derive 100 ( 1 α ) % ConfI of λ ^ k . Here, when the other parameter is fixed, we suppose that P ( λ ^ k > w ) is an increasing function of λ k . Then, we can derive the ConfP for λ k , denoted by ( λ k ( L ) , λ k ( U ) ) , satisfying the following equation with λ ^ k ( o b s ) being the observed value of λ ^ k :
P λ k ( L ) ( λ ^ k ( L ) > λ ^ k ( o b s ) ) = α 2 , P λ k ( U ) ( λ ^ k ( U ) > λ ^ k ( o b s ) ) = 1 α 2 , k = 1 , 2 .

3. Data Analysis and Simulation Results

3.1. Data Analysis

In order to analyze the illustrative example data, we use the data in Ref. [14]. The full data are presented in Table 1. This data was analyzed by Refs. [11,15,16]. From the data (Table 1), δ i = 1 denotes the failure of the i-th unit caused by 9th RiF, and δ i = 0 denotes the failure of the i-th unit caused by other RiFs. Here, we suppose that this data follow the ExDist based on the PrTy2CS (i.e., n = 36 , m = 24 , 1 = 6 , 24 = 6 and i = 0 for i = 2 , , 23 ). Then, PrTy2CS data are presented in Table 2.
We set three GeTy2PrHCS (Case (a): T 1 = 3000 and T 2 = 4000 , Case (b): T 1 = 2000 and T 2 = 3000 , and Case (c): T 1 = 2000 and T 1 = 2500 ). Table 3 presents the each 95 % ConfIs for λ ^ 1 and λ ^ 2 , and we have contained the standard error (StE) and MSE calculated from Corollary 1–3. Each PDF of λ ^ 1 and λ ^ 2 based on the illustrative example data is shown in Figure 2.

3.2. Simulation Results

In this Section, we consider various GeTy2PrHCS. First of all, we have used four PrTy2CS as; Sch (a): m = n m and 1 = 2 = = m 1 = 0 , Sch (b): 1 = n m and 2 = 3 = = m = 0 , Sch (c): 1 = m = ( n m ) / 2 and 2 = 3 = = m 1 = 0 , Sch (d): m / 2 = n m and 1 = 2 = = m / 2 1 = m / 2 + 1 = = m = 0 .
First of all, for four PrTy2CS, we generate PrTy2CS data. We generate new RV U = ( u 1 , u 2 , , u n ) . Now if u i < θ 1 / ( θ 1 + θ 2 ) , then assign δ i = 1 , otherwise δ i = 0 . Then, the corresponding GeTy2PrHCS CompD is { ( x 1 : m : n , δ 1 ) , ( x 2 : m : n , δ 2 ) , , ( x d 1 : n , δ d 1 ) } for Case (a) ( x m : m : n < T 1 ), { ( x 1 : m : n , δ 1 ) , ( x 2 : m : n , δ 2 ) , , ( x m : m : n , δ m ) } for Case (b) ( T 1 < x m : m : n < T 2 ), and { ( x 1 : m : n , δ 1 ) , ( x 2 : m : n , δ 2 ) , , ( x d 2 : m : n , δ d 2 ) } for Case (c) ( T 2 < x m : m : n ). Without loss of generality, we take λ 1 = 0.4 and λ 2 = 0.6 in each case. We replicate the process 1000 times in each GeTy2PrHCS. We calculate the rMSEs, biases, ConfL and CovP of the estimator. The simulation results are presented in Figure 3 (Table 4) and Figure 4 (Table 5).
From Table 4 and Table 5, the MSEs and ConfL increase as n decreases. For fixed n, the MSEs and ConfL increase generally as the number of m decreases. For fixed n and m, the rMSEs and ConfL increases generally as the pre-fixed time T 2 decreases. From Figure 3 and Figure 4, it can be seen that the concentration becomes thicker. Therefore, we can make it easy to grasp the simulation results. The estimaor for Sch (a) has smaller rMSE and ConfL than the corresponding estimaor for the other three Sch (a, b, c). We can observe that the ConfI works well for all GeTy2PrHCS.
Frome Table 4, it can be seen that λ ^ 1 is more precise compared to the λ ^ 2 in terms of the rMSE and bias. It is because, when λ 2 is bigger than λ 1 , we may observe smaller failure number due to the 2nd RiF than those due to the 1st RiF. Therefore, λ ^ 1 is more efficient than λ ^ 2 .

4. Conclusions

In many situations of survival and reliability tests, the withdrawal of units from the test is pre-planned in order to to free up testing facilities for other tests, or to save cost and time. Recently, Ref. [6] suggest a GeTy2PrHCS. It is known that more than one RiF may be present at the same time. Therefore, we derive inference for CompRiM with GeTy2PrHCS ExDist data. We derive the CondMgf of the λ ^ 1 and λ ^ 2 of ExDist and the resulting ConfI under GeTy2PrHCS. Consequently, for fixed n (sample size) and m (PrTy2CS sample size), the rMSEs and ConfL increase as the time T 2 decreases. λ ^ 1 is more efficient compared to the λ ^ 2 in terms of the rMSE and bias. Although we focused on the inference for CompRiM with GeTy2PrHCS ExDist data, the suggested GeTy2PrHCS CompRiM can be extended to other distributions. In these cases, the exact condPDF of the MLEs under GeTy2PrHCS CompRiM cannot be explicitly obtained.

