A p-Adic Matter in a Closed Universe
Abstract
:1. Introduction
2. On -Adic Strings
2.1. p-Adic Numbers, Adeles and Their Functions
- multiplicative character: ;
- additive character: , where is a fractional part of x;
- characteristic function:
- , ;
- , .
2.2. p-Adic Open String Amplitudes
2.3. Effective Field Theory for p-Adic Open Strings
3. Scalar -Adic Matter
3.1. Non-Tachyonic p-Adic Scalar Field in Minkowski Space
3.2. A Closed Universe with p-Adic Matter
4. Concluding Remarks
- Construction of Lagrangian for p-adic matter field and investigation of its equation of motion in weak field approximation.
- It is shown that a closed universe fulfilled by p-adic matter and a cosmological constant has an exponential expansion.
- A connection between the mass of p-adic scalar particle and the cosmological constant is obtained.
- The mass of p-adic scalar particle is computed.
- A formula that connects the radius of the closed universe under consideration with the mass of a p-adic scalar particle is obtained and the corresponding radius is estimated.
- The corresponding notion of p-scalaron is proposed and its possible connection with dark matter is conjectured.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of Ωμν (ϕ)
References
- Volovich, I.V. p-Adic string. Class. Quant. Grav. 1987, 4, L83–L87. [Google Scholar] [CrossRef]
- Freund, P.G.O.; Olson, M. Non-archimedean strings. Phys. Lett. B 1987, 199, 186–190. [Google Scholar] [CrossRef]
- Brekke, L.; Freund, P.G.O. p-Adic numbers in physics. Phys. Rep. 1993, 233, 1–66. [Google Scholar] [CrossRef]
- Vladimirov, V.S.; Volovich, I.V.; Zelenov, E.I. p-Adic Analysis and Mathematical Physics; World Scientific: Singapore, 1994. [Google Scholar]
- Dragovich, B.; Khrennikov, A.Y.; Kozyrev, S.V.; Volovich, I.V. On p-adic mathematical physics. p-Adic Numbers Ultrametr. Anal. Appl. 2009, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Dragovich, B.; Khrennikov, A.Y.; Kozyrev, S.V.; Volovich, I.V.; Zelenov, E.I. p-Adic mathematical physics: The first 30 years. p-Adic Numbers Ultrametr. Anal. Appl. 2017, 9, 87–121. [Google Scholar] [CrossRef]
- Volovich, I.V. p-Adic space-time and string theory. Theor. Math. Phys. 1987, 71, 574–576. [Google Scholar] [CrossRef]
- Gubser, S.S.; Knaute, J.; Parikh, S.; Samberg, A.; Witaszczyk, P. p-adic AdS/CFT. Commun. Math. Phys. 2017, 352, 1019. [Google Scholar] [CrossRef] [Green Version]
- Heydeman, M.; Marcolli, M.; Saberi, I.; Stoica, B. Tensor networks, p-adic fields, and algebraic curves: Arithmetic and the AdS3/CFT2 correspondence. Adv. Ther. Math. Phys. 2018, 22, 93–176. [Google Scholar] [CrossRef]
- Brekke, L.; Freund, P.G.O.; Olson, M.; Witten, E. Nonarchimedean string dynamics. Nucl. Phys. B 1988, 302, 365–402. [Google Scholar] [CrossRef]
- Frampton, P.H.; Okada, Y. Effective scalar field theory of p-adic string. Phys. Rev. D 1988, 37, 3077–3084. [Google Scholar] [CrossRef]
- Ghoshal, D.; Sen, A. Tachyon condensation and brane descent relations in p-adic string theory. Nucl. Phys. B 2000, 584, 300–312. [Google Scholar] [CrossRef] [Green Version]
- Gerasimov, A.; Shatashvilli, S. On exact tachyon potential in open string field theory. J. High Energy Phys. 2000, 034. [Google Scholar] [CrossRef] [Green Version]
- Moeller, N.; Zwiebach, B. Dynamics with infinitely many time derivatives and rolling tachyons. J. High Energy Phys. 2002, 034. [Google Scholar] [CrossRef] [Green Version]
