On Certain Differential Subordination of Harmonic Mean Related to a Linear Function
Abstract
:1. Introduction
2. Main Result
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chojnacka, O.; Lecko, A. On some differential subordination of harmonic mean. Bull. Soc. Sci. Lett. Łódź 2014, LXIV, 29–40. [Google Scholar]
- Cho, N.E.; Lecko, A. Differential subordination of harmonic mean. Comput. Methods Funct. Theory 2015, 15, 427–437. [Google Scholar] [CrossRef]
- Chojnacka, O.; Lecko, A. Differential subordination of a harmonic mean to a linear function. Rocky Mountain J. Math. 2018, 48, 1475–1484. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerlands, 2000. [Google Scholar]
- Lewandowski, Z.; Miller, S.S.; Złotkiewicz, E. Generating functions for some classes of univalent functions. Proc. Am. Math. Soc. 1976, 56, 111–117. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential subordination and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. On some classes of first-order differential subordinations. Mich. Math. J. 1985, 32, 185–195. [Google Scholar] [CrossRef]
- Hallenbeck, D.J.; Ruscheweyh, S. Subordination by convex function. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
- Kanas, S.; Lecko, A.; Stankiewicz, J. Differential subordinations and geometric means. Complex Var. 1996, 28, 201–209. [Google Scholar]
- Crişan, O.; Kanas, S. Differential subordinations involving arithmetic and geometric means. Appl. Math. Comp. 2013, 222, 123–131. [Google Scholar] [CrossRef]
- Cho, N.E.; Chojnacka, O.; Lecko, A. On Differential Subordination of Geometric Means. Bull. Soc. Sci. Lettres Lódź 2014, 2014, 11. [Google Scholar]
- Kanas, S.; Tudor, A.-E. Differential Subordinations and Harmonic Means. Bull. Malay. Math. Sci. Soc. 2015, 38, 1243–1253. [Google Scholar] [CrossRef] [Green Version]
- Pommerenke, C. Boundary Behaviour of Conformal Maps; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1992. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Briot-Bouquet differential equations and differential subordinations. Complex Var. 1997, 33, 217–237. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobosz, A.; Jastrzębski, P.; Lecko, A. On Certain Differential Subordination of Harmonic Mean Related to a Linear Function. Symmetry 2021, 13, 966. https://doi.org/10.3390/sym13060966
Dobosz A, Jastrzębski P, Lecko A. On Certain Differential Subordination of Harmonic Mean Related to a Linear Function. Symmetry. 2021; 13(6):966. https://doi.org/10.3390/sym13060966
Chicago/Turabian StyleDobosz, Anna, Piotr Jastrzębski, and Adam Lecko. 2021. "On Certain Differential Subordination of Harmonic Mean Related to a Linear Function" Symmetry 13, no. 6: 966. https://doi.org/10.3390/sym13060966
APA StyleDobosz, A., Jastrzębski, P., & Lecko, A. (2021). On Certain Differential Subordination of Harmonic Mean Related to a Linear Function. Symmetry, 13(6), 966. https://doi.org/10.3390/sym13060966