Author Contributions

Conceptualization, K.L. and S.C.; Software, K.L.; Supervision, K.L.; Writing—original draft preparation, K.L.; Writing—review and editing, K.L. and S.C.; Visualization, S.C.; Funding acquisition, K.L. Both authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the Daegu University Research Grant, 2019.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
RiFsRisk factors
CompRiMCompeting risks model
GeTy2PrHCSgeneralized type II progressive hybrid censoring
CondMgfConditional moment generating function
ExDistExponential distribution
ConfIConfidence interval
Ty1CSType I censoring scheme
Ty2CSType II censoring scheme
PrTy2CSProgressive type II censoring scheme
Ty2PrHCSType II progressive hybrid censoring scheme
CompDCompeting risk data
rMSERoot mean squared error
ConfLConfidence length
CovPCoverage percentage
CDFCumulative distribution function
jPDFJoint probability density function
jDistJoint distribution
OSOrder statistics
condPDFConditional probability density function
StEStandard error
X i : m : n i-th failure time under progressive censoring scheme
( 1 , . . . m ) Progressive censoring scheme
{ δ 1 , δ 2 , , δ n } The indicator of risk factor cause corresponding to the data
D 1 The number of observed failures up to time T 1
D 2 The number of observed failures up to time T 2

Appendix A. Proof of Theorem 1

Conditional on ζ ( u ) , the condMgf of λ ^ 1 is given by
M λ ^ 1 t = E e t λ ^ 1 | ζ ( u ) = d 1 = m n ( 1 + + m 1 ) E e t λ ^ 1 | D 1 = d 1 , ζ ( d 1 ) P ( D 1 = d 1 ) + d 1 = 0 m 1 E e t λ ^ 1 | D 1 = d 1 , D 2 = m , ζ ( m ) P ( D 1 = d 1 , D 2 = m ) + d 2 = 1 m 1 E e t λ ^ 1 | D 2 = d 2 , ζ ( d 2 ) P ( D 2 = d 2 ) .
For convenience, let us denote the subset of indicator of failure causes as Q u , where
Q u = { Δ = ( δ 1 , , δ u ) : δ i = 0 or 1 ; i = 1 , , u } .
(1) Case I ( D 1 = m , m + 1 , , n ): Conditional on D 1 = d 1 , n 1 = i , the joint distribution (jDist) of order statistics (OS) x 1 : m : n < < x m : m : n < x m + 1 : n < < x d 1 : n < T 1 has the form
f ( x 1 : m : n , , x m : m : n , x m + 1 : n , , x d 1 : n | D 1 = d 1 , n 1 = i ) = 1 P ( D 1 = d 1 , n 1 = i ) f ( x 1 : m : n , , x m : m : n , x m + 1 : n , , x d 1 : n ; D 1 = d 1 , j = 1 d 1 z j = i ) = 1 P ( D 1 = d 1 , n 1 = i ) Z d 1 Q d 1 , j = 1 d 1 δ j = i f ( ( x 1 : m : n , δ 1 ) , , ( x m : m : n , δ m ) , ( x d 1 + 1 : n , δ d 1 ) ; D 1 = d 1 ) = 1 P ( D 1 = d 1 , n 1 = i ) Z d 1 Q d 1 , j = 1 d 1 δ j = i ς d 1 j = 1 d 1 f X , Δ x j : m : n , 1 δ j f X , Δ x j : m : n , 2 1 δ j × 1 F x j : m : n j 1 F T 1 D 1 + 1 = ς d 1 P ( D 1 = d 1 , n 1 = i ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 × exp λ 1 λ 2 λ 1 + λ 2 1 j = 1 d 1 ( 1 + j ) x j : m : n + T 1 D 1 + 1 .
Upon the conditional PDF (CondPDF) obtained above, we can readily have
E e t λ ^ 1 | D 1 = d 1 , ζ ( d 1 ) = i = 1 d 1 1 E e t λ ^ 1 | D 1 = d 1 , n 1 = i P ( n 1 = i | ζ ( d 1 ) , D 1 = d 1 ) = i = 1 d 1 1 ς d 1 P ( D 1 = d 1 , n 1 = i ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 q 1 D 1 + 1 1 t i λ 1 λ 2 λ 1 + λ 2 × 0 T 1 0 x 2 : m : n j = 1 d 1 f ( x j : m : n ) [ 1 F ( x j : m : n ) ] ( 1 + j ) 1 t i λ 1 λ 2 λ 1 + λ 2 1 d x 1 : m : n d x d 1 : n .
From Lemma 1 with η j = 1 + j 1 t i λ 1 λ 2 λ 1 + λ 2 and then factor 1 t i λ 1 λ 2 λ 1 + λ 2 out of all of the η j ‘s, E e t λ ^ 1 | D 1 = d 1 , ζ ( d 1 ) can be easily simplified as
i = 1 d 1 1 ς d 1 P ( D 1 = d 1 , n 1 = i ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 1 t i λ 1 λ 2 λ 1 + λ 2 d 1 × j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) q 1 1 t i λ 1 λ 2 λ 1 + λ 2 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) .
(2) Case II ( D 1 = 0 , , m 1 , D 2 = m ): Conditional on D 1 = 1 , , m 1 , D 2 = m and n 1 = i , the jDist of OS x 1 : m : n < < x d 1 : m : n < T 1 < < x m : m : n < T 2 has the form
