Geometric Properties for a New Class of Analytic Functions Defined by a Certain Operator
Abstract
:1. Introduction
2. Main Results
3. Partial Sums
4. The Fekete–Szegö Problem
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jagannathan, R.; Rao, K.S. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. arXiv 2006, arXiv:math/0602613. [Google Scholar]
- Sahai, V.; Yadav, S. Representations of two parameter quantum algebras and p,q-special functions. J. Math. Anal. Appl. 2007, 335, 268–279. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Purohit, S.D.; Raina, R.K. Fractional q-calculus and certain subclasses of univalent analytic functions. Mathematica 2013, 55, 62–74. [Google Scholar]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Corcino, R.B. On p,q-binomial coefficients. Integers 2008, 8, A29. [Google Scholar]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. arXiv 2018, arXiv:1309.3934. [Google Scholar]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple region. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- St. Sălăgean, G. Subclasses of univalent functions. In Lecture Notes in Mathematics; Springer: Berlin, Germany, 1983; Volume 1013, pp. 362–372. [Google Scholar]
- Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
- Cataş, A. A note on subclasses of univalent functions defined by a generalized Sălăgean operator. Acta Univ. Apulensis 2006, 12, 73–78. [Google Scholar]
- Alb Lupaş, A.; Oros, G.I. Fuzzy Differential Subordination and Superordination Results Involving the q-Hypergeometric Function and Fractional Calculus Aspects. Mathematics 2022, 10, 4121. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Breaz, D.; Karthikeyan, K.R.; Umadevi, E.; Senguttuvan, A. Some Properties of Bazilevič Functions Involving Srivastava–Tomovski Operator. Axioms 2022, 11, 687. [Google Scholar] [CrossRef]
- Totoi, E.A.; Cotîrlă, L.I. Preserving Classes of Meromorphic Functions through Integral Operators. Symmetry 2022, 14, 1545. [Google Scholar] [CrossRef]
- Cho, N.E.; Srivastava, H.M. Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Model. 2003, 37, 39–49. [Google Scholar] [CrossRef]
- Çaglar, M.; Cotîrlă, L.I.; Buyankara, M. Fekete–Szegö inequalities for a new subclass of bi-univalent functions associated with Gegenbauer polynomials. Symmetry 2022, 14, 1572. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.A.; Noor, K.I. Study on the q-analogue of a certain family of linear operators. Turk J. Math. 2019, 43, 2707–2714. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Integral Transform. Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
- Swamy, S.R. Inclusion properties of certain subclasses of analytic functions. Int. Math. Forum 2012, 7, 1751–1760. [Google Scholar]
- Wanas, A.K. New differential operator for holomorphic functions. Earthline J. Math. Sci. 2019, 2, 527–537. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlǎ, L.I. Initial coefficient estimates and Fekete–Szegö inequalities for new families of bi-univalent functions governed by (p-q)-Wanas operator. Symmetry 2021, 13, 2118. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press: Cambridge, MA, USA, 1992; pp. 157–169. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniformly convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wisniowska, A. Conic regions and starlike functions. Rev. Roum. Math. Pure Appl. 2000, 45, 647–657. [Google Scholar]
- Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integral Transform. Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Kanas, S. Coefficient estimates in subclasses of the Carathé odary class related to conic domains. Acta Math. Univ. Comen. 2005, 74, 149–161. [Google Scholar]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Appl. Math. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
- Khan, B.; Srivastava, H.M.; Khan, N.; Darus, M.; Ahmad, Q.Z.; Tahir, M. Applications of Certain Conic Domains to a Subclass of q-Starlike Functions Associated with the Janowski Functions. Symmetry 2021, 13, 574. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Darus, M.; Khan, B. Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Math. 2020, 6, 1110–1125. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient Inequalities for q-Starlike Functions Associated with the Janowski Functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Hussain, A.; Khan, N.; Tahir, M. Applications of certain basic (or q-) derivatives to subclasses of multivalent Janowski type q-starlike functions involving conic domain. J. Nonlinear Var. Anal. 2021, 5, 531–547. [Google Scholar]
- Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 2, 85–89. [Google Scholar] [CrossRef]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Porwal, S. An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014, 2014, 984135. [Google Scholar] [CrossRef]
- Bulboacă, T.; Murugusundaramoorthy, G. Univalent functions with positive coefficients involving Pascal distribution series. Commun. Korean Math. Soc. 2020, 35, 867–877. [Google Scholar]
- El-Deeb, M.; Bulboacă, T.; Dziok, J. Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 2019, 59, 301–314. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; Murugusundaramoorthy, G.; Cotîrlǎ, L.-I. Geometric Properties for a New Class of Analytic Functions Defined by a Certain Operator. Symmetry 2022, 14, 2624. https://doi.org/10.3390/sym14122624
Breaz D, Murugusundaramoorthy G, Cotîrlǎ L-I. Geometric Properties for a New Class of Analytic Functions Defined by a Certain Operator. Symmetry. 2022; 14(12):2624. https://doi.org/10.3390/sym14122624
Chicago/Turabian StyleBreaz, Daniel, Gangadharan Murugusundaramoorthy, and Luminiţa-Ioana Cotîrlǎ. 2022. "Geometric Properties for a New Class of Analytic Functions Defined by a Certain Operator" Symmetry 14, no. 12: 2624. https://doi.org/10.3390/sym14122624
APA StyleBreaz, D., Murugusundaramoorthy, G., & Cotîrlǎ, L. -I. (2022). Geometric Properties for a New Class of Analytic Functions Defined by a Certain Operator. Symmetry, 14(12), 2624. https://doi.org/10.3390/sym14122624