Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions
Abstract
:1. Introduction and Definitions
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ponnusamy, S.; Silverman, H. Complex Variables with Applications; Birkhäuser: Boston, MA, USA, 2006. [Google Scholar]
- Lewy, H. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 1936, 42, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Duren, P.; Hengartner, W.; Laugesen, R.S. The argument principle for harmonic functions. Am. Math. Mon. 1996, 103, 411–415. [Google Scholar] [CrossRef]
- Clunie, J.; Small, T.S. Harmonic univalent functions. Ann. Acad. Sci. Fen. Ser. A I Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Small, S.T. Constants for planar harmonic mappings. J. Lond. Math. Soc. 1990, 2, 237–248. [Google Scholar] [CrossRef]
- Dziok, J. On Janowski harmonic functions. J. Appl. Anal. 2015, 21, 99–107. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag–Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesn. 2013, 65, 454–465. [Google Scholar]
- Raza, M.; Srivastava, H.M.; Arif, M.; Ahmad, K. Coefficient estimates for a certain family of analytic functions involving a q-derivative operator. Ramanujan J. 2021, 55, 53–71. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Darus, M. Inclusion relations of q-Bessel functions associated with generalized conic domain. AIMS Math. 2021, 6, 3624–3640. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Zaighum, M.A.; Darus, M. A subclass of uniformly convex functions and a corresponding subclass of starlike function with fixed coefficient associated with q-analogus of Ruscheweyh operator. Math. Slovaca 2019, 69, 825–832. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Chauhan, H.V.S.; Sing, B.; Tunc, C.; Tunc, O. On the existence of solutions of non-linear 2D Volterra integral equations in a Banach space. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. 2022, 116, 101. [Google Scholar] [CrossRef]
- Haq, M.U.; Raza, M.; Arif, M.; Khan, Q.; Tang, H. q-Analogue of differential subordinations. Mathematics 2019, 7, 724. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.F. Certain new class of harmonic functions involving quantum calculus. J. Funct. Spaces 2022, 2022, 6996639. [Google Scholar] [CrossRef]
- Kwon, O.S.; Khan, S.; Sim, Y.J.; Hussain, S. Bounds for the coefficient of Faber polynomial of meromorphic starlike and convex functions. Symmetry 2019, 11, 1368. [Google Scholar] [CrossRef] [Green Version]
- Liu, B. Global exponential convergence of non-autonomous SICNNs with multi-proportional delays. Neural Comput. Appl. 2017, 28, 1927–1931. [Google Scholar] [CrossRef]
- Cruz, A.M.D.; Martins, N. The q-symmetric variational calculus. Comput. Math. Appl. 2012, 64, 2241–2250. [Google Scholar] [CrossRef] [Green Version]
- Lavagno, A. Basic-deformed quantum mechanics. Rep. Math. Phys. 2009, 64, 79–88. [Google Scholar] [CrossRef]
- Kanas, S.; Altinkaya, S.; Yalcin, S. Subclass of k uniformly starlike functions defined by symmetric q-derivative operator. Ukr. Math. 2019, 70, 1727–1740. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A subclass of q-starlike functions defined by using a symmetric q-derivative operator and related with generalized symmetric conic domains. Mathematics 2021, 9, 917. [Google Scholar] [CrossRef]
- Khan, S.; Khan, N.; Hussain, A.; Araci, S.; Khan, B.; Al-Sulami, H.H. Applications of symmetric conic domains to a subclass of q-starlike functions. Symmetry 2022, 14, 803. [Google Scholar] [CrossRef]
- Khan, M.F.; Khan, S.; Khan, N.; Younis, J.; Khan, B. Applications of q-symmetric derivative operator to the subclass of analytic and bi-univalent functions involving the faber polynomial coefficients. Math. Probl. Eng. 2022, 2022, 4250878. [Google Scholar] [CrossRef]
- Khan, M.F.; Goswami, A.; Khan, S. Certain new subclass of multivalent q-starlike functions associated with q-symmetric calculus. Fractal Fract. 2022, 6, 367. [Google Scholar] [CrossRef]
- Kamel, B.; Yosr, S. On some symmetric q-special functions. Le Mat. 2013, 68, 107–122. [Google Scholar]
- Zhang, C.; Khan, S.; Hussain, A.; Khan, N.; Hussain, S.; Khan, N. Applications of q-difference symmetric operator in harmonic univalent functions. AIMS Math. 2021, 7, 667–680. [Google Scholar] [CrossRef]
- Salagean, G.S. Subclasses of univalent functions. In Complex Analysis—Fifth Romanian Finish Seminar, Bucharest; Springer: Berlin/Heidelberg, Germany, 1981; pp. 362–372. [Google Scholar]
- Jahangiri, J.M.; Murugusundaramoorthy, G.; Vijaya, K. Salagean type harmonic univalent functions. Southwest J. Pure Appl. Math. 2002, 2002, 77–82. [Google Scholar]
- Jahangiri, J.M. Harmonic univalent functions defined by q-calculus operators. Int. J. Math. Anal. Appl. 2018, 5, 39–43. [Google Scholar]
- Arif, M.; Barkub, O.; Srivastava, H.M.; Abdullah, S.; Khan, S.A. Some Janowski type harmonic q-starlike functions associated with symmetrical points. Mathematics 2020, 8, 629. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Khan, S.; Ahmad, Q.Z.; Khan, B. A class of k-symmetric harmonic functions involving a certain q-derivative operator. Mathematics 2021, 9, 1812. [Google Scholar] [CrossRef]
- Dziok, J.; Jahangiri, J.M.; Silverman, H. Harmonic functions with varying coefficients. J. Inequalities Appl. 2016, 2016, 139. [Google Scholar] [CrossRef] [Green Version]
- Altinkaya, S.; Cakmak, S.; Yalcin, S. On a new class of Salagean type harmonic univalent functions associated with subordination. Honam. Math. J. 2018, 40, 433–446. [Google Scholar]
- Jahangiri, J.M.; Magesh, N.; Murugesan, C. Certain subclasses of starlike harmonic functions defined by subordination. J. Fract. Calc. Appl. 2017, 8, 88–100. [Google Scholar]
- Jahangiri, J.M. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 1999, 235, 470–477. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.; Al-Shbeil, I.; Aloraini, N.; Khan, N.; Khan, S. Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions. Symmetry 2022, 14, 2188. https://doi.org/10.3390/sym14102188
Khan MF, Al-Shbeil I, Aloraini N, Khan N, Khan S. Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions. Symmetry. 2022; 14(10):2188. https://doi.org/10.3390/sym14102188
Chicago/Turabian StyleKhan, Mohammad Faisal, Isra Al-Shbeil, Najla Aloraini, Nazar Khan, and Shahid Khan. 2022. "Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions" Symmetry 14, no. 10: 2188. https://doi.org/10.3390/sym14102188
APA StyleKhan, M. F., Al-Shbeil, I., Aloraini, N., Khan, N., & Khan, S. (2022). Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions. Symmetry, 14(10), 2188. https://doi.org/10.3390/sym14102188