f ( x 1 : m : n , , x m : m : n | D 1 = d 1 , D 2 = m , n 1 = i ) = 1 P ( D 1 = d 1 , D 2 = m , n 1 = i ) f ( x 1 : m : n , , x m : m : n ; D 1 = d 1 , D 2 = m , j = 1 m δ j = i ) = 1 P ( D 1 = d 1 , D 2 = m , n 1 = i ) Z m Q m , j = 1 m δ j = i f ( ( x 1 : m : n , δ 1 ) , , ( x m : m : n , δ m ) ; D 1 = d 1 , D 2 = m ) = ς m P ( D 1 = d 1 , D 2 = m , n 1 = i ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m exp λ 1 λ 2 λ 1 + λ 2 1 j = 1 m ( 1 + j ) x j : m : n .
Then, immediately we have
E e t λ ^ 1 | D 1 = d 1 , D 2 = m , ζ ( m ) = i = 1 m 1 E e t λ ^ 1 | D 1 = d 1 , D 2 = m , n 1 = i P ( n 1 = i | ζ ( m ) , D 1 = d 1 , D 2 = m ) = i = 1 m 1 ς m P ( D 1 = d 1 , D 2 = m , n 1 = i ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m × T 1 T 2 x m 1 : m : n T 2 0 T 1 0 x 2 : m : n j = 1 m f ( x j : m : n ) [ 1 F ( x j : m : n ) ] ( 1 + j ) 1 t i λ 1 λ 2 λ 1 + λ 2 1 × d x 1 : m : n d x d 1 : m : n d x m : m : n d x d 1 + 1 : m : n .
From Lemma 1 with η j = 1 + j 1 t i λ 1 λ 2 λ 1 + λ 2 and then factor 1 t i λ 1 λ 2 λ 1 + λ 2 out of all of the η j ‘s, E e t λ ^ 1 | D 1 = d 1 , D 2 = m , ζ ( m ) can be easily simplified as
i = 1 m 1 ς m P ( D 1 = d 1 , D 2 = m , n 1 = i ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m × i 1 = 0 d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) q 1 1 t i λ 1 λ 2 λ 1 + λ 2 j = d 1 i 1 + 1 d 1 ( j + 1 ) × T 1 T 2 x m 1 : m : n T 2 j = d 1 + 1 m f ( x j : m : n ) [ 1 F ( x j : m : n ) ] ( 1 + j ) 1 t i λ 1 λ 2 λ 1 + λ 2 1 d x m : m : n d x d 1 + 1 : m : n = i = 1 m 1 ς m P ( D 1 = d 1 , D 2 = m , n 1 = i ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m 1 t i λ 1 λ 2 λ 1 + λ 2 m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 + 1 , , m + 1 ) × q 1 1 t i λ 1 λ 2 λ 1 + λ 2 j = d 1 i 1 + 1 d 1 ( j + 1 ) q 2 1 t i λ 1 λ 2 λ 1 + λ 2 j = m i 2 + 1 m ( j + 1 ) .
Here, Equation (A3) is obtained by the integration process on the basis of identity that
T 1 T 2 x m 2 T 2 x m 1 T 2 j = d 1 + 1 m f x j 1 F x j η j 1 d x m d x d 1 + 1 = i = 0 m d 1 ς i , m d 1 ( η m d 1 ) 1 F T 1 j = d 1 + 1 m i η j 1 F T 2 κ i , m d 1 η m d 1 ,
where η m d 1 = ( η d 1 + 1 , , η m ) .
(3) Case III ( D 2 = 1 , , m 1 ): Conditional on D 2 = 1 , , m 1 , n 1 = i , the jDist of OS x 1 : m : n < < x d 2 : m : n < T 2 has the form
f ( x 1 : m : n , , x d 2 : m : n | D 2 = d 2 , n 1 = i ) = 1 P ( D 2 = d 2 , n 1 = i ) f ( x 1 : m : n , , x d 2 : m : n ; D 2 = d 2 , j = 1 d 2 δ j = i ) = 1 P ( D 2 = d 2 , n 1 = i ) Z d 2 Q d 2 , j = 1 d 2 δ j = i f ( ( x 1 : m : n , δ 1 ) , , ( x d 2 : m : n , δ d 2 ) ; D 2 = d 2 ) = ς d 2 P ( D 2 = d 2 , n 1 = i ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) 2 d exp λ 1 λ 2 λ 1 + λ 2 1 j = 1 d 2 ( 1 + j ) x j : m : n + T 2 R D 2 + 1 .
Then, we have
E e t λ ^ 1 | D 2 = d 2 , ζ ( d 2 ) = i = 1 d 2 1 E e t λ ^ 1 | D 2 = d 2 , n 1 = i P ( n 1 = i | ζ ( d 2 ) , D 2 = d 2 ) = i = 1 d 2 1 ς d 2 P ( D 2 = d 2 , n 1 = i ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) 2 d q 2 R d 2 + 1 1 t i λ 1 λ 2 λ 1 + λ 2 × 0 T 2 0 x 2 : m : n j = 1 d 2 f ( x j : m : n ) [ 1 F ( x j : m : n ) ] ( 1 + j ) 1 t i λ 1 λ 2 λ 1 + λ 2 1 d x 1 : m : n d x d 2 : m : n .
From Lemma 1 with η j = 1 + j 1 t i λ 1 λ 2 λ 1 + λ 2 and then factor 1 t i λ 1 λ 2 λ 1 + λ 2 out of all of the η j ‘s, E e t λ ^ 1 | D 2 = d 2 , ζ ( d 2 ) can be easily simplified as
i = 1 d 2 1 ς d 2 P ( D 2 = d 2 , n 1 = i ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) 2 d 1 t i λ 1 λ 2 λ 1 + λ 2 d 2 × j = 0 d 2 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 1 t i λ 1 λ 2 λ 1 + λ 2 d 2 i + 1 .
The theorem then follows readily upon substituting Equations (A2)–(A4) into (A1).

