Common Fixed Point Theorems on Orthogonal Branciari Metric Spaces with an Application
Abstract
:1. Introduction
2. Preliminaries
- 1.
- ;
- 2.
- ;
- 3.
- (rectangular inequality).
- for each
- for any two sequences and in , such that, we have .
- is non-decreasing;
- for all , where is the -iterate of .
3. Main Results
- (i)
- is an orthogonal preserving;
- (ii)
- is an orthogonal generalized Λ-contraction pair of mappings with respect to η;
- (iii)
- There exists , such that and;
- (iv)
- Both and are orthogonal continuous, and for any sufficiently large.
- (i)
- If there exists such that , then we have . It is clear that is a common fixed point of and . Therefore, the proof is completed.
- (ii)
- If for any , then we have for each .
- (i)
- is an orthogonal semi-generalized Λ-contraction pair of mappings with respect to η;
- (ii)
- There exists , such that and;
- (iii)
- For every , ;
- (iv)
- Both and are orthogonal continuous and for any sufficiently large;
- (v)
- is orthogonal preserving.
4. Application
- (1)
- and are members of ;
- (2)
- There exists , such that for and ,
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frechet, M. Sur quelques points du calcul fonctionnel. Rend. Del Circ. Mat. Palermo 1906, 22, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Banach, S. Sur les operations dans les ensembles abstraits et leur applications aux equations integrals. J. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debr. 2000, 57, 31–37. [Google Scholar]
- Das, P. A fixed point theorem on a class of generalised metric spaces. Korean J. Math. Sci. 2002, 9, 29–33. [Google Scholar]
- Das, P.; Lahri, B.K. Fixed point of a Ljubomir Ciric’s quasi-contraction mapping in a generalized metric space. Publ. Math. Debr. 2002, 61, 589–594. [Google Scholar]
- Azam, A.; Arshad, M. Kannan Fixed Point Theorems on generalised metric spaces. J. Nonlinear Sci. Appl. 2008, 1, 45–48. [Google Scholar] [CrossRef]
- Azam, A.; Arshad, M.; Beg, I. Banach contraction principle on cone rectangular metric spaces. Appl. Anal. Discret. Math. 2009, 3, 236–241. [Google Scholar] [CrossRef]
- Das, P. A fixed point theorem in generalized metric spaces. Soochow J. Math. 2007, 33, 33–39. [Google Scholar]
- Das, P.; Lahri, B.K. Fixed Point of contractive mappings in generalised metric space. Math. Slovaca 2009, 59, 499–504. [Google Scholar] [CrossRef]
- George, R.; Rajagopalan, R. Common fixed point results for ψ-ϕ contractions in rectangular metric spaces. Bull. Math. Anal. Appl. 2013, 5, 44–52. [Google Scholar]
- Alharbi, N.; Aydi, H.; Felhi, A.; Ozel, C.; Sahmim, S. α-contractive mappings on rectangular b-metric spaces and an application to integral equations. J. Math. Anal. 2018, 8, 47–60. [Google Scholar]
- Ansari, A.H.; Aydi, H.; Kumari, P.S.; Yildirim, I. New fixed point results via C-class functions in b-rectangular metric spaces. J. Commun. Math. Appl. 2018, 9, 109–126. [Google Scholar]
- Aydi, H.; Karapinar, E.; Samet, B. Fixed points for generalized (α, ψ)-contractions on generalized metric spaces. J. Inequalities Appl. 2014, 2014, 229. [Google Scholar] [CrossRef] [Green Version]
- Eshraghisamani, M.; Vaezpour, S.M.; Asadi, M. New fixed point results on Branciari metric spaces. J. Math. Anal. 2017, 8, 132–141. [Google Scholar]
