Exact Solutions to the Navier–Stokes Equations with Couple Stresses
Abstract
:1. Introduction
2. The Navier–Stokes Equations with Couple Stresses
3. Unidirectional Flows
4. Exact Solutions for Three-Dimensional Flows
5. Exact Solutions for Shearing Flows
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics. Volume 6. Fluid Mechanics; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Temam, R. Navier–Stokes Equations. Theory and Numerical Analysis; North-Holland: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Aero, E.L.; Bulygin, A.N.; Kuvshinskii, E.V. Asymmetric hydromechanics. J. App. Math. Mech. 1965, 29, 333–346. [Google Scholar] [CrossRef]
- Stokes, V.K. Couple stresses in fluids. Phys. Fluids. 1966, 9, 1709–1715. [Google Scholar] [CrossRef]
- Stokes, V.K. Theories of Fluids with Microstructure. An Introduction; Springer: Berlin, Germany, 1984. [Google Scholar] [CrossRef]
- Stokes, V.K. Effects of couple stresses in fluids on hydromagnetic channel flows. Phys. Fluids. 1968, 11, 1131–1133. [Google Scholar] [CrossRef]
- Stokes, V.K. On some effects of couple stresses in fluids on heat transfer. J. Heat Transfer. 1969, 91, 182–184. [Google Scholar] [CrossRef]
- Devakar, M.; Iyengar, T.K.V. Stokes’ problems for an incompressible couple stress fluid. Nonlinear Anal. Model. Control. 2008, 13, 181–190. [Google Scholar] [CrossRef]
- Eringen, A.C. Simple microfluids. Int. J. Eng. Sci. 1964, 2, 205–217. [Google Scholar] [CrossRef]
- Eringen, A.C.; Suhubi, E.S. Nonlinear theory of simple micro-elastic solids. Int. J. Eng. Sci. 1964, 2, 189–203. [Google Scholar] [CrossRef]
- Eringen, A.C. Theory of micropolar fluids. J. Math. Mech. 1966, 16, 1–18. [Google Scholar] [CrossRef]
- Toupin, R.A. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 1962, 11, 385. [Google Scholar] [CrossRef] [Green Version]
- Eremeev, V.A.; Zubov, L.M. Fundam. Mech. A Viscoelastic Micropolar Fluid; SSC RAS: Rostov, Russia, 2009. (In Russian) [Google Scholar]
- Joseph, S.P. Some exact solutions for incompressible couple stress fluid flows. Malaya J. Mat. 2020, 648–652. [Google Scholar] [CrossRef]
- Cosserat, E.; Cosserat, F. Théorie des Corps Déformables; A. Hermann et Fils: Paris, France, 1909. [Google Scholar]
- Ahmad, F.; Nazeer, M.; Ali, W.; Saleem, A.; Sarwar, H.; Suleman, S.; Abdelmalek, Z. Analytical study on couple stress fluid in an inclined channel. Sci. Iran. 2021. [Google Scholar] [CrossRef]
- Srinivas, J.; Ramana Murthy, J.V. Thermal analysis of a flow of immiscible couple stress fluids in a channel. J. Appl. Mech. Tech. Phys. 2016, 57, 997–1005. [Google Scholar] [CrossRef]
- Lin, C.C. Note on a class of exact solutions in magneto-hydrodynamics. Arch. Ration. Mech. Anal. 1957, 1, 391–395. [Google Scholar] [CrossRef]
- Sidorov, A.F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory. J. Appl. Mech. Tech. Phys. 1989, 30, 197–203. [Google Scholar] [CrossRef]
- Aristov, S.N. Eddy Currents in Thin Liquid Layers. Ph.D. Thesis, Institute of Automation and Control Processes, Vladivostok, Russia, 1990. (In Russian). [Google Scholar]
- Prosviryakov, E.Y. New class of exact solutions of Navier–Stokes equations with exponential dependence of velocity on two spatial coordinates. Theor. Found. Chem. Eng. 2019, 53, 107–114. [Google Scholar] [CrossRef]
- Zubarev, N.M.; Prosviryakov, E.Y. Exact solutions for layered three-dimensional nonstationary isobaric flows of a viscous incompressible fluid. J. Appl. Mech. Tech. Phys. 2019, 60, 1031–1037. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid. Tr. Instit. Mat. I Mekh. UrO RAN. 2020, 26, 79–87. (In Russian) [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. A class of exact solutions for two-dimensional equations of geophysical hydrodynamics with two Coriolis parameters. Izv. Irkutsk. Gos. Univ. Ser. Mat. 2020, 32, 33–48. (In Russian) [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Isothermal layered flows of a viscous incompressible fluid with spatial acceleration in the case of three Coriolis parameters. DReaM 2020, 3, 29–46. (In Russian) [Google Scholar] [CrossRef]
- Öz, Y. Rigorous investigation of the Navier–Stokes momentum equations and correlation tensors. AIP Adv. 2021, 11, 055009. [Google Scholar] [CrossRef]
- Münch, I.; Neff, P.; Madeo, A.; Ghiba, I.-D. The modified indeterminate couple stress model: Why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. Z. Angew. Math. Mech. 2017, 97, 1524–1554. [Google Scholar] [CrossRef] [Green Version]
- Hadjesfandiari, A.R.; Dargush, G.F. Evolution of Generalized Couple-Stress Continuum Theories: A Critical Analysis. arXiv 2014, arXiv:1501.03112. [Google Scholar]
