A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
3. Existence of Weak Solutions of Problems (1)–(3)
4. Strong Solutions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eringen, A.C. Simple microfluids. Int. J. Engrg. Sci. 1964, 2, 205–217. [Google Scholar] [CrossRef]
- Eringen, A.C. Theory of micropolar fluids. J. Math. Mech. 1966, 16, 1–16. [Google Scholar] [CrossRef]
- Le Roux, C. Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions. Arch. Ration. Mech. Anal. 1999, 148, 309–356. [Google Scholar] [CrossRef]
- Navier, C.L. Sur le lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. France 1823, 6, 389–416. [Google Scholar]
- Jägger, W.; Mikelić, A. On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 2001, 170, 96–122. [Google Scholar] [CrossRef] [Green Version]
- Coron, J.-M. On the controllability of the 2-D incompressible Navier-Stokes equations with Navier slip boundary condition. ESAIM Control Optim. Cal. Var. 1996, 1, 35–75. [Google Scholar] [CrossRef] [Green Version]
- Coron, F. Derivation of slip boundary conditions for the Navier-Stokes system from the Boltzmann equation. J. Statical Phys. 1989, 54, 829–857. [Google Scholar] [CrossRef]
- Raviart, P.A.; Thomas, J.M. Introduction À l’analyse Numérique de Èquations aux Dérivées Partielles. In Collection Mathématiques Appliquées pour la Maîtrise; Masson: Paris, France, 1983. [Google Scholar]
- Fujita, H. A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions. Rest. Inst. Math. Sci. 1994, 888, 199–216. [Google Scholar]
- Fujita, H. A coherent analysis of Stokes flow under boundary conditions of friction type. J. Comp. Appl. Math. 2002, 149, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Lukaszewicz, G. Micropolar fluids. In Theory and Applications; Birkhaüser: Boston, MA, USA, 1999. [Google Scholar]
- Boldrini, J.L.; Rojas-Medar, M.A.; Fernández-Cara, E. Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids. J. Math. Pures Appl. 2003, 82, 1499–1525. [Google Scholar] [CrossRef] [Green Version]
- Braz e Silva, P.; Cruz, F.W.; Loayza, M.; Rojas-Medar, M.A. Global unique solvability of nonhomogeneous asymmetric fluids: A Lagrangian approach. J. Differ. Equ. 2020, 269, 1319–1348. [Google Scholar] [CrossRef]
- Braz e Silva, P.; Cruz, F.W.; Rojas-Medar, M.A. Semi-strong and strong solutions for variable density asymmetric fluids in unbounded domains. Math. Methods Appl. Sci. 2017, 40, 757–774. [Google Scholar] [CrossRef]
- Ferreira, L.C.F.; Villamizar-Roa, E.J. Micropolar fluid system in a space of distributions and large time behavior. J. Math. Anal. Appl. 2007, 332, 1425–1445. [Google Scholar] [CrossRef] [Green Version]
- Villamizar-Roa, E.J.; Rodríguez-Bellido, M.A. Global existence and exponential stability for the micropolar fluid system. Z. Agew. Math. Phys. 2008, 59, 790–809. [Google Scholar] [CrossRef]
- Prodi, G. Un teorema di unicità per le equazioné di Navier-Stokes. Ann. Mat. Pura Appl. 1959, 48, 173–182. [Google Scholar] [CrossRef]
- Serrin, J. On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 1962, 9, 187–195. [Google Scholar] [CrossRef]
- Ortega-Torres, E.; Rojas-Medar, M.A. On the regularity for solutions of the micropolar fluid equations. Rend. Semin. Mat. Univ. Padova 2009, 122, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, A.M.; Gala, S.; Kim, J.-M.; Ragusa, M.A. The anisotropic integrability logarithmic regularity criterion to the 3D micropolar fluid equations. AIMS Math. 2020, 5, 359–375. [Google Scholar] [CrossRef]
- Gala, S.; Ragusa, M.A.; Théra, M. A new regularity criterion of weak solutions to the 3D micropolar fluid flows in terms of the pressure. Boll. Unione Mat. Ital. 2020. [Google Scholar] [CrossRef]
- Gala, S.; Ragusa, M.A. A regularity criterion for 3D micropolar fluid flows in terms of one partial derivative of the velocity. arXiv 2020, arXiv:2005.004458v1. [Google Scholar] [CrossRef]
