Regio- and Stereoselective Synthesis of a New Series of Spirooxindole Pyrrolidine Grafted Thiochromene Scaffolds as Potential Anticancer Agents
Abstract
:1. Introductiong
2. Materials and Methods
2.1. General
2.2. Synthesis of 4-Chloro-2H-thiochromene-3-carbaldehyde (2)
2.3. Synthesis of Thiochromene Chalcones (4a-e)
- (E)-3-(4-Chloro-2H-thiochromen-3-yl)-1-(4-chlorophenyl)prop-2-en-1-one (4a)
- (E)-3-(4-Chloro-2H-thiochromen-3-yl)-1-(4-fluorophenyl)prop-2-en-1-one (4b)
- (E)-3-(4-Chloro-2H-thiochromen-3-yl)-1-(4-nitrophenyl)prop-2-en-1-one (4c)
- (E)-3-(4-Chloro-2H-thiochromen-3-yl)-1-(4-bromophenyl)prop-2-en-1-one (4d)
- (E)-3-(4-Chloro-2H-thiochromen-3-yl)-1-(4-(trifluoromethyl)phenyl)-prop-2-en-1-one (4e)
2.4. Synthesis of Spirooxindole/Pyrrolidine/Thiochromene (7a-m)
- 1′-(4-Chloro-2H-thiochromen-3-yl)-2′-(4-chlorobenzoyl)-1′,2′,5′,6′,7′,7a′-hexahydro-spiro[indoline-3,3′-pyrrolizin]-2-one (7a)
- 6-Chloro-1′-(4-chloro-2H-thiochromen-3-yl)-2′-(4-chlorobenzoyl)-1′,2′,5′,6′,7′,7a′-h-exahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7b)
- 1′-(4-Chloro-2H-thiochromen-3-yl)-2′-(4-chlorobenzoyl)-5-fluoro-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7c)
- 1′-(4-Chloro-2H-thiochromen-3-yl)-5-fluoro-2′-(4-fluorobenzoyl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7d)
- 6-Chloro-1′-(4-chloro-2H-thiochromen-3-yl)-2′-(4-fluorobenzoyl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7e)
- 1′-(4-Chloro-2H-thiochromen-3-yl)-5-fluoro-2′-(4-nitrobenzoyl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7f)
- 6-Chloro-1′-(4-chloro-2H-thiochromen-3-yl)-2′-(4-nitrobenzoyl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7g)
- 2′-(4-Bromobenzoyl)-1′-(4-chloro-2H-thiochromen-3-yl)-5-fluoro-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7h)
- 2′-(4-Bromobenzoyl)-6-chloro-1′-(4-chloro-2H-thiochromen-3-yl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7i)
- 2′-(4-Bromobenzoyl)-1′-(4-chloro-2H-thiochromen-3-yl)-5-nitro-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7j)
- 5-Chloro-1′-(4-chloro-2H-thiochromen-3-yl)-2′-(4-(trifluoromethyl)benzoyl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7k)
- 1′-(4-Chloro-2H-thiochromen-3-yl)-5-nitro-2′-(4-(trifluoromethyl)benzoyl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7l)
- 1′-(4-Chloro-2H-thiochromen-3-yl)-2′-(4-fluorobenzoyl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one (7m)
2.5. Biological Activity Assays Protocols
3. Results and Discussion
3.1. Synthesis of (4a-e) and (7a-m)
3.2. X-ray Structure Description
3.3. Biological Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uma, R.G.; Vivek Kumar, S.; Bharkavi, C.; Menendez, J.C.; Perumal, S. One-pot access to a library of dispiro oxindole-pyrrolidine/pyrrolothiazole-thiochromane hybrids via three-component 1, 3-dipolar cycloaddition reactions. ACS Comb. Sci. 2016, 18, 337–342. [Google Scholar]
- Cui, C.B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 1996, 52, 12651–12666. [Google Scholar] [CrossRef]