Appendix B. Proof of Theorem 3

From Theorem 1, the CondMgf of λ ^ 1 is given by
M λ ^ 1 t = E e t λ ^ 1 | ζ ( u ) = d 1 = m n ( 1 + + m 1 ) i = 1 d 1 1 ς d 1 P ( ζ ( d 1 ) | D 1 = d 1 ) d 1 i λ 1 d 1 i λ 2 i ( λ 1 + λ 2 ) d 1 1 t i λ 1 λ 2 λ 1 + λ 2 d 1 × j = 0 d 1 ς j , d 1 ( 1 + 1 , , d 1 + 1 ) q 1 1 t i λ 1 λ 2 λ 1 + λ 2 D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) + d 1 = 0 m 1 i = 1 m 1 ς m P ( ζ ( m ) | D 1 = d 1 , D 2 = m ) m i λ 1 m i λ 2 i ( λ 1 + λ 2 ) m 1 t i λ 1 λ 2 λ 1 + λ 2 m × i 1 = 0 d 1 i 2 = 0 m d 1 ς i 1 , d 1 ( 1 + 1 , , d 1 + 1 ) ς i 2 , m d 1 ( d 1 + 1 , , m + 1 ) × q 1 1 t i λ 1 λ 2 λ 1 + λ 2 j = d 1 i 1 + 1 d 1 ( j + 1 ) q 2 1 t i λ 1 λ 2 λ 1 + λ 2 j = m i 2 + 1 m ( j + 1 ) + d 2 = 1 m 1 i = 1 d 2 1 ς d 2 P ( ζ ( d 2 ) | D 2 = d 2 ) d 2 i λ 1 d 2 i λ 2 i ( λ 1 + λ 2 ) d 2 1 t i λ 1 λ 2 λ 1 + λ 2 d 2 × j = 0 d 2 ς j , d 2 ( 1 + 1 , , d 2 + 1 ) q 2 1 t i λ 1 λ 2 λ 1 + λ 2 d 2 i + 1 .
From Lemma 2, ( 1 t λ 1 λ 2 / { i ( λ 1 + λ 2 ) } ) d 1 exp ( T 1 [ D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) ] / i ) is the Mgf of RV X at t, where X is a gamma RV with shape parameter d 1 , rate parameter λ 1 λ 2 / { i ( λ 1 + λ 2 ) } and shift parameter T 1 [ D 1 + 1 + κ j , d 1 ( 1 + 1 , , d 1 + 1 ) ] / i . Therefore, the theorem readily follows.