- Kadelburg, Z.; Radenovic, S. On generalized metric spaces: A survey. TWMS J. Pure Appl. Math. 2014, 5, 3–13. [Google Scholar]
- Kadelburg, Z.; Radenovic, S. Fixed point results in generalized metric spaces without Hausdorff property. J. Math. Sci. 2014, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Kadelburg, Z.; Radenovic, S.; Shukla, S. Boyd-Wong and Meir-Keeler type theorems in generalized metric spaces. J. Adv. Math. Study 2016, 9, 83–93. [Google Scholar]
- Kadelburg, Z.; Radenovic, S. Common fixed point results of Das-Naik and Geraghty types in β-generalized metric spaces. Sarajevo J. Math. 2017, 13, 93–103. [Google Scholar]
- Karapinar, E.; Czerwik, S.; Aydi, H. (α-ψ)- Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Lakzian, H. (α-ψ)-Contractive mappings on generalized quasimetric spaces. J. Funct. Spaces 2014, 2014, 914398. [Google Scholar] [CrossRef] [Green Version]
- Lakzian, H.; Samet, B. Fixed points for (ψ-ϕ)-weakly contractive mappings in generalized metric spaces. J. Appl. Math. Lett. 2012, 25, 902–906. [Google Scholar] [CrossRef]
- Shatanawi, W.; Al-Rawashdeh, A.; Aydi, H.; Nashine, H.K. On a fixed point for generalized contractions in generalized metric spaces. J. Abstr. Appl. Anal. 2012, 2012, 246085. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Karapinar, E.; Zhang, D. On common fixed points in the context of Branciari metric spaces. J. Results Math. 2017, 71, 73–92. [Google Scholar] [CrossRef]
- Abodayeh, K.; Karapinar, E.; Pitea, A.; Shatanawi, W. Hybrid contractions on Branciari type distance spaces. Mathematics 2019, 7, 994. [Google Scholar] [CrossRef] [Green Version]
- Khojasteh, F.; Shukla, S.; Radenovic, S. A new approach to the study of fixed point theory for simulation functions. J. Filomat 2015, 29, 1189–1194. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E. Fixed points results via simulation functions. J. Filomat 2016, 30, 2343–2350. [Google Scholar] [CrossRef] [Green Version]
- Chandok, S.; Chanda, A.; Dey, L.K.; Pavlovic, M.; Radenvic, S. Simulation functions and Geraghty type results. Bol. Soc. Parana. Math. 2018, 39, 35–50. [Google Scholar] [CrossRef]
- Chanda, A.; Dey, L.K.; Radenovic, S. Simulation functions: A survey of recent results. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2019, 113, 2923–2957. [Google Scholar] [CrossRef]
- Kostic, A.; Rakocevic, V.; Radenovic, S. Best proximity points involving simulation functions with w0-distance. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2019, 113, 715–727. [Google Scholar] [CrossRef]
- Liu, X.L.; Ansari, A.H.; Chandok, S.; Radenovic, S. On some results in metric spaces using auxiliary simulation functions via new functions. J. Comput. Anal. Appl. 2018, 24, 1103–1114. [Google Scholar]
- Radenovic, S.; Vetro, F.; Vujakovic, J. An alternative and easy approach to fixed point results via simulation functions. J. Demonstr. Math. 2017, 50, 223–230. [Google Scholar] [CrossRef]
- Radenovic, S.; Chandok, S. Simulation type functions and coincidence points. J. Filomat 2018, 32, 141–147. [Google Scholar] [CrossRef]
- Shatanawi, W.; Postolache, M. Common fixed point results of mappings for nonlinear contractions of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013, 2013, 60. [Google Scholar] [CrossRef] [Green Version]