- Cui, C.B.; Kakeya, H.; Osada, H. Spirotryprostatin B, novel mammalian cell cycle inhibitor produced by Aspergillus fumigatus. J. Antibiot. 1996, 49, 832–835. [Google Scholar] [CrossRef] [Green Version]
- Ban, Y.; Taga, N.; Oishi, T. The synthesis of 3-spirooxindole derivatives. Total syntheses of dl-formosanine, dl-isoformosanine, dl-mitraphylline and dl-isomitraphylline. Tetrahedron Lett. 1974, 15, 187–190. [Google Scholar] [CrossRef]
- Anderton, N.; Cockrum, P.A.; Colegate, S.M.; Edgar, J.A.; Flower, K.; Vit, I.; Willing, R.I. Oxindoles from Phalariscoe rulescens. Phytochemistry 1998, 48, 437–439. [Google Scholar] [CrossRef]
- Pellegrin, C.; Weber, M.; Borschberg, H.-J. Total synthesis of (+)-elacomine and (−)-isoelacomine, two hitherto unnamed oxindole alkaloids from Elaeagnus commutata. Helv. Chim. Acta. 1996, 79, 151–168. [Google Scholar] [CrossRef]
- Jossang, A.; Jossang, P.; Hadi, H.A.; Sevenet, T.; Bodo, B. Horsfiline, an oxindole alkaloid from Horsfieldia superba. J. Org. Chem. 1991, 56, 6527–6530. [Google Scholar] [CrossRef]
- Chan, K.C.; Morsingh, F.; Yeoh, G. Alkaloids of Uncaria pteropoda. Isolation and structures of pteropodine and isopteropodine. J. Chem. Soc. C 1966, 1966, 2245–2249. [Google Scholar] [CrossRef] [PubMed]
- Ghedira, K.; Zeches-Hanrot, M.; Richard, B.; Massiot, G.; Le MenOlivier, L.; Sevenet, T.; Goh, S.H. Alkaloids of Alstonia angustifolia. Phytochemistry 1988, 27, 3955–3962. [Google Scholar] [CrossRef]
- Shi, J.S.; Yu, J.X.; Chen, X.P.; Xu, R.X. Pharmacological actions of Uncaria alkaloids, rhynchophylline and isorhynchophylline. Acta. Pharmacol. Sin. 2003, 24, 97–101. [Google Scholar]
- Bassleer, R.; Depauw-Gillet, M.C.; Massart, B.; Marnette, J.-M.; Wiliquet, P.; Caprasse, M.; Angenot, L. Effets de trois alcalóides extraits du Strychnos usambarensis sur des cellules cancéreuses en culture. Planta Med. 1982, 45, 123–126. [Google Scholar] [CrossRef]
- Suresh Kumar, R.; Michael Rajesh, S.; Perumal, S.; Banerjee, D.; Yogeeswari, P.; Sriram, D. Novel three-component domino reactions of ketones, isatin and amino acids: Synthesis and discovery of antimycobacterial activity of highly functionalised novel dispiropyrrolidines. Eur. J. Med. Chem. 2010, 45, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Michael, R.S.; Perumal, S.; Menendez, J.C.; Yogeeswari, P.; Sriram, D. Antimycobacterial activity of spirooxindolo-pyrrolidine, pyrrolizine and pyrrolothiazole hybrids obtained by a three component regio- and stereo-selective 1,3-dipolar cycloaddition. Med. Chem. Commun. 2011, 2, 626–630. [Google Scholar]
- Bhaskar, G.; Arun, Y.; Balachandran, C.; Saikumar, C.; Perumal, P.T. Synthesis of novel spirooxindole derivatives by one pot multicomponent reaction and their antimicrobial activity. Eur. J. Med. Chem. 2012, 51, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Kornet, M.J.; Thio, A.P. Oxindole-3-spiropyrrolidines and -piperidines. Synthesis and local anesthetic activity. J. Med. Chem. 1976, 19, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Yu, D.-Q.; Liu, H.-M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem. 2015, 97, 673–698. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, S.; Sun, W.; Liu, L.; Lu, J.; McEachern, D.; Shargary, S.; Bernard, D.; Li, X.; Zhao, T.; et al. A potent small-molecule inhibitor of the MDM2–p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J. Med. Chem. 2013, 56, 5553–5561. [Google Scholar] [CrossRef]