References

  1. Alshenawy, R.; Al-Alwan, A.; Almetwally, E.M.; Afify, A.Z.; Almongy, H.M. Progressive type-II censoring schemes of extended odd Weibull exponential distribution with applications in medicine and engineering. Mathematics 2020, 8, 1679. [Google Scholar] [CrossRef]
  2. Jha, M.K.; Dey, S.; Alotaibi, R.M.; Tripathi, Y.M. Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive Type II censoring. Qual. Reliab. Eng. Int. 2020, 36, 965–987. [Google Scholar] [CrossRef]
  3. Chen, S.; Gui, W. Statistical analysis of a lifetime distribution with a bathtub-shaped failure rate function under adaptive progressive type-II censoring. Mathematics 2020, 8, 670. [Google Scholar] [CrossRef]
  4. Helu, A.; Samawi, H.; Rochani, H.; Yin, J.; Vogel, R. Kernel density estimation based on progressive type-II censoring. J. Korean Stat. Soc. 2020, 49, 475–498. [Google Scholar] [CrossRef]
  5. Lee, H.; Lee, K. Exact likelihood inference for an exponential parameter under generalized adaptive progressive hybrid censoring. Symmetry 2020, 12, 1149. [Google Scholar] [CrossRef]
  6. Lee, K.; Sun, H.; Cho, Y. Exact likelihood inference of the exponential parameter under generalized Type II progressive hybrid censoring. J. Korean Stat. Soc. 2016, 45, 123–136. [Google Scholar] [CrossRef]
  7. Mahto, A.K.; Lodhi, C.; Tripathi, Y.M.; Wang, L. Inference for partially observed competing risks model for Kumaraswamy distribution under generalized progressive hybrid censoring. J. Appl. Stat. 2021, 1–29. [Google Scholar] [CrossRef]
  8. Ahmed, E.A.; Ali Alhussain, Z.; Salah, M.M.; Haj Ahmed, H.; Eliwa, M.S. Inference of progressively type-II censored competing risks data from Chen distribution with an application. J. Appl. Stat. 2020, 47, 2492–2524. [Google Scholar] [CrossRef]
  9. Azizi, F.; Haghighi, F.; Tabibi Gilani, N. Statistical inference for competing risks model under progressive interval censored Weibull data. Commun. Stat. Simul. Comput. 2020, 49, 1931–1944. [Google Scholar] [CrossRef]
  10. Liu, S.; Gui, W. Estimating the Parameters of the Two-Parameter Rayleigh Distribution Based on Adaptive Type II Progressive Hybrid Censored Data with Competing Risks. Mathematics 2020, 8, 1783. [Google Scholar] [CrossRef]
  11. Cho, Y.; Lee, K. Exact Inference for an Exponential Parameter under Generalized Adaptive Progressive Hybrid Censored Competing Risks Data. Symmetry 2020, 12, 2005. [Google Scholar] [CrossRef]
  12. Balakrishnan, N.; Childs, A.; Chandrasekar, B. An efficient computational method for moments of order statistics under progressive censoring. Stat. Probab. Lett. 2002, 60, 359–365. [Google Scholar] [CrossRef]
  13. Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; Wiley: New York, NY, USA, 1994. [Google Scholar]
  14. Lawless, J. Statistical Models and Methods for Lifetime Data; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
  15. Mao, S.; Shi, Y.M.; Sun, Y.D. Exact inference for competing risks model with generalized type I hybrid censored exponential data. J. Stat. Comput. Simul. 2014, 84, 2506–2521. [Google Scholar] [CrossRef]
  16. Cho, Y.; Lee, K. Exact inference for competing risks model with generalized progressive hybrid censored exponential data. J. Korean Data Anal. Soc. 2017, 19, 565–575. [Google Scholar] [CrossRef]
Figure 1. GeTy2PrHCS. Case (a): { X 1 : m : n , X 2 : m : n , , X m : m : n , X m + 1 : n , , x d 1 : n } , if X m : m : n < T 1 , m = m + 1 = = d 1 = 0 . Case (b): { X 1 : m : n , X 2 : m : n , , X d 1 : m : n , , X m : m : n } , if T 1 < X m : m : n < T 2 . Case (c): { X 1 : m : n , X 2 : m : n , , X d 1 : m : n , , X d 2 : m : n } , if T 2 < X m : m : n .