- Vladimirov, V.S. On some exact solutions in p-adic open-closed string theory. p-Adic Numbers Ultrametr. Anal. Appl. 2012, 4, 57–63. [Google Scholar] [CrossRef]
- Barnaby, N.; Biswas, T.; Cline, J.M. p-Adic inflation. J. High Energy Phys. 2007, 056. [Google Scholar] [CrossRef] [Green Version]
- Bocardo-Gaspar, M.; Garcia-Compean, H.; Zúñiga-Galindo, W.A. On p-adic string amplitudes in the limit p approaches to one. J. High Energy Phys. 2018, 043. [Google Scholar] [CrossRef] [Green Version]
- García-Compean, H.; Lopez, E.Y.; Zuniga-Galindo, W.A. p-Adic open string amplitudes with Chan-Paton factors coupled to a constant B-field. Nucl. Phys. B 2020, 951, 114904. [Google Scholar] [CrossRef]
- Freund, P.G.O.; Witten, E. Adelic string amplitudes. Phys. Lett. B 1987, 199, 191–194. [Google Scholar] [CrossRef]
- Aref’eva, I.Y.; Dragovic, B.G.; Volovich, I.V. On the adelic string amplitudes. Phys. Lett. B 1988, 209, 445–450. [Google Scholar] [CrossRef]
- Gelf’and, I.M.; Graev, M.I.; Pyatetskii-Shapiro, I.I. Representation Theory and Automorphic Functions; Saunders: Philadelphia, PA, USA, 1969. [Google Scholar]
- Schikhof, W. Ultrametric Calculus; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Frampton, P.M.; Nishino, H. Stability analysis of p-adic string solitons. Phys. Lett. B 1990, 242, 354–356. [Google Scholar] [CrossRef]
- Dragovich, B. From p-adic to zeta strings. In Proceedings of the 1st Conference on Nonlinearity, online, 23–25 November 2020; Serbian Academy of Nonlinear Sciences: Belgrade, Serbia, 2020; pp. 14–28. [Google Scholar]
- Dragovich, B. p-Adic and adelic cosmology: p-adic origin of dark energy and dark energy. In p-Adic Mathematical Physics; American Institute of Physics: College Park, MD, USA, 2006; Volume 826, pp. 25–42. [Google Scholar]
- Dragovich, B. Towards p-adic Matter in the Universe; Springer Proceedings in Mathematics & Statistics: Berlin/Heidelberg, Germany, 2013; Volume 36, pp. 13–24. [Google Scholar]
- Dimitrijevic, I.; Dragovich, B.; Rakic, Z.; Stankovic, J. Variations of Infinite Derivative Modified Gravity; Springer Proceedings in Mathematics & Statistics: Berlin/Heidelberg, Germany, 2018; Volume 263, pp. 91–111. [Google Scholar]
- Dimitrijevic, I.; Dragovich, B.; Koshelev, A.S.; Rakic, Z.; Stankovic, J. Cosmological solutions of nonlocal square root gravity. Phys. Lett. B 2019, 797, 134848. [Google Scholar] [CrossRef]
- Arefeva, I.Y. Nonlocal string tachyon as a model for cosmological dark energy. In p-Adic Mathematical Physics; American Institute of Physics: College Park, MD, USA, 2006; Volume 826, pp. 301–311. [Google Scholar]
- Arefeva, I.Y.; Joukovskaya, I.V.; Vernov, S.Y. Bouncing and acceleration solutions in nonlocal stringy models. J. High Energy Phys. 2007, 2007, 087. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragovich, B. A p-Adic Matter in a Closed Universe. Symmetry 2022, 14, 73. https://doi.org/10.3390/sym14010073
Dragovich B. A p-Adic Matter in a Closed Universe. Symmetry. 2022; 14(1):73. https://doi.org/10.3390/sym14010073
Chicago/Turabian StyleDragovich, Branko. 2022. "A p-Adic Matter in a Closed Universe" Symmetry 14, no. 1: 73. https://doi.org/10.3390/sym14010073
APA StyleDragovich, B. (2022). A p-Adic Matter in a Closed Universe. Symmetry, 14(1), 73. https://doi.org/10.3390/sym14010073