- Ghosh, R.; Vitor, J.B.; Mendes, E.; Paulo, A.; Acharya, P.C. Stereoselective synthesis of spirooxindole derivatives using one-pot multicomponent cycloaddition reaction and evaluation of their antiproliferative efficacy. ACS Omega. 2020, 5, 27332–27343. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, Q.; Guo, M.; Huang, W.; He, X.; Yang, L.; Peng, F.; He, G.; Han, B. Organocatalytic cascade reaction for the asymmetric synthesis of novel chroman-fused spirooxindoles that potently inhibit cancer cell proliferation. Chem. Commun. 2015, 51, 13113–13116. [Google Scholar] [CrossRef]
- Yu, B.; Yu, Z.; Qi, P.; Yu, D.; Liu, H. Discovery of orally active anticancer candidate CFI-400945 derived from biologically promising spirooxindoles: Success and challenges. Eur. J. Med. Chem. 2015, 95, 35–40. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Y.; Li, Q.; Yu, F.; Cao, J.; Fang, D.; Huang, Z.; Shi, D. Efficient and regioselective synthesis of novel functionalized dispiropyrrolidines and their cytotoxic activities. ACS Comb. Sci. 2014, 16, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Kidwai, M.; Jain, A.; Nemaysh, V.; Kumar, R.; Luthra, P.M. Efficient entry to diversely functionalized spirooxindoles from isatin and their biological activity. Med. Chem. Res. 2013, 22, 2717–2723. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, L.; Sun, W.; Lu, J.; McEachern, D.; Xiaoqin, L.; Yu, S.; Bernard, D.; Ochsenbein, P.; Ferey, V.; et al. Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. J. Am. Chem. Soc. 2013, 135, 7223–7234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barakat, A.; Soliman, S.M.; Alshahrani, S.; Islam, M.S.; Ali, M.; Al-Majid, A.M.; Yousuf, S. Synthesis, X-ray single crystal, conformational analysis and cholinesterase inhibitory activity of a new spiropyrrolidine scaffold tethered benzo[b]thiophene analogue. Crystals 2020, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Barakat, A.; Alshahrani, S.; Al-Majid, A.M.; Ali, M.; Altowyan, M.S.; Islam, M.S.; Alamary, A.S.; Ashraf, S.; Ul-Haq, Z. Synthesis of a new class of spirooxindole–benzo[b]thiophene-based molecules as acetylcholinesterase inhibitors. Molecules 2020, 25, 4671. [Google Scholar] [CrossRef]
- Barakat, A.; Islam, M.S.; Ghawas, H.M.; Al-Majid, A.M.; El-Senduny, F.F.; Badria, F.A.; Elshaier, Y.A.; Ghabbour, H.A. Design and synthesis of new substituted spirooxindoles as potential inhibitors of the MDM2–p53 interaction. Bioorg. Chem. 2019, 86, 598–608. [Google Scholar] [CrossRef]
- Altowyan, M.S.; Barakat, A.; Al-Majid, A.M.; Al-Ghulikah, H.A. Spiroindolone analogues bearing benzofuran moiety as a selective cyclooxygenase COX-1 with TNF-α and IL-6 inhibitors. Saudi. J. Biol. Sci. 2020, 27, 1208–1216. [Google Scholar] [CrossRef]