Figure 1. GeTy2PrHCS. Case (a): { X 1 : m : n , X 2 : m : n , , X m : m : n , X m + 1 : n , , x d 1 : n } , if X m : m : n < T 1 , m = m + 1 = = d 1 = 0 . Case (b): { X 1 : m : n , X 2 : m : n , , X d 1 : m : n , , X m : m : n } , if T 1 < X m : m : n < T 2 . Case (c): { X 1 : m : n , X 2 : m : n , , X d 1 : m : n , , X d 2 : m : n } , if T 2 < X m : m : n .
Symmetry 13 00887 g001
Figure 2. The CondPDFs of λ ^ 1 and λ ^ 2 for example.
Figure 2. The CondPDFs of λ ^ 1 and λ ^ 2 for example.
Symmetry 13 00887 g002
Figure 3. Relative rMSEs for λ ^ 1 and λ ^ 2
Figure 3. Relative rMSEs for λ ^ 1 and λ ^ 2
Symmetry 13 00887 g003
Figure 4. Relative ConfL for λ ^ 1 and λ ^ 2 .
Figure 4. Relative ConfL for λ ^ 1 and λ ^ 2 .
Symmetry 13 00887 g004
Table 1. Full data for illustrative example.
Table 1. Full data for illustrative example.
xi1135491703293817089581062
δ i 000000000
x i 116715941925199022232327240024512471
δ i 101110101
x i 255125652831256826942702276130343059
δ i 101100010
x i 3112321434783504432963676976784613403
δ i 111110110
Table 2. PrTy2CS data for illustrative example.
Table 2. PrTy2CS data for illustrative example.
x i 113549170329381708958
δ i 00000000
i 60000000
x i 10621167159419251990222323272400
δ i 01011101
i 00000000
x i 24512471255125652568269427022761
δ i 01101100
i 00000006
Table 3. Inference of λ ^ 1 and λ ^ 2 for illustrative example.
Table 3. Inference of λ ^ 1 and λ ^ 2 for illustrative example.
T 1 T 2 n 1 n 2 λ ^ 1 SE( λ ^ 1 )95% ConfI for λ ^ 1
λ ^ 2 SE( λ ^ 2 )95% ConfI for λ ^ 2
300040009166221.0002073.667(3236.839, 11,956.370)
3499.312874.828(2143.771, 5711.985)
200030009156080.4442026.815(3163.707, 11,686.230)
3648.267941.978(2199.395, 6051.596)
200025006128719.5003559.721(3917.271, 19,408.840)
4359.7501258.551(2475.919, 7676.917)
Table 4. Relative rMSEs and biases for λ ^ 1 and λ ^ 2 .
Table 4. Relative rMSEs and biases for λ ^ 1 and λ ^ 2 .
n T 1 mScheme T 2 = 0.6 T 2 = 0.8 T 2 = 1.0
λ ^ 1 λ ^ 2 λ ^ 1 λ ^ 2 λ ^ 1 λ ^ 2
200.318(a)0.1498(0.0233) 0.3436(0.0678)0.1424(0.0198)0.3030(0.0606)0.1415(0.0195)0.3028(0.0601)
(b)0.1473(0.0224)0.3914(0.0792)0.1428(0.0203)0.3250(0.0616)0.1431(0.0205)0.3060(0.0560)
(c)0.1500(0.0240)0.3939(0.0891)0.1394(0.0196)0.3708(0.0797)0.1373(0.0182)0.3710(0.0790)
(d)0.1468(0.0217)0.3694(0.0733)0.1421(0.0198)0.3249(0.0610)0.1424(0.0201)0.3036(0.0555)
16(a)0.1622(0.0276)0.3767(0.0819)0.1596(0.0268)0.3483(0.0786)0.1596(0.0268)0.3483(0.0786)
(b)0.1704(0.0313)0.4404(0.0958)0.1611(0.0256)0.4065(0.0813)0.1554(0.0232)0.3961(0.0762)
(c)0.1494(0.0211)0.4200(0.0794)0.1459(0.0189)0.3672(0.0659)0.1460(0.0187)0.3683(0.0661)
(d)0.1661(0.0300)0.4231(0.0891)0.1559(0.0234)0.4076(0.0799)0.1516(0.0219)0.3926(0.0743)
14(a)0.1737(0.0346)0.4694(0.1370)0.1731(0.0344)0.4694(0.1037)0.1731(0.0344)0.4694(0.1037)
(b)0.2018(0.0393)0.4634(0.1251)0.1858(0.0342)0.4092(0.1059)0.1763(0.0302)0.4006(0.1004)
(c)0.1650(0.0279)0.3720(0.0814)0.1633(0.0258)0.4081(0.0906)0.1630(0.0257)0.4048(0.0897)
(d)0.2000(0.0365)0.4396(0.1154)0.1824(0.0329)0.4040(0.1038)0.1763(0.0301)0.4017(0.1003)
12(a)0.1984(0.0437)0.4519(0.1122)0.1984(0.0437)0.4519(0.1122)0.1984(0.0437)0.4519(0.1122)
(b)0.2373(0.0486)0.5328(0.1392)0.2262(0.0441)0.5088(0.1223)0.2154(0.0401)0.5107(0.1183)
(c)0.1861(0.0338)0.5030(0.1113)0.1855(0.0336)0.5027(0.1114)0.1860(0.0336)0.5021(0.1111)
(d)0.2286(0.0443)0.5196(0.1302)0.2162(0.0415)0.5128(0.1228)0.2165(0.0401)0.5103(0.1180)
300.328(a)0.1134(0.0126)0.2278(0.0358)0.1092(0.0103)0.2228(0.0315)0.1079(0.0097)0.2121(0.0301)
(b)0.1173(0.0182)0.3166(0.0582)0.1123(0.0161)0.3123(0.0517)0.1101(0.0146)0.2461(0.0463)
(c)0.1229(0.0144)0.2485(0.0483)0.1145(0.0116)0.2306(0.0430)0.1108(0.0103)0.2265(0.0404)
(d)0.1167(0.0182)0.3176(0.0581)0.1120(0.0158)0.3121(0.0515)0.1101(0.0145)0.2457(0.0462)
26(a)0.1141(0.0111)0.2349(0.0390)0.1122(0.0101)0.2336(0.0381)0.1118(0.0100)0.2334(0.0380)
(b)0.1177(0.0177)0.2364(0.0398)0.1128(0.0150)0.2259(0.0358)0.1103(0.0141)0.2183(0.0333)