- Eshaghi Gordji, M.; Ramezani, M.; De La Sen, M.; Cho, Y.J. On orthogonal sets and Banach fixed point theorem. J. Fixed Point Theory 2017, 18, 569–578. [Google Scholar] [CrossRef]
- Eshaghi Gordji, M.; Habibi, H. Fixed point theory in generalized orthogonal metric space. J. Linear Topol. Algebra 2017, 6, 251–260. [Google Scholar]
- Ramezani, M. Orthogonal metric space and convex contractions. Int. J. Nonlinear Anal. Appl. 2015, 6, 127–132. [Google Scholar]
- Arul Joseph, G.; Gunaseelan, M.; Jung, R.L.; Choonkil, P. Solving a nonlinear integral equation via orthogonal metric space. AIMS Math. 2022, 7, 1198–1210. [Google Scholar] [CrossRef]
- Gunaseelan, M.; Arul Joseph, G.; Kausar, N.; Munir, M. Orthogonal F-Contraction mapping on O-Complete Metric Space with Applications. Int. J. Fuzzy Log. Intell. Syst. 2021, 21, 243–250. [Google Scholar]
- Gunaseelan, M.; Arul Joseph, G.; Choonkil, P.; Sungsik, Y. Orthogonal F-contractions on O-complete b-metric space. AIMS Math. 2021, 6, 8315–8330. [Google Scholar] [CrossRef]
- Arul Joseph, G.; Gunaseelan, M.; Vahid, P.; Hassen, A. Solving a Nonlinear Fredholm Integral Equation via an Orthogonal Metric. J. Adv. Math. Phys. 2021, 2021, 1202527. [Google Scholar] [CrossRef]
- Senapati, T.; Dey, L.K.; Damjanovic, B.; Chanda, A. New fixed point results in orthogonal metric spaces with an application. Kragujev. J. Math. 2018, 42, 505–516. [Google Scholar] [CrossRef] [Green Version]
- Mukheimer, A.; Gnanaprakasam, A.J.; Haq, A.U.; Prakasam, S.K.; Mani, G.; Baloch, I.A. Solving an Integral Equation via Orthogonal Brianciari Metric Spaces. J. Funct. Spaces 2022, 2022, 7251823. [Google Scholar] [CrossRef]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerand, 2014. [Google Scholar] [CrossRef]
Approximation Solution | Exact Solution | Error | |
---|---|---|---|
0.000 | 1.000 | 1.000 | 0.000 |
0.100 | 0.906 | 0.900 | 0.006 |
0.200 | 0.792 | 0.799 | −0.007 |
0.300 | 0.668 | 0.695 | −0.028 |
0.400 | 0.534 | 0.589 | −0.055 |
0.500 | 0.390 | 0.479 | −0.089 |
0.600 | 0.236 | 0.363 | −0.127 |
0.700 | 0.072 | 0.241 | −0.169 |
0.800 | −0.102 | 0.122 | −0.214 |
0.900 | −0.286 | −0.027 | −0.260 |
1.000 | −0.480 | −0.175 | −0.305 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mani, G.; Prakasam, S.K.; Gnanaprakasam, A.J.; Ramaswamy, R.; Abdelnaby, O.A.A.; Khan, K.H.; Radenović, S. Common Fixed Point Theorems on Orthogonal Branciari Metric Spaces with an Application. Symmetry 2022, 14, 2420. https://doi.org/10.3390/sym14112420
Mani G, Prakasam SK, Gnanaprakasam AJ, Ramaswamy R, Abdelnaby OAA, Khan KH, Radenović S. Common Fixed Point Theorems on Orthogonal Branciari Metric Spaces with an Application. Symmetry. 2022; 14(11):2420. https://doi.org/10.3390/sym14112420
Chicago/Turabian StyleMani, Gunaseelan, Senthil Kumar Prakasam, Arul Joseph Gnanaprakasam, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Khizar Hyatt Khan, and Stojan Radenović. 2022. "Common Fixed Point Theorems on Orthogonal Branciari Metric Spaces with an Application" Symmetry 14, no. 11: 2420. https://doi.org/10.3390/sym14112420
APA StyleMani, G., Prakasam, S. K., Gnanaprakasam, A. J., Ramaswamy, R., Abdelnaby, O. A. A., Khan, K. H., & Radenović, S. (2022). Common Fixed Point Theorems on Orthogonal Branciari Metric Spaces with an Application. Symmetry, 14(11), 2420. https://doi.org/10.3390/sym14112420