- Loayza, M.; Rojas-Medar, M.A. A weak Lp- Prodi-Serrin type regularity criterion for the micropolar fluid equations. J. Math. Phys. 2016, 57, 021512. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Wu, F. A regularity criterion for three-dimensional micropolar fluid equations in Besov spaces of negative regular indices. Anal. Math. Phys. 2020, 30, 11. [Google Scholar] [CrossRef]
- Ferreira, L.C.F.; Planas, G.; Villamizar-Roa, E.J. On the nonhomogeneous Navier-Stokes system with Navier friction boundary conditions. SIAM J. Math. Anal. 2013, 45, 2576–2595. [Google Scholar] [CrossRef]
- Mulone, G.; Salemi, F. On the existence of hydrodynamic motion in a domain with mixed boundary type condition. Meccanica 1983, 18, 136–144. [Google Scholar] [CrossRef]
- Mulone, G.; Salemi, F. On the hydrodynamic motion in a domain with mixed boundary conditions: Existence, uniqueness, stability and linearization principle. Anal. Mat. Pura Appl. 1985, 139, 147–174. [Google Scholar] [CrossRef]
- Shimada, R.; Yamaguchi, N. On an existence theorem for the Navier-Stokes equations with free slip boundary condition in exterior domain. In Parabolic and Navier-Stokes Equations; Banach Center Publ., 81, Part. 2; Polish Academy of Sciences, Institute of Mathematics: Warsaw, Poland, 2008. [Google Scholar]
- Amrouche, C.; Rejaiba, A. Lp-theory for Stokes and Navier-Stokes equations with Navier boundary conditions. J. Differ. Equ. 2014, 256, 1515–1547. [Google Scholar] [CrossRef]
- Solonnikov, V.A.; Šcadilov, V.E. A certain boundary value problem for the stationary system of Navier-Stokes equations. Trudy Mat. Inst. 1973, 125, 196–210. [Google Scholar]
- Mallea-Zepeda, E.; Lenes, E.; Rodríguez Zambrano, J. Bilinear optimal control problem for the stationary Navier-Stokes equations with variable density and slip boundary condition. Bull. Braz. Math. Soc. 2019, 50, 871–887. [Google Scholar] [CrossRef]
- Mallea-Zepeda, E.; Ortega-Torres, E.; Villamizar-Roa, E.J. A boundary control problem for micropolar fluids. J. Optim. Theory Appl. 2016, 169, 349–369. [Google Scholar] [CrossRef]
- Mallea-Zepeda, E.; Ortega-Torres, E.; Villamizar-Roa, E.J. An optimal control problem for the steady nonhomogeneous asymmetric fluids. Appl. Math. Optim. 2019, 80, 299–329. [Google Scholar] [CrossRef] [Green Version]
- Baranovskii, E.S. Global solutions for a model of polymeric flows with wall slip. Math. Methods Appl. Sci. 2017, 40, 5035–5043. [Google Scholar] [CrossRef]
- Temam, R. Navier-Stokes equations. In Theory and Numerical Analysis; AMS Chelsea Publication: Providence, RI, USA, 2001. [Google Scholar]
- Alekseev, G.V. Solvability of stationary boundary control problems for heat convection equations. Sib. Math. J. 1998, 39, 982–998. [Google Scholar] [CrossRef]
- Lions, J.L. Quelques Métodes de Résolution des Problèmes Aux Limites Non Linéares. In Etudes Mathématiques; Dunod: Paris, France, 1969. [Google Scholar]
- Simon, J. Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 1987, 146, 65–96. [Google Scholar] [CrossRef]
- Nirenberg, L. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1959, 13, 115–162. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte-Leiva, C.; Lorca, S.; Mallea-Zepeda, E. A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions. Symmetry 2021, 13, 1348. https://doi.org/10.3390/sym13081348
Duarte-Leiva C, Lorca S, Mallea-Zepeda E. A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions. Symmetry. 2021; 13(8):1348. https://doi.org/10.3390/sym13081348
Chicago/Turabian StyleDuarte-Leiva, Cristian, Sebastián Lorca, and Exequiel Mallea-Zepeda. 2021. "A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions" Symmetry 13, no. 8: 1348. https://doi.org/10.3390/sym13081348
APA StyleDuarte-Leiva, C., Lorca, S., & Mallea-Zepeda, E. (2021). A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions. Symmetry, 13(8), 1348. https://doi.org/10.3390/sym13081348