- Altowyan, M.S.; Barakat, A.; Al-Majid, A.M.; Al-Ghulikah, H. Spiroindolone analogues as potential hypoglycemic with dual inhibitory activity on α-amylase and α-glucosidase. Molecules 2019, 24, 2342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.S.; Ghawas, H.M.; El-Senduny, F.F.; Al-Majid, A.M.; Elshaier, Y.A.; Badria, F.A.; Barakat, A. Synthesis of new thiazolo-pyrrolidine-(spirooxindole) tethered to 3-acylindole as anticancer agents. Bioorg. Chem. 2019, 82, 423–430. [Google Scholar] [CrossRef]
- Barakat, A.; Islam, M.S.; Al Majid, A.M.; Ghawas, H.M.; El-Senduny, F.F.; Badria, F.A.; Elshaier, Y.A.M.M.; Ghabbourfg, H.A. Substituted spirooxindole derivatives as potent anticancer agents through inhibition of phosphodiesterase 1. RSC Adv. 2018, 8, 14335. [Google Scholar] [CrossRef] [Green Version]
- Lotfy, G.; El, S.H.; Said, M.M.; Aziz, Y.M.A.; Al-Dhfyan, A.; Al-Majid, A.M.; Barakat, A. Regio- and stereoselective synthesis of novel spiro-oxindole via 1,3-dipolar cycloaddition reaction. Anti-cancer and molecular docking studies. J. Photochem. Photobiol. B 2018, 180, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A.; Soliman, S.M.; Al-majid, A.M.; Ali, M.; Islam, M.S.; Elshaier, Y.A.M.M.; Ghabbour, H.A. Regioselective synthesis of novel spiro-oxindole constructed with pyrrolidine/thioxothiazolidin-4-one derivatives: X-ray crystal structures, Hirshfeld surface analysis, DFT, docking and antimicrobial studies. J. Mol. Struc. 2018, 1152, 101–114. [Google Scholar] [CrossRef]
- Lotfy, G.; Said, M.M.; El, S.H.; Al-Dhfyan, A.; Aziz, Y.M.A.; Barakat, A. Synthesis of new spirooxindole-pyrrolothiazoles derivatives: Anti-cancer activity and molecular docking. Bioorg. Med. Chem. 2017, 25, 1514–1523. [Google Scholar] [CrossRef]
- Al-Majid, A.M.; Soliman, S.M.; Haukka, M.; Ali, M.; Islam, M.S.; Shaik, M.R.; Barakat, A. Design, construction, and characterization of a new regioisomer and diastereomer material based on the spirooxindole scaffold incorporating a sulphone function. Symmetry 2020, 12, 1337. [Google Scholar] [CrossRef]
- Nammalwar, B.; Darrell, B.K.; Bunce, R.A. SHetA2—A Mini review of a promising anticancer drug. JSM Chem. 2013, 1005, 1–6. [Google Scholar]
- Zhang, D.; Ji, X.; Gao, R.; Wang, H.; Meng, S.; Zhong, Z.; Li, Y.; Jiang, J.; Li, Z. Synthesis and antiviral activities of a novel class of thioflavone and flavonoid analogues. Acta. Pharmacol. Sin. B 2012, 2, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Yoneya, T.; Taniguchi, K.; Nakamura, R.; Tsunenari, T.; Ohizumi, I.; Kanbe, Y.; Morikawa, K.; Kaiho, S.-I.; Yamada-Okabe, H. Thiochroman derivative CH4986399, A new nonsteroidal estrogen receptor down-regulator is effective in breast cancer models. Anticancer. Res. 2010, 30, 873–878. [Google Scholar]
- Nussbaumer, P.; Lehr, P.; Billich, A. 2-Substituted 4-(thio)chromenone 6-osulfamates: Potent inhibitors of human steroid sulfatase. J. Med. Chem. 2002, 45, 4310–4320. [Google Scholar] [CrossRef] [PubMed]
- Nussbaumer, P.; Winiski, A.P.; Billich, A. Estrogenic potential of 2-alkyl-4-(thio)chromenone 6-O-sulfamates: Potent inhibitors of human steroid sulfatase. J. Med. Chem. 2003, 46, 5091–5094. [Google Scholar] [CrossRef]
