On Markov Moment Problem and Related Results
Abstract
:1. Introduction
2. Methods
2.1. Constrained Extension Results for Linear Operators
- (a)
- There exists a linear operatorsuch that the following applies:
- (b)
- For any finite subsetand anythe following implication holds true:Ifis a vector lattice, then assertions (a) and (b) are equivalent to (c), where the following applies:
- (c)
- for alland for any finite subsetandwe have the following:
2.2. Polynomial Approximation on Unbounded Subsets
2.3. Elements of Self-Adjoint Operator Theory and Symmetric Matrices
3. Results
3.1. Polynomial Approximation and Markov Moment Problem
- (a)
- There exists a unique (bounded) linear operatorsuch thaton the positive cone of
- (b)
- For any polynomialonwe haveifis a finite subset andthen the following applies:
- (c)
- onand for any polynomial, the following inequality holds:
- (a)
- There exists a unique positive linear operatorsuch that
- (b)
- For any polynomialonit resultsifis a finite subset andthen the following applies:
- (a)
- There exists a unique (bounded) linear operatoron
- (b)
- For any finite subsetand anythe following implications hold true:
- (a)
- There exists a unique bounded linear operatorfromtoon , such thatfor all
- (b)
- Ifis a finite subset andthen the following applies:
- (a)
- There exists a unique (bounded) linear operatoron
- (b)
- For any finite subsetand anythe following implication holds true:
3.2. On a Polynomial Solution for Truncated Multidimensional Moment Problem
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akhiezer, N.I. The Classical Moment Problem and Some Related Questions in Analysis; Oliver and Boyd: Edinburgh-London, UK, 1965. [Google Scholar]
- Krein, M.G.; Nudelman, A.A. Markov Moment Problem and Extremal Problems; American Mathematical Society: Providence, RI, USA, 1977. [Google Scholar]
- Schmüdgen, K. The Moment Problem. In Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Cristescu, R. Ordered Vector Spaces and Linear Operators; Academiei, Bucharest, and Abacus Press: Tunbridge Wells, Kent, UK, 1976. [Google Scholar]
- Niculescu, C.; Popa, N. Elements of Theory of Banach Spaces; Academiei: Bucharest, Romania, 1981. (In Romanian) [Google Scholar]
- Choudary, A.D.R.; Niculescu, C.P. Real Analysis on Intervals; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK; New Delhi, India, 2014. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications, A Contemporary Approach, 2nd ed.; (CMS Books in Mathematics); Springer: New York, NY, USA, 2018; Volume 23. [Google Scholar]
- Boboc, N.; Bucur, G. Convex Cones of Continuous Functions on Compact Spaces; Academiei: Bucharest, Romania, 1976. (In Romanian) [Google Scholar]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill Book Company: New York, NY, USA, 1987. [Google Scholar]
- Berg, C.; Christensen, J.P.R.; Jensen, C.U. A remark on the multidimensional moment problem. Math. Ann. 1979, 243, 163–169. [Google Scholar] [CrossRef]
- Berg, C.; Durán, A.J. The fixed point for a transformation of Hausdorff moment sequences and iteration of a rational function. Math. Scand. 2008, 103, 11–39. [Google Scholar] [CrossRef] [Green Version]
- Berg, C.; Beygmohammadi, M. On a fixed point in the metric spece of normalized Hausdorff moment sequences. Rend. Circ. Mat. Palermo Ser. II 2010, 82 (Suppl. 82), 251–257. [Google Scholar]
- Cassier, G. Problèmes des moments sur un compact de et décomposition des polynȏmes à plusieurs variables (Moment problems on a compact subset of and decomposition of polynomials of several variables). J. Funct. Anal. 1984, 58, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Choquet, G. Le problème des moments (The moment problem). In Séminaire d’Initiation à l’Analise; Institut H. Poincaré: Paris, France, 1962. [Google Scholar]
- Fuglede, B. The multidimensional moment problem. Expo. Math. 1983, 1, 47–65. [Google Scholar]
- Haviland, E.K. On the momentum problem for distributions in more than one dimension. Am. J. Math. 1936, 58, 164–168. [Google Scholar] [CrossRef]
- Marshall, M. Polynomials non-negative on a strip. Proc. Am. Math. Soc. 2010, 138, 1559–1567. [Google Scholar] [CrossRef] [Green Version]
