Regularity of Weak Solutions to the Inhomogeneous Stationary Navier–Stokes Equations
Abstract
:1. Introduction and Statement of the Results
2. Preliminary Results
3. Proof of Theorem 1
4. Proof of Theorem 2
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galdi, G.P. An Introduction to the Mathematical Theory of the Navier—Stokes Equations. Steady—State Problems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Deteix, J.; Yakoubi, D. Improving the pressure accuracy in a projection scheme for incompressible fluids with variable viscosity. Appl. Math. Lett. 2018, 79, 111–117. [Google Scholar] [CrossRef]
- Plasman, L.; Deteix, J.; Yakoubi, D. A projection scheme for Navier–Stokes with variable viscosity and natural boundary condition. Int. J. Numer. Methods Fluids 2020, 92, 1845–1865. [Google Scholar] [CrossRef]
- Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Stokes, G.G. On the theories of the internal friction of fluids in motion, and of the equillibrium and motion of elastic solids. Trans. Camb. Philos. Soc. 1845, 8, 287–305. [Google Scholar]
- Málek, J.; Nečas, J.; Rajagopal, K.R. Global analysis of the flows of fluids with pressure-dependent viscosities. Arch. Rational Mech. Anal. 2002, 165, 243–269. [Google Scholar] [CrossRef]
- Málek, J.; Nečas, J.; Rajagopal, K.R. Global existence of solutions for flows of fluids with pressure and shear dependent viscosites. Appl. Math. Lett. 2002, 15, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Gazzola, F. A note on the evolution Navier–Stokes equations with a pressure-dependent viscosity. Z. Angew. Math. Phys. 1997, 48, 760–773. [Google Scholar] [CrossRef]
- Marušić-Paloka, E. An analysis of the Stokes system with pressure dependent viscosity. Rend. Ist. Mat. Univ. Trieste 2014, 46, 123–136. [Google Scholar]
- Marušić-Paloka, E.; Pažanin, I. A note on the pipe flow with a pressure-dependent viscosity. J. Non–Newton. Fluid Mech. 2013, 197, 5–10. [Google Scholar] [CrossRef]
- Giaquinta, M.; Modica, G. Non linear systems of the type of the stationary Navier–Stokes system. J. Reine Angew. Math. 1982, 330, 173–214. [Google Scholar]
- Serre, D. Équations de Navier—Stokes stationnaires avec données per régulaires. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1983, 10, 543–559. [Google Scholar]
- Ladyzhenskaia, O.A. The Mathematical Theory of Viscous Incompressible Flow; Gordon and Breach: Lausanne, Switzerland, 1963. [Google Scholar]
- Gerhardt, C. Stationary solutions to the Navier–Stokes equations in dimension four. Math. Z. 1979, 165, 193–197. [Google Scholar] [CrossRef]
- Kim, H.; Kozono, H. A removable isolated singularity theorem for the stationary Navier—Stokes equations. J. Diff. Equ. 2006, 220, 68–84. [Google Scholar] [CrossRef] [Green Version]
- Korobkov, M.V.; Pileckas, K.; Russo, R. A simple proof of regularity of steady-state distributional solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 2020, 22, 55. [Google Scholar] [CrossRef]
- Russo, R.; Tartaglione, A. The Plane Exterior Boundary–Value Problem for Nonhomogeneous Fluids. J. Math. Fluid Mech. 2020, 22, 14. [Google Scholar] [CrossRef]
- Ferone, A.; Russo, R.; Tartaglione, A. The Stokes Paradox in Inhomogeneous Elastostatics. J. Elast. 2020, 142, 35–52. [Google Scholar] [CrossRef]
- Starita, G.; Tartaglione, A. On the Fredholm property of the trace operators associated with the elastic layer potentials. Mathematics 2019, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Maly, J.; Ziemer, W.P. Fine Regularity of Solutions of Elliptic Partial Differential Equations; AMS: Providence, RI, USA, 1997. [Google Scholar]
- Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of the Second Order; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Giusti, E. Direct Methods in the Calculus of Variations; Word Scientific: Singapore, 2004. [Google Scholar]
- Morrey, C.B., Jr. Multiple Integrals in the Calculus of Variations; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
- Campanato, S. Equazioni ellittiche del secondo ordine e spazi 2,λ. Ann. Mat. Pura Appl. 1965, 69, 321–382. [Google Scholar] [CrossRef]
- Iwaniec, T.; Sbordone, C. On the integrability of the Jacobian under minimal hypotheses. Arch. Rational Mech. Anal. 1992, 119, 129–143. [Google Scholar] [CrossRef]
- Russo, A.; Tartaglione, A. On the Stokes problem with data in L1. Z. Angew. Math. Phys. 2013, 64, 1327–1336. [Google Scholar] [CrossRef]
- Tartaglione, A. On the Stokes and Oseen problems with singular data. J. Math. Fluid Mech. 2014, 16, 407–417. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tartaglione, A. Regularity of Weak Solutions to the Inhomogeneous Stationary Navier–Stokes Equations. Symmetry 2021, 13, 1336. https://doi.org/10.3390/sym13081336
Tartaglione A. Regularity of Weak Solutions to the Inhomogeneous Stationary Navier–Stokes Equations. Symmetry. 2021; 13(8):1336. https://doi.org/10.3390/sym13081336
Chicago/Turabian StyleTartaglione, Alfonsina. 2021. "Regularity of Weak Solutions to the Inhomogeneous Stationary Navier–Stokes Equations" Symmetry 13, no. 8: 1336. https://doi.org/10.3390/sym13081336
APA StyleTartaglione, A. (2021). Regularity of Weak Solutions to the Inhomogeneous Stationary Navier–Stokes Equations. Symmetry, 13(8), 1336. https://doi.org/10.3390/sym13081336