- Horvath, A.; Nussbaumer, P.; Wolff, B.; Billich, A. 2-(1- Adamantyl)-4-(thio)chromenone-6-carboxylic acids: Potent reversible inhibitors of human steroid sulfatase. J. Med. Chem. 2004, 47, 4268–4276. [Google Scholar] [CrossRef] [PubMed]
- De Bernardis, J.F.; Arendsen, D.L.; Zelle, R.E. Aminomethyl-chroman and -thiochroman compounds. U.S. Patent 5185364, 1993. [Google Scholar]
- Hadda, T.B.; Kerbal, A.; Bennani, B.; Houari, G.A.; Daoudi, M.; Leite, A.C.L.; Masand, V.H.; Jawarkar, R.D.; Charrouf, Z. Molecular drug design, synthesis and pharmacophore site identification of spiroheterocyclic compounds: Trypanosoma cruzi inhibiting studies. Med. Chem. Res. 2013, 22, 57–69. [Google Scholar] [CrossRef]
- Nakib, T.A.; Bezjak, V.; Meeganz, M.J.; Chandy, R. Synthesis and antifungal activity of some 3-benzylidenechroman-4-ones, 3-benzylidenethiochroman-4-ones and 2- benzylidene-1-tetralones. Eur. J. Med. Chem. 1990, 25, 455–462. [Google Scholar] [CrossRef]
- Pavlovska, T.L.; Redkin, R.G.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers. 2016, 20, 299–344. [Google Scholar] [CrossRef]
- Bora, D.; Kaushal, A.; Shankaraiah, N. Anticancer potential of spirocompounds in medicinal chemistry: A pentennial expedition. Eur. J. Med. Chem. 2021, 215, 113263. [Google Scholar] [CrossRef] [PubMed]
- Miyake, F.Y.; Yakushijin, K.; Horne, D.A. Preparation and synthetic applications of 2-halotryptamines: Synthesis of elacomine and isoelacomine. Org. Lett. 2004, 6, 711–713. [Google Scholar] [CrossRef]
- Finch, N.; Taylor, W.I. Oxidative transformations of indole alkaloids. I. The preparation of oxindoles from yohimbine; the structures and partial syntheses of mitraphylline, rhyncophylline and corynoxeine. J. Am. Chem. Soc. 1962, 84, 1318–1320. [Google Scholar] [CrossRef]
- Overman, L.E.; Rosen, M.D. Total synthesis of (−)-spirotryprostatin B and three stereoisomers. Angew. Chem. Int. Ed. 2000, 39, 4596–4599. [Google Scholar] [CrossRef]
- Saranya, P.V.; Neetha, M.; Aneeja, T.; Anilkumar, G. Transition metal-catalyzed synthesis of spirooxindoles. RSC Adv. 2021, 11, 7146–7179. [Google Scholar] [CrossRef]
- Ghandi, M.; Taheri, A.; Abbasi, A. A facile synthesis of chromeno[3,4-c]spiropyrrolidine-oxindoles via 1,3-dipolar cycloadditions. Tetrahedron 2010, 66, 6744–6748. [Google Scholar] [CrossRef]
- Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. Organocatalytic domino Oxa-Michael/1,6-addition reactions: Asymmetric synthesis of chromans bearing oxindole scaffolds. Angew. Chem. Int. Ed. 2016, 128, 12283–12287. [Google Scholar] [CrossRef]
- Mao, H.; Lin, A.; Tang, Y.; Shi, Y.; Hu, H.; Cheng, Y.; Zhu, C. Organocatalytic oxa/aza-Michael–Michael cascade strategy for the construction of spiro [chroman/tetrahydroquinoline-3, 3′-oxindole] scaffolds. Org. Lett. 2013, 15, 4062–4065. [Google Scholar] [CrossRef]