- Inverardi, P.L.N.; Tagliani, A. Stieltjies and Hamburger reduced moment problem when MaxEnt solution does not exist. Mathematics 2021, 9, 309. [Google Scholar] [CrossRef]
- Kutateladze, S.S. Convex operators. Russ. Math. Surv. 1979, 34, 181–214. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Olteanu, O. From the Hahn-Banach extension theorem to the isotonicity of convex functions and the majorization theory. Rev. R. Acad. Cienc. Exactas Fis. Nat. RACSAM 2020, 114, 171. [Google Scholar] [CrossRef]
- Păltineanu, G.; Bucur, I. Some density theorems in the set of continuous functions with values in the unit interval. Mediterr. J. Math. 2017, 14, 44. [Google Scholar] [CrossRef]
- Lemnete, L. An operator-valued moment problem. Proc. Am. Math. Soc. 1991, 112, 1023–1028. [Google Scholar] [CrossRef]
- Bennett, G. Hausdorff means and moment sequences. Positivity 2011, 15, 17–48. [Google Scholar] [CrossRef]
- Putinar, M. Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 1993, 42, 969–984. [Google Scholar] [CrossRef]
- Sokal, A.D. The Euler and Springer numbers as moment sequences. Expo. Math. 2020, 38, 1–26. [Google Scholar] [CrossRef]
- Stoyanov, J.M.; Lin, G.D.; Kopanov, P. New checkable conditions for moment determinacy of probability distributions. SIAM Theory Probab. Appl. 2020, 65, 497–509. [Google Scholar] [CrossRef]
- Vasilescu, F.H. Spectral measures and moment problems. In Spectral Analysis and its Applications (Ion Colojoară Anniversary Volume); Theta: Bucharest, Romania, 2003; pp. 173–215. [Google Scholar]
- Norris, D.T. Optimal Solutions to the L∞ Moment Problem with Lattice Bounds. Ph.D. Thesis, The University of Colorado, Boulder, CO, USA, 2002. Available online: http://math.colorado.edu/∼norrisdt/dougthesis.ps (accessed on 22 April 2021).
- Ambrozie, C.; Olteanu, O. A sandwich theorem, the moment problem, finite-simplicial sets and some inequalities. Rev. Roum. Math. Pures Appl. 2004, 49, 189–210. [Google Scholar]
- Gosse, L.; Runborg, O. Resolution of the finite Markov moment problem. Comptes Rendus Math. 2005, 341, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Gosse, L.; Runborg, O. Existence, uniqueness, and a constructive solution algorithm for a class of finite Markov moment problems. SIAM J. Appl. Math. 2008, 68, 1618–1640. [Google Scholar] [CrossRef] [Green Version]
- Lemnete-Ninulescu, L.; Zlătescu, A. Some new aspects of the L-moment problem. Rev. Roum. Math. Pures Appl. 2010, 55, 197–204. [Google Scholar]
- Mihăilă, J.M.; Olteanu, O.; Udrişte, C. Markov-type moment problems for arbitrary compact and for some non-compact Borel subsets of . Rev. Roum. Math. Pures Appl. 2007, 52, 655–664. [Google Scholar]
- Olteanu, O. Application de théorèmes de prolongement d’opérateurs linéaires au problème des moments e à une generalization d’un théorème de Mazur-Orlicz, (Applications of theorems on extension of linear operators to the moment problem and to a generalization of Mazur-Orlicz theorem). Comptes Rendus Acad. Sci. Paris 1991, 313, 739–742. [Google Scholar]
- Olteanu, O. New results on Markov moment problem. Int. J. Anal. 2013, 901318. [Google Scholar] [CrossRef] [Green Version]
- Olteanu, O. Approximation and Markov moment problem on concrete spaces. Rend. Circ. Mat. Palermo 2014, 63, 161–172. [Google Scholar] [CrossRef]
- Olteanu, O. Polynomial approximation on unbounded subsets, Markov moment problem and other applications. Mathematics 2020, 8, 165. [Google Scholar] [CrossRef]
- Olteanu, O. On truncated and full classical Markov moment problems. Contrib. Math. 2021, 3, 29–36. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olteanu, O. On Markov Moment Problem and Related Results. Symmetry 2021, 13, 986. https://doi.org/10.3390/sym13060986
Olteanu O. On Markov Moment Problem and Related Results. Symmetry. 2021; 13(6):986. https://doi.org/10.3390/sym13060986
Chicago/Turabian StyleOlteanu, Octav. 2021. "On Markov Moment Problem and Related Results" Symmetry 13, no. 6: 986. https://doi.org/10.3390/sym13060986
APA StyleOlteanu, O. (2021). On Markov Moment Problem and Related Results. Symmetry, 13(6), 986. https://doi.org/10.3390/sym13060986