On a Certain Subclass of p-Valent Analytic Functions Involving q-Difference Operator
Abstract
:1. Introduction
- 2.
- .
2. Coefficient Estimates
3. Subordination Results
4. Application of -Fractional Calculus Operators
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Lupas, A.A. Applications of the q-Sălăgean differential operator involving multivalent functions. Axioms 2022, 11, 512. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 6. [Google Scholar] [CrossRef] [Green Version]
- Aldweby, H.; Darus, M. A Note On q-Integral Operators, Electron. Notes Discret. Math. 2018, 67, 25–30. [Google Scholar] [CrossRef]
- Ali, E.E.; Lashin, A.Y.; Albalahi, A.M. Coefficient estimates for some classes of biunivalent function associated with Jackson q-difference operator. J. Funct. Spaces 2022, 8, 2365918. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. New subclass of analytic functions defined by q-differential operator with respect to k-symmetric points. Int. J. Math. Comput. Sci. 2019, 14, 761–773. [Google Scholar]
- Alsoboh, A.; Darus, M. On Fekete-Szego problem associated with q-derivative operator. J. Phys. Conf. Ser. 2019, 1212, 12003. [Google Scholar] [CrossRef]
- Amini, E.; Al-Omari, S.; Nonlaopon, K.; Baleanu, D. Estimates for coefficients of bi-univalent functions associated with a Fractional q-Difference Operator. Symmetry 2022, 14, 879. [Google Scholar] [CrossRef]
- Cetinkaya, A.; Cotirla, L.I. Quasi-Hadamard product and partial sums for Sakaguchi-type function classes involving q-difference operator. Symmetry 2022, 14, 709. [Google Scholar] [CrossRef]
- Elhaddad, S.; Aldweby, H.; Darus, M. Some properties on a class of harmonic univalent functions defined by q-analogue of Ruscheweyh operator. J. Math. Anal. 2018, 9, 28–35. [Google Scholar]
- Elhaddad, S.; Darus, M. On meromorphic functions defined by a new operator containing the Mittag-Leffter function. Symmetry 2019, 11, 210. [Google Scholar] [CrossRef]
- Kanas, S.; Altinkaya, S.; Yalcin, S. Subclass of k-uniformly starlike functions defined by the symmetric q-derivative operator. Ukr. Math. J. 2019, 70, 1727–1740. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Lashin, A.Y.; Badghaish, A.O.; Algethami, B.M. A Study on certain subclasses of analytic functions involving the Jackson q-Difference Operator. Symmetry 2022, 14, 1471. [Google Scholar] [CrossRef]
- Noor, K.I. On analytic functions involving the q-Ruscheweyeh derivative. Fractal Fract. 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Darus, M.; Khan, N.; Ahmad, Q.Z. Certain subclasses of meromorphically q-starlike functions associated with the q-derivative operators. Ukr. Math. J. 2022, 73, 1462–1477. [Google Scholar] [CrossRef]
- Wang, B.; Srivastava, R.; Liu, J.L. A certain subclass of multivalent analytic functions defined by the q-difference operator related to the Janowski functions. Mathematics 2021, 9, 1706. [Google Scholar] [CrossRef]
- Olatunji, S.O. Fekete–Szegö inequalities on certain subclasses of analytic functions defined by λ-pseudo-q-difference operator associated with s-sigmoid function. Bol. Soc. Mat. Mex. 2022, 28, 1–15. [Google Scholar] [CrossRef]
- El-Qadeem, A.H.; Mamon, M.A. Comprehensive subclasses of multivalent functions with negative coefficients defined by using a q-difference operator. Trans. Razmadze Math. Inst. 2018, 172, 510–526. [Google Scholar] [CrossRef]
- Govindaraj, S.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 1–13. [Google Scholar] [CrossRef]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Duren, P.L. Univalent Functions, Grundlehren Math. Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Caglar, M.; Deniz, E.; Orhan, H. New coefficient inequalities for certain subclasses of p-valent analytic functions. J. Adv. Appl. Comput. Math. 2014, 1, 40–42. [Google Scholar] [CrossRef]
- Orhan, H.; Rsducanu, D.; Caglar, M.; Bayram, M. Coefficient estimates and other properties for a class of spirallike functions associated with a differential operator. Abstr. Appl. Anal. 2013, 2013, 415319. [Google Scholar] [CrossRef] [Green Version]
- Pfaltzgraff, J.; Pinchuk, B. A variational method for classes of meromorphic functions. J. Anal. Math. 1971, 24, 101–150. [Google Scholar] [CrossRef]
- Avkhadiev, F.G.; Pommerenke, C.; Wirths, K.J. Sharp inequalities for the coefficients of concave schlicht functions. Comment. Math. Helv. 2006, 81, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Cruz, L.; Pommerenke, C. On concave univalent functions. Complex Var. Elliptic Equ. 2007, 52, 153–159. [Google Scholar] [CrossRef]
- Nishiwaki, J.; Owa, S. Coefficient inequalities for certain analytic functions. Int. J. Math. Math. Sci. 2002, 29, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Owa, S.; Nishiwaki, J. Coefficient estimates for certain classes of analytic functions. J. Inequalities Pure Appl. Math. 2002, 3, 1–5. [Google Scholar]
- Owa, S.; Srivastava, H.M. Some generalized convolution properties associated with certain subclasses of analytic functions. J. Inequalities Pure Appl. Math. 2002, 3, 1–13. [Google Scholar]
- Srivastava, H.M.; Attiya, A.A. Some subordination results associated with certain subclasses of analytic functions. J. Inequalities Pure Appl. Math. 2004, 5, 1–14. [Google Scholar]
- Wilf, S. Subordinating factor sequence for convex maps of the unit circle. Proc. Am. Math. Soc. 1961, 12, 689–693. [Google Scholar] [CrossRef]
- Noor, K.I.; Riaz, S.; Noor, M.A. On q-bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
- Purohit, S.D.; Raina, R.K. Certain subclass of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef]
- Purohit, S.D.; Raina, R.K. On a subclass of p-valent analytic functions involving fractional q-calculus operators. Kuwait J. Sci. 2015, 42, 1–15. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lashin, A.M.Y.; Badghaish, A.O.; Algethami, B.M. On a Certain Subclass of p-Valent Analytic Functions Involving q-Difference Operator. Symmetry 2023, 15, 93. https://doi.org/10.3390/sym15010093
Lashin AMY, Badghaish AO, Algethami BM. On a Certain Subclass of p-Valent Analytic Functions Involving q-Difference Operator. Symmetry. 2023; 15(1):93. https://doi.org/10.3390/sym15010093
Chicago/Turabian StyleLashin, Abdel Moneim Y., Abeer O. Badghaish, and Badriah Maeed Algethami. 2023. "On a Certain Subclass of p-Valent Analytic Functions Involving q-Difference Operator" Symmetry 15, no. 1: 93. https://doi.org/10.3390/sym15010093
APA StyleLashin, A. M. Y., Badghaish, A. O., & Algethami, B. M. (2023). On a Certain Subclass of p-Valent Analytic Functions Involving q-Difference Operator. Symmetry, 15(1), 93. https://doi.org/10.3390/sym15010093