- Arai, T.; Miyazaki, T.; Ogawa, H.; Masu, H. PyBidine–Ni (OAc) 2-catalyzed Michael/Aldol reaction of methyleneindolinones and thiosalicylaldehydes for stereochemically divergent thiochromanyl-spirooxindoles. Org. Lett. 2016, 18, 5824–5827. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.; Bonne, D. Stereoselective Multiple Bond-Forming Transformations in Organic Synthesis; John, W., Sons, H., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Mannerström, M.; Toimela, T.; Sarkanen, J.-R.; Heinonen, T. Human BJ Fibroblasts is an alternative to mouse BALB/c 3T3 cells in in vitro neutral red uptake assay. Basic Clin. Pharmacol. Toxicol. 2017, 121, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Price, P.; McMillan1, T.J. Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res. 1990, 50, 1392–1396. Available online: https://cancerres.aacrjournals.org/content/canres/50/5/1392.full.pdf (accessed on 1 June 2020). [PubMed]
- Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988, 48, 4827–4833. [Google Scholar] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Comşa, Ş.; Cimpean, A.M.; Raica, M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar] [PubMed]
- Mielczarek, L.; Krug, P.; Mazur, M.; Milczarek, M.; Chilmonczyk, Z.; Wiktorska, K. In the triple-negative breast cancer MDA-MB-231 cell line, sulforaphane enhances the intracellular accumulation and anticancer action of doxorubicin encapsulated in liposomes. Int. J. Pharm. 2019, 558, 311–318. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, B.; Ren, J.; Li, F.; Song, S.; Lv, X.; Hao, C.; Cheng, M. Synthesis and biological evaluation of 3-phenyl-3-aryl carboxamido propanoic acid derivatives as small molecule inhibitors of retinoic acid 4-hydroxylase (CYP26A1). Bioorg. Med. Chem. 2015, 23, 1356–1365. [Google Scholar] [CrossRef]
- Foye, W.O.; Lemke, T.L.; Williams, D.A. Principles of Medicinal Chemistry, 4th ed. williams & wilkins: Philadelphia, PA, USA, 2002; 822.
Empirical Formula | C30H24ClFN2O2S | |
---|---|---|
Formula weight | 531.02 | |
Temperature | 120(2) K | |
Wavelength | 0.71073 Å | |
Crystal system | Monoclinic | |
Space group | C2/c | |
Unit cell dimensions | a = 36.6524(7) Å | α = 90°. |
b = 8.27830(10) Å | β = 102.216(2)° | |
c = 17.1963(3) Å | γ = 90° | |
Volume | 5099.55(15) Å3 | |
Z | 8 | |
Density (calculated) | 1.383 Mg/m3 | |
Absorption coefficient | 0.271 mm−1 | |
F(000) | 2208 | |
Crystal size | 0.228 × 0.166 × 0.139 mm3 | |
Theta range for data collection | 2.274 to 32.514°. | |
Index ranges | −54 < = h < = 44, −12 < = k < = 12, −24 < = l < = 25 | |
Reflections collected | 29,780 | |
Independent reflections | 8550 [R(int) = 0.0261] | |
Completeness to theta = 25.242° | 100.00% | |
Absorption correction | Semi-empirical from equivalents | |
Max. and min. transmission | 1.00000 and 0.96869 | |
Refinement method | Full-matrix least-squares on F2 | |
Data/restraints/parameters | 8550/0/338 | |
Goodness-of-fit on F2 | 1.017 | |
Final R indices [I > 2sigma(I)] | R1 = 0.0445, wR2 = 0.1170 | |
R indices (all data) | R1 = 0.0543, wR2 = 0.1251 | |
Extinction coefficient | n/a | |
Largest diff. peak and hole | 1.063 and −0.491 e.Å−3 | |
CCDC | 2092002 |
Atoms | Distance | Atoms | Distance |
---|---|---|---|