(c)0.1176(0.0172)0.3164(0.0565)0.1143(0.0152)0.3190(0.0517)0.1142(0.0149)0.3183(0.0505)
(d)0.1163(0.0166)0.2352(0.0387)0.1121(0.0148)0.2253(0.0353)0.1102(0.0140)0.2176(0.0328)
24(a)0.1183(0.0130)0.2418(0.0433)0.1176(0.0127)0.2412(0.0430)0.1176(0.0127)0.2412(0.0430)
(b)0.1256(0.0165)0.2789(0.0582)0.1185(0.0140)0.2693(0.0518)0.1168(0.0129)0.2514(0.0465)
(c)0.1184(0.0151)0.2385(0.0382)0.1152(0.0137)0.2328(0.0356)0.1147(0.0135)0.2326(0.0353)
(d)0.1237(0.0160)0.2738(0.0555)0.1175(0.0134)0.2668(0.0502)0.1158(0.0126)0.2503(0.0462)
22(a)0.1205(0.0138)0.2667(0.0547)0.1205(0.0138)0.2667(0.0547)0.1205(0.0138)0.2667(0.0547)
(b)0.1381(0.0208)0.2747(0.0479)0.1285(0.0148)0.2584(0.0423)0.1277(0.0139)0.2577(0.0411)
(c)0.1216(0.0183)0.2472(0.0396)0.1201(0.0178)0.2472(0.0394)0.1202(0.0179)0.2474(0.0394)
(d)0.1338(0.0186)0.2587(0.0432)0.1283(0.0147)0.2588(0.0424)0.1259(0.0133)0.2571(0.0403)
4010.038(a)0.0924(0.0084)0.1825(0.0237)0.0906(0.0072)0.1766(0.0191)0.0892(0.0065)0.1744(0.0179)
(b)0.0952(0.0102)0.1832(0.0183)0.0919(0.0081)0.1782(0.0161)0.0893(0.0070)0.1745(0.0145)
(c)0.0934(0.0076)0.1971(0.0300)0.0901(0.0059)0.1837(0.0237)0.0892(0.0049)0.1791(0.0207)
(d)0.0945(0.0099)0.1822(0.0173)0.0912(0.0077)0.1766(0.0156)0.0893(0.0070)0.1746(0.0143)
36(a)0.0937(0.0079)0.1837(0.0230)0.0921(0.0068)0.1810(0.0208)0.0922(0.0069)0.1807(0.0206)
(b)0.0968(0.0101)0.2052(0.0293)0.0942(0.0093)0.1971(0.0253)0.0932(0.0096)0.1891(0.0222)
(c)0.0952(0.0097)0.1837(0.0180)0.0926(0.0081)0.1797(0.0149)0.0914(0.0078)0.1761(0.0142)
(d)0.0960(0.0098)0.2052(0.0297)0.0941(0.0093)0.1957(0.0242)0.0929(0.0095)0.1892(0.0221)
34(a)0.0949(0.0076)0.1866(0.0239)0.0940(0.0072)0.1859(0.0235)0.0940(0.0072)0.1859(0.0235)
(b)0.0998(0.0100)0.2257(0.0370)0.0952(0.0083)0.2026(0.0293)0.0945(0.0081)0.1958(0.0271)
(c)0.0932(0.0095)0.1900(0.0239)0.0895(0.0070)0.1876(0.2019)0.0888(0.0067)0.1861(0.0214)
(d)0.0974(0.0088)0.2158(0.0350)0.0953(0.0086)0.2022(0.0293)0.0944(0.0081)0.1962(0.0274)
32(a)0.0973(0.0081)0.1897(0.0257)0.0972(0.0080)0.1896(0.0258)0.0972(0.0080)0.1896(0.0258)
(b)0.1099(0.0130)0.2079(0.0236)0.1047(0.0104)0.1957(0.0212)0.1020(0.0104)0.1896(0.0197)
(c)0.0976(0.0080)0.2075(0.0261)0.0958(0.0072)0.2009(0.0231)0.0956(0.0071)0.2004(0.0229)
(d)0.1086(0.0121)0.2069(0.0232)0.1036(0.0103)0.1922(0.0199)0.1015(0.0102)0.1893(0.0197)
rMSE(Bias).
Table 5. Relative ConfL and CovP for λ ^ 1 and λ ^ 2 .
Table 5. Relative ConfL and CovP for λ ^ 1 and λ ^ 2 .
n T 1 mScheme T 2 = 0.6 T 2 = 0.8 T 2 = 1.0
λ ^ 1 λ ^ 2 λ ^ 1 λ ^ 2 λ ^ 1 λ ^ 2
200.318(a)0.5708(940.1) 10.2596(960.1)0.5567(940.1)10.2036(960.0)0.5553(940.0)10.2010(950.9)
(b)0.5949(940.7)10.3765(940.7)0.5723(940.8)10.2353(950.1)0.5655(940.5)10.1928(950.3)
(c)0.5817(940.9)10.3657(950.3)0.5590(950.2)10.3001(950.6)0.5530(950.2)10.2922(950.2)
(d)0.5909(940.7)10.3323(950.0)0.5700(940.8)10.2307(950.1)0.5641(940.5)10.1896(950.3)
16(a)0.6122(940.0)10.3998(950.5)0.6096(940.1)10.3694(950.5)0.6096(940.1)10.3694(950.5)
(b)0.6623(940.8)10.6005(950.7)0.6275(940.5)10.4725(950.4)0.6133(940.5)10.4249(950.5)
(c)0.6082(950.1)10.4458(940.6)0.5977(950.1)10.3503(950.2)0.5967(950.2)10.3503(950.2)
(d)0.6527(940.7)10.5460(950.4)0.6194(940.7)10.4641(950.5)0.6090(940.6)10.4145(950.6)
14(a)0.6630(940.8)10.6396(950.7)0.6625(940.8)10.6396(950.7)0.6625(940.8)10.6396(950.7)
(b)0.7425(950.0)10.8444(950.4)0.7013(950.0)10.6625(950.2)0.6794(950.3)10.6101(950.1)
(c)0.6686(940.5)10.5124(950.1)0.6613(930.7)10.5683(940.9)0.6609(930.8)10.5634(950.0)
(d)0.7261(940.9)10.7664(950.2)0.6931(940.7)10.6427(950.0)0.6777(950.3)10.6064(950.1)
12(a)0.7125(940.5)10.6972(960.1)0.7125(940.5)10.6972(960.1)0.7125(940.5)10.6972(960.1)
(b)0.8725(940.8)20.2903(940.6)0.8275(950.0)20.1114(940.6)0.8001(940.8)20.0659(940.4)
(c)0.7447(940.5)10.9367(960.0)0.7434(940.6)10.9358(960.0)0.7435(940.6)10.9347(960.0)