- Reggiani, P.; Sivapalan, M.; Hassanizadeh, S.M.; Gray, W.G. Coupled equations for mass and momentum balance in a stream network: Theoretical derivation and computational experiments. Proc. R. Soc. Lond. A. 2001, 457, 157–189. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A. On nonstationary Navier–Stokes equations. Vestn. Leningr. Univ. 1958, 19, 9–18. [Google Scholar]
- Ladyzhenskaya, O.A. On some gaps in two of my papers on the Navier–Stokes equations and the way of closing them. J. Math. Sci. 2003, 115, 2789–2791. [Google Scholar] [CrossRef]
- Couette, M. Études sur le frottement des liquids. Ann. Chim. Phys. 1890, 21, 433–510. [Google Scholar]
- Baranovskii, E.S.; Artemov, M.A. Steady flows of second-grade fluids in a channel. Vestn. S. Peterb. Univ. Prikl. Mat. Inf. Protsessy Upr. 2017, 13, 342–353. (In Russian) [Google Scholar] [CrossRef]
- Domnich, A.A.; Baranovskii, E.S.; Artemov, M.A. A nonlinear model of the non-isothermal slip flow between two parallel plates. J. Phys. Conf. Ser. 2020, 1479, 012005. [Google Scholar] [CrossRef]
- Fetecau, C.; Vieru, D.; Abbas, T.; Ellahi, R. Analytical solutions of upper convected Maxwell fluid with exponential dependence of viscosity under the influence of pressure. Mathematics 2021, 9, 334. [Google Scholar] [CrossRef]
- Fetecau, C.; Vieru, D. Symmetric and non-symmetric flows of Burgers’ fluids through porous media between parallel plates. Symmetry 2021, 13, 1109. [Google Scholar] [CrossRef]
- Aristov, S.N.; Knyazev, D.V.; Polyanin, A.D. Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables. Theor. Found. Chem. Eng. 2009, 43, 642–662. [Google Scholar] [CrossRef]
- Molchanov, A.M. Numerical Methods for Solving the Navier–Stokes Equations. OSF Preprints. 2019. Available online: https://osf.io/zf3j2/ (accessed on 20 June 2021).
- Chen, Z.J.; Li, Z.Y.; Xie, W.L.; Wu, X.H. A two-level variational multiscale meshless local Petrov–Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number. Comput. Fluids. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Li, S. Time Advancement of the Navier–Stokes equations: P-adaptive exponential methods. J. Flow Cont. Meas. Visual. 2020, 8, 63–76. [Google Scholar] [CrossRef]
- Li, S.-J.; Wang, Z.J.; Ju, L.; Luo, L.-S. Fast time integration of Navier–Stokes equations with an exponential-integrator scheme. In Proceedings of the AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar] [CrossRef]
- Li, L.; Yang, Z.; Dong, S. Numerical approximation of incompressible Navier–Stokes equations based on an auxiliary energy variable. J. Comput. Phys. 2019, 388, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Sun, S.; Zhang, T. Energy stability analysis of some fully discrete numerical schemes for incompressible Navier–Stokes equations on staggered grids. J. Sci. Comput. 2018, 75, 427–456. [Google Scholar] [CrossRef]
- Dong, S. Multiphase flows of N immiscible incompressible fluids: A reduction-consistent and thermodynamically-consistent formulation and associated algorithm. J. Comput. Phys. 2018, 361, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Ingel, L.K.; Kalashnik, M.V. Nontrivial features in the hydrodynamics of seawater and other stratified solutions. Phys. Usp. 2012, 55, 356–381. [Google Scholar] [CrossRef]
- Beskin, V.S. Axisymmetric steady flows in astrophysics. Phys. Usp. 2003, 46, 1209–1214. [Google Scholar] [CrossRef]
- Aristov, S.N.; Prosviryakov, E.Y. Inhomogeneous Couette flow. Rus. J. Nonlin. Dyn. 2014, 10, 177–182. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Aristov, S.N.; Prosviryakov, E.Y. Stokes waves in vortical fluid. Rus. J. Nonlin. Dyn. 2014, 10, 309–318. (In Russian) [Google Scholar] [CrossRef]
- Aristov, S.N.; Prosviryakov, E.Y. Nonuniform convective Couette flow. Fluid Dyn. 2016, 51, 581–587. [Google Scholar] [CrossRef]
- Shmyglevskii, Y.D. On isobaric planar flows of a viscous incompressible liquid. USSR Comput. Math. Math. Phys. 1985, 25, 191–193. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranovskii, E.S.; Burmasheva, N.V.; Prosviryakov, E.Y. Exact Solutions to the Navier–Stokes Equations with Couple Stresses. Symmetry 2021, 13, 1355. https://doi.org/10.3390/sym13081355
Baranovskii ES, Burmasheva NV, Prosviryakov EY. Exact Solutions to the Navier–Stokes Equations with Couple Stresses. Symmetry. 2021; 13(8):1355. https://doi.org/10.3390/sym13081355
Chicago/Turabian StyleBaranovskii, Evgenii S., Natalya V. Burmasheva, and Evgenii Yu. Prosviryakov. 2021. "Exact Solutions to the Navier–Stokes Equations with Couple Stresses" Symmetry 13, no. 8: 1355. https://doi.org/10.3390/sym13081355
APA StyleBaranovskii, E. S., Burmasheva, N. V., & Prosviryakov, E. Y. (2021). Exact Solutions to the Navier–Stokes Equations with Couple Stresses. Symmetry, 13(8), 1355. https://doi.org/10.3390/sym13081355