Cl(1)-C(7) | 1.7480(13) | N(1)-C(15) | 1.4555(17) |
S(1)-C(1) | 1.7554(14) | N(1)-C(14) | 1.4765(17) |
S(1)-C(9) | 1.8027(14) | N(1)-C(11) | 1.4919(16) |
O(1)-C(22) | 1.2272(16) | N(2)-C(22) | 1.3534(17) |
O(2)-C(24) | 1.2169(16) | N(2)-C(21) | 1.4052(17) |
F(1)-C(28) | 1.3556(18) | ||
Atoms | Angle | Atoms | Angle |
C(1)-S(1)-C(9) | 96.20(6) | C(5)-C(6)-C(1) | 117.89(12) |
C(15)-N(1)-C(14) | 119.17(11) | C(5)-C(6)-C(7) | 122.18(12) |
C(15)-N(1)-C(11) | 110.27(10) | C(1)-C(6)-C(7) | 119.72(11) |
C(14)-N(1)-C(11) | 109.32(10) | C(8)-C(7)-C(6) | 124.07(12) |
Compounds | Chemical Structure 4a-e/7a-m | Cancer Type/Cell Line (IC50, µM) | ||||
---|---|---|---|---|---|---|
Human Fibroblast BJ | Prostate PC3 | Cervical HeLa | Breast MCF-7 | Breast MDA-MB231 | ||
4a | NA | NA | NA | NA | NA | |
4b | NA | NA | 19.3 ± 0.3 | NA | NA | |
4c | NA | NA | 19.7 ± 0.7 | NA | NA | |
4d | NA | NA | NA | NA | NA | |
4e | NA | NA | NA | NA | NA | |
7a | NA | NA | 24.8 ± 0.3 | NA | NA | |
7b | NA | NA | NA | NA | NA | |
7c | NA | NA | 24.8 ± 0.2 | NA | NA | |
7d | 11.3 ± 0.17 | NA | 12.7 ± 0.2 | 7.36 ± 0.37 | 9.44 ± 0.32 | |
7e | NA | 27.5 ± 0.5 | NA | 16.45 ± 0.61 | 21.29 ± 1.35 | |
7f | NA | 8.7 ± 0.7 | 22.6 ± 0.1 | 23.27 ± 0.80 | 9.29 ± 0.34 | |
7g | NA | NA | 10.4 ± 0.7 | 14.30 ± 0.16 | NA | |
7h | NA | 16.0 ± 0.7 | 25.3 ± 0.25 | 8.34 ± 0.64 | 11.25 ± 0.28 | |
7i | NA | 27.7 ± 0.9 | NA | NA | NA | |
7j | NA | 22.5 ± 0.4 | 12.0 ± 0.1 | NA | NA | |
7k | 24.9 ± 0.4 | 15.6 ± 0.3 | 8.4 ± 0.5 | 26.04 ± 1.07 | 25.28 ± 0.77 | |
7l | NA | NA | NA | NA | NA | |
7m | NA | NA | 18.5 ± 0.9 | 24.16 ± 0.25 | 21.09 ± 0.1 | |
STD. | Doxorubicin | N/A | 1.9 ± 0.4 | 0.9 ± 0.14 | 0.79 ± 0.05 | 0.32 ± 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barakat, A.; Islam, M.S.; Ali, M.; Al-Majid, A.M.; Alshahrani, S.; Alamary, A.S.; Yousuf, S.; Choudhary, M.I. Regio- and Stereoselective Synthesis of a New Series of Spirooxindole Pyrrolidine Grafted Thiochromene Scaffolds as Potential Anticancer Agents. Symmetry 2021, 13, 1426. https://doi.org/10.3390/sym13081426
Barakat A, Islam MS, Ali M, Al-Majid AM, Alshahrani S, Alamary AS, Yousuf S, Choudhary MI. Regio- and Stereoselective Synthesis of a New Series of Spirooxindole Pyrrolidine Grafted Thiochromene Scaffolds as Potential Anticancer Agents. Symmetry. 2021; 13(8):1426. https://doi.org/10.3390/sym13081426
Chicago/Turabian StyleBarakat, Assem, Mohammad Shahidul Islam, M. Ali, Abdullah Mohammed Al-Majid, Saeed Alshahrani, Abdullah Saleh Alamary, Sammer Yousuf, and M. Iqbal Choudhary. 2021. "Regio- and Stereoselective Synthesis of a New Series of Spirooxindole Pyrrolidine Grafted Thiochromene Scaffolds as Potential Anticancer Agents" Symmetry 13, no. 8: 1426. https://doi.org/10.3390/sym13081426
APA StyleBarakat, A., Islam, M. S., Ali, M., Al-Majid, A. M., Alshahrani, S., Alamary, A. S., Yousuf, S., & Choudhary, M. I. (2021). Regio- and Stereoselective Synthesis of a New Series of Spirooxindole Pyrrolidine Grafted Thiochromene Scaffolds as Potential Anticancer Agents. Symmetry, 13(8), 1426. https://doi.org/10.3390/sym13081426