(d)0.8440(940.8)20.1976(940.7)0.8108(940.9)20.1065(940.6)0.7982(940.8)20.0598(940.6)
300.328(a)0.4304(950.5)0.8608(950.7)0.4204(950.7)0.8390(950.6)0.4184(950.6)0.8316(950.6)
(b)0.4521(940.6)0.9736(950.7)0.4355(940.2)0.9288(950.2)0.4280(940.6)0.8769(950.2)
(c)0.4407(940.0)0.9051(950.0)0.4254(940.1)0.8676(940.5)0.4202(940.0)0.8563(940.7)
(d)0.4506(940.4)0.9705(950.4)0.4346(940.3)0.9270(950.4)0.4276(940.7)0.8762(950.3)
26(a)0.4395(950.5)0.8943(950.2)0.4364(950.4)0.8895(950.2)0.4362(950.4)0.8893(950.3)
(b)0.4709(950.6)0.9399(950.9)0.4534(950.4)0.9007(950.6)0.4467(950.4)0.8824(950.7)
(c)0.4540(940.5)0.9772(960.1)0.4439(940.2)0.9527(950.6)0.4426(940.2)0.9483(950.7)
(d)0.4664(950.5)0.9320(950.8)0.4521(950.5)0.8975(950.8)0.4460(950.3)0.8802(950.7)
24(a)0.4596(950.7)0.9419(940.7)0.4590(950.8)0.9410(940.8)0.4590(950.8)0.9410(940.8)
(b)0.4903(940.1)10.0400(940.7)0.4715(940.7)0.9919(940.7)0.4639(940.7)0.9605(940.9)
(c)0.4686(940.7)0.9386(940.7)0.4628(940.7)0.9252(940.6)0.4623(940.7)0.9245(940.5)
(d)0.4851(940.2)10.0230(940.8)0.4688(940.6)0.9837(940.8)0.4624(940.6)0.9580(940.9)
22(a)0.4782(950.7)10.0145(950.1)0.4782(950.7)10.0145(950.1)0.4782(950.7)10.0145(950.1)
(b)0.5275(940.0)10.0762(940.1)0.5006(930.8)10.0271(940.8)0.4932(930.8)10.0124(940.4)
(c)0.4939(960.2)0.9895(950.9)0.4922(960.2)0.9874(950.8)0.4922(960.2)0.9875(950.8)
(d)0.5174(930.9)10.0478(940.6)0.4984(930.8)10.0232(940.5)0.4912(930.9)10.0082(940.5)
4010.038(a)0.3606(940.9)0.7008(940.2)0.3526(950.0)0.6792(940.0)0.3505(940.9)0.6749(940.0)
(b)0.3732(950.0)0.7115(930.8)0.3603(940.9)0.6882(940.2)0.3549(940.9)0.6772(940.3)
(c)0.3639(960.0)0.7232(930.8)0.3530(940.7)0.6928(940.6)0.3494(940.7)0.6827(940.5)
(d)0.3719(940.6)0.7081(930.9)0.3595(940.6)0.6866(940.1)0.3547(940.8)0.6767(940.2)
36(a)0.3650(940.1)0.7096(930.6)0.3614(940.0)0.7013(930.5)0.3614(930.9)0.7008(930.4)
(b)0.3836(940.8)0.7556(930.9)0.3718(940.5)0.7264(930.6)0.3678(940.7)0.7106(930.7)
(c)0.3736(940.8)0.7134(930.8)0.3650(950.1)0.6954(930.7)0.3633(940.8)0.6912(930.8)
(d)0.3813(950.0)0.7530(930.3)0.3712(940.6)0.7229(930.9)0.3674(940.8)0.7099(930.8)
34(a)0.3739(940.5)0.7304(940.4)0.3729(940.7)0.7288(940.6)0.3729(940.7)0.7288(940.6)
(b)0.3957(940.2)0.8007(940.8)0.3824(950.3)0.7595(950.1)0.3777(940.8)0.7454(950.0)
(c)0.3799(950.6)0.7376(940.4)0.3729(960.1)0.7271(940.5)0.3723(960.0)0.7252(940.6)
(d)0.3913(940.4)0.7893(940.6)0.3819(950.3)0.7574(950.0)0.3772(940.9)0.7453(950.1)
32(a)0.3857(940.7)0.7571(940.3)0.3856(940.7)0.7571(940.3)0.3856(940.7)0.7571(940.3)
(b)0.4137(940.3)0.7976(940.4)0.3984(940.5)0.7684(940.3)0.3937(940.3)0.7555(940.6)
(c)0.3890(950.1)0.7676(930.9)0.3859(940.9)0.7573(940.0)0.3857(950.0)0.7567(940.0)
(d)0.4090(940.2)0.7901(940.3)0.3969(940.3)0.7630(940.5)0.3929(940.2)0.7543(940.6)
ConfL (CovP).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Cho, S.; Lee, K. Exact Likelihood Inference for a Competing Risks Model with Generalized Type II Progressive Hybrid Censored Exponential Data. Symmetry 2021, 13, 887. https://doi.org/10.3390/sym13050887

AMA Style

Cho S, Lee K. Exact Likelihood Inference for a Competing Risks Model with Generalized Type II Progressive Hybrid Censored Exponential Data. Symmetry. 2021; 13(5):887. https://doi.org/10.3390/sym13050887

Chicago/Turabian Style

Cho, Subin, and Kyeongjun Lee. 2021. "Exact Likelihood Inference for a Competing Risks Model with Generalized Type II Progressive Hybrid Censored Exponential Data" Symmetry 13, no. 5: 887. https://doi.org/10.3390/sym13050887

APA Style

Cho, S., & Lee, K. (2021). Exact Likelihood Inference for a Competing Risks Model with Generalized Type II Progressive Hybrid Censored Exponential Data. Symmetry, 13(5), 887. https://doi.org/10.3390/sym13050887

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop